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Abstract

The current underwater image formation model de-

scends from atmospheric dehazing equations where attenu-

ation is a weak function of wavelength. We recently showed

that this model introduces significant errors and depen-

dencies in the estimation of the direct transmission sig-

nal because underwater, light attenuates in a wavelength-

dependent manner. Here, we show that the backscattered

signal derived from the current model also suffers from de-

pendencies that were previously unaccounted for. In doing

so, we use oceanographic measurements to derive the phys-

ically valid space of backscatter, and further show that the

wideband coefficients that govern backscatter are different

than those that govern direct transmission, even though the

current model treats them to be the same. We propose a re-

vised equation for underwater image formation that takes

these differences into account, and validate it through in

situ experiments underwater. This revised model might ex-

plain frequent instabilities of current underwater color re-

construction models, and calls for the development of new

methods.

1. Introduction

Researchers aiming to color correct underwater images

are frequently faced with unstable results: available meth-

ods are either not robust, are too sensitive, or only work

for short object ranges. This is usually explained by the

challenge in the correction, e.g., images having low SNR,

severe distortions and loss of color, etc. Here we suggest

that there is a more fundamental reason to these instabilities

than merely “low quality images”, and show that they stem

from using an inaccurate image formation model.

Current underwater color correction methods [5, 8, 9, 12,

13, 26, 27, 31, 36, 40] rely on a commonly used image for-

mation model first derived for haze [3, 4, 14, 17, 39]. How-

ever, light propagation in the ocean differs from that in the

atmosphere in major ways, which renders this model inade-

quate when applied to underwater images.

In pure air, attenuation (sum of absorption and scatter-

ing) is only due to gas molecules and is an inverse function

Figure 1. a) On the surface of the earth where most photographs

are taken, air is mixed with aerosols which increase inscatter, mak-

ing attenuation independent of wavelength λ. Cloud, fog, and haze

coefficients are in situ measurements [11]; pure air and aerosol are

theoretical values [32]. b) In the ocean, attenuation is a strong

function of wavelength. c) Oceanographer Nils G. Jerlov [21] de-

fined 5 open (I-III) and 5 coastal ocean (1-9C) classes based on

the diffuse downwelling attenuation coefficients Kd he measured

globally. Here we show coefficients of beam absorption a, scat-

tering b, attenuation β, and Kd for Jerlov’s water types [38]. In

contrast to the atmosphere, absorption in the ocean is generally

not negligible compared to scattering [22]; e.g., types I (open Pa-

cific), IA (eastern Mediterranean), IB (open Atlantic) are absorp-

tion dominated.

of the fourth power of wavelength [24, 32, 25] (Fig. 1a).

Near the surface of the earth, however, air is mixed with

solid and liquid particles (aerosols) that create the states we

call clouds, dust, haze, smoke, smog, mist, fog and vog (fog

from volcanic ash). In the presence of aerosols, whose mean

diameters can be up to ten times larger than the incident

light wavelength, multiple scattering effects become signif-

icant and wavelength dependency decreases [32]. In haze

and fog, scattering becomes non-selective and attenuation
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in the visible part of the electromagnetic spectrum becomes

practically independent of wavelength [17, 29, 30, 32]

(Fig. 1a).

In contrast to the atmosphere, natural bodies of wa-

ter exhibit extreme differences in their optical properties

(Fig. 1b). Some lakes are as clear as distilled water [15],

some are pink [16], and others change color several times a

year transitioning between white, blue, green, red, brown,

and black [34]. In the ocean, coastal harbors are of-

ten brown and murky while offshore waters are blue and

clear [1, 21]. Thus, a major difference between light propa-

gation in the atmosphere and in natural waters is wavelength

dependent attenuation.

Additionally, absorption in the atmosphere is generally

negligible [22], but in the ocean its magnitude can be com-

parable to, and sometimes larger than scattering [28]. In

fact, the wavelength dependency of attenuation in the ocean

almost entirely comes from absorption (Fig. 1c). The ratio

of scattering to attenuation coefficients affect the backscat-

tered signal, which is the main cause of degradation in un-

derwater images [35, 37]. Thus, whether the water body

is absorption dominated or scattering dominated must be

taken into account when modeling or estimating relevant

color correction parameters.

These differences suggest that strong wavelength depen-

dent attenuation may render the atmosphere-derived image

formation model inadequate when applied to underwater

scenes. Indeed we recently showed [1] that the direct sig-

nal obtained from the current underwater imaging model

yields wideband attenuation coefficients (the projection of

the physical attenuation coefficient onto the RGB domain)

that depend not only on inherent properties of the water

body, but also on the camera sensor, scene radiance, and

imaging range. In most works, these dependencies are not

taken into consideration. For example, in [5, 12, 27] wide-

band attenuation coefficients were estimated by picking val-

ues at single wavelengths from physical attenuation curves

(like those in Fig. 1b), ignoring the sensor response of the

camera used for imaging, and all the other dependencies we

showed. In one case a sum on the discrete bands of the sen-

sor response was used but only with one water type [26].

In [6, 7] the full wavelength-dependent model was used to

model underwater photographs, but was not used for image

correction.

