MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510-4520


In this paper we describe a new mobile architecture, mbox{MobileNetV2}, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call mbox{SSDLite}. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of mbox{DeepLabv3} which we call Mobile mbox{DeepLabv3}. is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on mbox{ImageNet}~cite{Russakovsky:2015:ILS:2846547.2846559} classification, COCO object detection cite{COCO}, VOC image segmentation cite{PASCAL}. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as actual latency, and the number of parameters.

Related Material

[pdf] [arXiv]
author = {Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
title = {MobileNetV2: Inverted Residuals and Linear Bottlenecks},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}