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We provide contents omitted in the main text.

• Section 1: details on Name that dataset! (Sect. 3.2 of
the main text).

• Section 2: details on the proposed domain adaptation
algorithm (Sect. 4.2 and 4.3 of the main text).

• Section 3: details on the experimental setup (Sect. 5.2
of the main text).

• Section 4: additional experimental results (Sect. 5.3
and 5.4 of the main text).

1. Details on Name that Dataset!

As mentioned in Sect. 3.2 of the main text, we train
a one-hidden-layer MLP to perform binary classification
for detecting the origin of an input IQA triplet. The hid-
den layer is of 8,192 nodes and with the ReLU activa-
tion. The output of the MLP is normalized into [0, 1] via
the sigmoid function, and we train the MLP with the lo-
gistic (cross entropy) loss. We use the penultimate layer
of ResNet-200 [5] as visual features to represent I and the
average WORD2VEC embeddings [10] as text features to
represent Q and each C ∈ A, as in [6]. We represent the
whole set of decoys (denoted as D) in A by the average
of those decoys’ features1. The input to the MLP is the
concatenation of features from I, Q, T, and D (or a subset
of them). The size of the training/validation/test triplets is
80,000/10,000/40,000, half from each dataset (i.e., either
VQA [1] or Visual7W [16]).

∗ Equal contributions
1Visual7W [16] has 3 decoys per triplet and VQA [1] has 17 decoys.

For fair comparison, we subsample 3 decoys for VQA. We then average
the WORD2VEC embedding of each decoy to be the feature of decoys.

2. Details on the Proposed Domain Adaptation
Algorithm

2.1. Approximating the JSD divergence

As mentioned in Sect. 4.2 of the main text, we use the
Jensen-Shannon Divergence (JSD) to measure the domain
mismatch between two domains according to their empiri-
cal distributions. Dependent on the domain adaptation (DA)
setting, the empirical distribution is computed on the (trans-
formed) questions, (transformed) correct answers, or both.

Since JSD is hard to compute, we approximate it by
training a binary classifier WhichDomain(·) to detect the
domain of a question Q, a correct answer T, or a QT pair,
following the idea of Generative Adversarial Network [3].
The architecture of WhichDomain(·) is exactly the same
as that used for Name that dataset!, except that the input
features of examples from the target domain are after the
transformations gq(·) and ga(·).

2.2. Details on the proposed algorithm

We summarize the proposed domain adaptation algo-
rithm for Visual QA under Setting[Q+T+D] in Algorithm 1.
Algorithms of the other settings can be derived by removing
the parts corresponding to the missing information.

3. Details on the Experimental Setup
3.1. Implementation details

For all our experiments on training gq(·), ga(·), and
WhichDomain(·), we use Adam [7] for stochastic gradient-
based optimization, with learning rate = 10−4 and mini-
batch size = 100. We set λ = 0.5 for Setting[Q+T+D] and
Setting[T+D], and 0.1 for the others. We set k = 500, and
l = 5, and train for 1,000 iterations.

3.2. Domain adaptation settings

Note that the “Yes” or “NO” issue we consider between
VQA [1], VQA2 [4] and Visaul7W [16], Visual Genome
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Notations Denote the features of Q, T, D by fq , ft, and fd. The D here stands for one decoy.

Goal Learn transformations gq(·), ga(·) and a binary domain classifier WhichDomain(·), where φq , φa, and θ are the
parameters to learn, respectively. WhichDomain(·) gives the conditional probability of being from the source domain;

for number of training iterations do
Initialize the parameters θ of WhichDomain(·);
for k steps do

Sample a mini-batch of m pairs {Q(j)
SD , T

(j)
SD }mj=1 ∼ SD;

Sample a mini-batch of m pairs {Q(j)
TD, T

(j)
TD}mj=1 ∼ TD;

Update WhichDomain(·) by ascending its stochastic gradient;

∇θ

{
1
m

∑m
j=1

[
logWhichDomain({fq(j)SD , ft

(j)
SD}) + log(1−WhichDomain({gq(fq(j)TD), ga(ft

(j)
TD)}))

]}
end
for l steps do

Sample a mini-batch of m triplet {Q(j)
TD, T

(j)
TD , D

(j)
TD}mj=1 ∼ TD;

Update the transformations by descending their stochastic gradients;

∇φq,φa

{
1
m

∑m
i=1 log(1−WhichDomain({gq(fq(j)TD), ga(ft

(j)
TD)})) +

λ
(
`
(
{gq(fq(j)TD), ga(ft

(j)
TD)}) + `

(
{gq(fq(j)TD), ga(fd

(j)
TD)})

)}
end

end

Algorithm 1: The proposed domain adaptation algorithm for Setting[Q+T+D]. D(j)
TD denotes a single decoy. When the

decoys of the target domain are not provided (i.e., Setting[Q+T]), the ` term related to D(j)
TD is ignored.

(VG) [8], COCOQA [11] is orthogonal to the one addressed
in [4, 15], which deal with the prior of answers within a
single dataset.

3.3. Sophisticated Visual QA models

In the main text we experiment with a variant of the spa-
tial memory network (SMem) [14]. Instead of computing
the visual attention for each word of the question, we di-
rectly compute the visual attention for the question using
the average WORD2VEC embeddings. We then concatenate
the resulting visual features with the features of the question
and a candidate answer (in the same way as the Visual QA
model in Sect. 5.2 of the main text) as the input to train a
one-hidden-layer MLP for binary classification.

We choose to train an MLP with candidate answers as
a part of the input rather than training a multi-way classi-
fier for the top frequent answers because the answer dis-
tributions can vary drastically across different domains or
datasets. In such a case, an IQA triplet of the target do-
main can never be answered correctly by the learnt multi-
way classifier on the source domain if the correct answer is
not in the top frequent answers of the source domain.

In the Supplementary Material, we further experiment
with a variant of the HieCoAtt model [9], which applies the
attention mechanism not only to images but also to ques-

tions (e.g., which word or phrase is more important). We
extract the HieCoAtt features by removing the last layer
(i.e., the multi-way classifier) of the HieCoAtt model, and
concatenate the features again with the average WORD2VEC
embeddings of the question and a candidate answer to train
an MLP for binary classification. The cross-dataset results
are presented in Sect. 4.4. Note that we conduct this exper-
iment not to achieve better performance, but to show that
the dataset bias will also hinder cross-dataset generaliza-
tion for more sophisticated models.

4. Additional Experimental Results

4.1. The effect of the discriminative loss surrogate

We provide in Table 1 the domain adaptation results on
the [T] and [Q+T] settings when λ is set to 0 (cf. Eq. (6)
of the main text), which corresponds to omitting the dis-
criminative loss surrogate ˆ̀TD. In most of the cases, the
results with λ = 0.1 outperforms λ = 0, showing the effec-
tiveness of leveraging the source domain for discriminative
learning. Also note that when D is provided for the target
domain (i.e., [T+D] or [Q+T+D]), it is the ˆ̀TD term that uti-
lizes the information of D, leading to better results than [T]
or [Q+T], respectively.

We further experiment on different values of λ, as shown



Table 1. Domain adaptation (DA) results (in %) with or without
the discriminative loss surrogate term

original
VQA−→ Visual7W Visual7W→ VQA−

Setting [T] [Q+T] [T] [Q+T]
λ = 0 54.1 54.1 29.2 28.8
λ = 0.1 54.5 55.2 29.7 29.4

revised
VQA−→ Visual7W Visual7W→ VQA−

Setting [T] [Q+T] [T] [Q+T]
λ = 0 47.8 47.8 45.9 45.7
λ = 0.1 47.6 48.4 45.9 45.8
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Figure 1. Results by varying λ on the original VQA and Visual7W
datasets, for both the [Q+T] and [Q+T+D] settings.

Table 2. DA results (in %) on original datasets, with target data
sub-sampling by 1/16. FT: fine-tuning. (best DA result in bold)

VQA−→ Visual7W
Direct [12] [13] [Q] [T] [T+D] [Q+T] [Q+T+D] Within FT
53.4 52.6 54.0 53.6 54.4 56.3 55.1 58.2 53.9 60.1

Visual7W→ VQA−

Direct [12] [13] [Q] [T] [T+D] [Q+T] [Q+T+D] Within FT
28.1 26.5 28.8 28.1 29.3 33.4 29.2 35.2 44.1 47.9

in Fig. 1. For [Q+T], we achieve consistent improvement
for λ ≤ 0.1. For [Q+T+D], we can get even better results
by choosing a larger λ (e.g. λ = 0.5).

4.2. Domain adaptation using a subset of data

Following Table 5 of the main text, we include in Table 2
the results on the original VQA and Visual7W datasets, with
target data sub-sampling by 1/16.

We further consider domain adaptation (under Set-
ting[Q+T+D] with λ = 0.1) between Visual7W [16] and
VQA− [1] for both the original and revised decoys us-

ing
1

2a
of training data of the target domain, where a ∈

[0, 1, · · · , 6]. The results are shown in Fig. 2. Note that the
Within results are from models trained on the same sub-
sampled size using the supervised IQA triplets from the tar-
get domain.

As shown, our domain adaptation (DA) algorithm is
highly robust to the accessible data size from the target do-
main. On the other hand, the Within results from models
training from scratch significantly degrade when the data
size decreases. Except the case Visual7W→ VQA− (orig-
inal), domain adaptation (DA) using our algorithm outper-

Table 3. DA results (in %) on on original datasets using a variant
of the SMem [14] model.

VQA−→ Visual7W Visual7W→ VQA−

Direct [Q+T+D] Within Direct [Q+T+D] Within
56.3 61.0 65.9 27.5 34.1 58.5

Table 4. DA results (in %) on VQA and Visual7W (both original
and revised) using a variant of the HieCoAtt model [9].

original
VQA−→ Visual7W Visual7W→ VQA−

Direct [Q+T+D] Within Direct [Q+T+D] Within
51.5 56.2 63.9 27.2 33.1 54.8

revised
VQA−→ Visual7W Visual7W→ VQA−

Direct [Q+T+D] Within Direct [Q+T+D] Within
46.4 48.2 51.5 44.5 46.3 55.6

Table 5. OE results (VQA−→ COCOQA, sub-sampled by 1/16).

Direct [Q+T+D] Within
16.7 24.0 26.9

forms the Within results after a certain sub-sampling rate.
For example, on the case VQA− → Visual7W (revised),

DA already outperforms Within under
1

4
of the target data.

4.3. Sharing transformations degrades the perfor-
mance

Although both questions and answers are text-based,
they may have different degrees of domain mismatch (as
shown in Table 1 of the main text). Ignoring such a fact and
learning a single shared transformation degrades the perfor-
mance. In Table 3 of the main text, the result on [Q+T+D]
degrades from 56.2 to 55.6.

4.4. Results on sophisticated Visual QA models

Following Table 6 of the main text, we include in Table 3
the results of SMem [14] on the original datasets.

We further experiment with a variant of the HieCoAtt
model [9] for Visual QA across datasets. See Sect. 3.3 for
more details. The results are shown in Table 4, where a
similar trend of performance drop by Direct transfer and
improvement by domain adaptation (in the [Q+T+D] set-
ting) to those shown in the main text is observed.

4.5. Open-ended (OE) results

We apply Visual QA models learned with the multiple-
choice setting to evaluate on the open-ended one (i.e., se-
lect an answer from the top frequent ones, or from the set
of all possible answers in the training data). The result on
transferring from VQA− to COCOQA is in Table 5. Our
adaptation algorithm still helps transferring.
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Figure 2. Domain adaptation (DA) results (in %) with limited target data, under Setting[Q+T+D] with λ = 0.1. A sub-sampling rate a

means using
1

2a
of the target data.

4.6. Cross-dataset results across five datasets

Table 6 summarizes the results of the same study as in
Sect. 5.4 of the main text, except that now all the training
examples of the target domain are used. The models for
Within are also trained on such a size, using the supervised
IQA triplets.

Compared to Table 7 of the main text, we see that the per-
formance drop of DA from using all the training examples
of the target domain to 1/16 of them is very small (mostly
smaller than 0.3%), demonstrating the robustness of our al-
gorithm under limited training data. On the other hand, the
drop of Within is much more significant—for most of the
(source, target) pairs, the drop is at least 10%.

For most of the (source, target) pairs shown in Table 6,
Within outperforms Direct and DA. The notable exceptions
are (VG, Visual7W) and (VQA2−, VQA−). This is likely
due to the fact that VG and Visual7W are constructed simi-
larly while VG has more training examples than Visual7W.
The same fact applies to VQA2− and VQA−. Therefore,
the Visual QA model learned on the source domain can be
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Figure 3. Qualitative comparison on different type of questions,
following the analysis of Sect. 5.3 of the main text when transfer-
ring from VQA− to Visual7W (on the original datasets).

directly applied to the target domain and leads to better re-
sults than Within.

4.7. Qualitative results

Following the analysis of Sect. 5.3 of the main text, we
shown in Fig 3 the results on each question type when trans-
ferring from VQA− to Visual7W (on the original datasets).
[Q+T+D] outperforms Direct at all the question types.



Table 6. Transfer results (in %) across datasets. The decoys are generated according to [2], where each IQT triplet is accompanied by 6
decoys (the accuracy of random guess is 14.3%). The setting for domain adaptation (DA) is on [Q+T+D] using all the training examples
of the target domain.

Visaul7W [16] VQA− [1] VG [8] COCOQA [11] VQA2− [4]
Training/Testing Direct DA Within Direct DA Within Direct DA Within Direct DA Within Direct DA Within
Visual7W [16] 52.0 - - 45.6 48.1 53.7 49.1 49.6 58.5 58.0 63.0 75.8 43.9 45.6 53.8

VQA− [1] 46.1 49.3 52.0 53.7 - - 44.8 47.9 58.5 59.0 64.7 75.8 50.7 50.6 53.8
VG [8] 58.1 58.2 52.0 52.6 53.7 53.7 58.5 - - 65.5 67.0 75.8 50.1 51.5 53.8

COCOQA [11] 30.1 34.4 52.0 35.1 40.2 53.7 29.1 33.4 58.5 75.8 - - 33.3 37.9 53.8
VQA2− [4] 48.8 51.0 52.0 55.2 55.3 53.7 47.3 49.6 58.5 60.3 65.2 75.8 53.8 - -
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