Here, we expand our work in [1] and show that the cur-

rent underwater image formation model actually introduces

more dependencies that were ignored until now. Specifi-

cally, we show that the wideband coefficient for backscat-

ter strongly depends on the veiling light (i.e., time of day

and water depth), and whether the water body is absorp-

tion or scattering dominated. Most importantly, we show

that the wideband attenuation coefficients for the direct sig-

nal and the backscattered signal are different, despite the

Figure 2. Ambient light attenuates exponentially with depth d

reaching an object (here a giant cuttlefish), and attenuates further

between the object and the sensor along the direction ξ, for a dis-

tance of z. This signal is further degraded by light scattered by

particles from all directions towards the sensor.

fact that the current model assumes them to be the same.

Through real-world experiments, we demonstrate the need

for revising the image formation model. We perform an ex-

tensive error analysis comparing the current model to the

revised one, and suggest how relevant coefficients can best

be picked when all inputs to the revised model are not avail-

able. Our findings can explain the difficulties encountered

thus far with image correction using the current model.

2. Light Transport in Scattering Media

2.1. Brief Oceanographic Background

In the ocean, inherent and apparent optical properties

(IOPs and AOPs) govern light propagation (see Table 1 for

variables and abbreviations used throughout the paper). The

IOPs are only a function of the water constituents. These are

beam absorption a(λ), beam scattering b(λ), and beam at-

tenuation β(λ) coefficients, where a(λ)+b(λ) = β(λ). The

AOPs depend on external factors such as the ambient light

field [28], but are easier to measure than IOPs. Here the

only AOP we use is Kd(λ), the diffuse attenuation coeffi-

cient of the downwelling light, which is the extinction expe-

rienced by light penetrating a water column vertically. The

magnitude of Kd only weakly depends on ambient light, so

it has been used to characterize the optical qualities of water

bodies, such as Jerlov’s water types [21] (Fig. 1b,c).

Since both β and Kd are attenuation coefficients, which

do we use in underwater computer vision? The answer is

both, and their difference is important. While β governs

the radiant power lost from a collimated beam of photons,

Kd is defined in terms of the decrease of the ambient down-

welling irradiance with depth, due to all photons heading in

the downward direction in a diffuse (or, uncollimated) man-

ner [28]. Generally, β is 2-5 times greater than Kd [23],

and both contribute to the effective attenuation captured in

a photograph, as we discuss in the next section.
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Variable Description

λ wavelength

a(λ) beam absorption coefficient

b(λ) beam scattering coefficient

β(λ) beam attenuation coefficient: a(λ) + b(λ)
Kd(λ) diffuse downwelling attenuation coefficient

E(z, λ) irradiance

L(z, λ) radiance

Y luminance

Sc(λ) sensor spectral response

ρ(λ) reflectance

B∞(λ) veiling light

c color channels R,G,B

βc wideband attenuation coefficient

B∞

c wideband veiling light

Ic RGB image with attenuated signal

Jc RGB image with unattenuated signal

d depth (vertical range)

z range along LOS

ξ direction in 3-space

B backscattered light

D direct transmitted light

F forward scattered light

AOP apparent optical properties

IOP inherent optical properties

LOS line of sight

RTE radiance transfer equation

VSF volume scattering function

Table 1. Variables and abbreviations used in the paper.

2.2. The Radiance Transfer Equation

In Fig. 2, we are interested in quantifying the radiance
leaving the skin of the cuttlefish and reaching the point
where the diver hovers. This scenario, and light propagation
in other scattering media (such as air) is governed by the ra-
diance transfer equation (RTE) [10], which accounts for the
time-dependent, three-dimensional behavior of radiance. In
its simpler and more compact classical canonical form, the
RTE for a homogeneous, source free water body (i.e. no
inelastic scattering or emission) is given by [28, 33]:

L(d; ξ;λ) = L0(d0; ξ;λ)e
−β(λ)z+

L∗(d; ξ;λ)e
−Kd(λ)z cos θ

β(λ)−Kd(λ) cos θ

[

1− e
−[β(λ)−Kd(λ) cos θ]z

]

,
(1)

where L0(d0; ξ;λ) is the total radiance leaving the object;

L(d; ξ;λ) is the total radiance reaching the diver; ξ is a di-

rection in 3D space, λ is wavelength, θ is the angle mea-

sured from nadir direction (positive looking down as con-

ventional in oceanography), and z is the geometric distance

along ξ. L∗ is the path function describing radiance gained

along the direction ξ from photons arriving from all direc-

tions [28].

When viewing direction is horizontal (θ = 90◦;d = d0),
Eq. 1 becomes a function of only one attenuation coefficient
(β) and simplifies to:

L(d0; ξ;λ) = L0(d0; ξ;λ)e
−β(λ)z +

L∗(d; ξ;λ)

β(λ)
(1− e

−β(λ)z)

(2)

When θ 6= 90◦, however, we are reminded of one of the

reasons why color reconstruction of underwater images is

challenging: depending on the viewing angle θ, the mag-

nitude of effective attenuation coefficient in a given scene

changes! It can range from [β(λ) − Kd(λ)] when looking

up, improving visibility, to [β(λ) + Kd(λ)] when looking

down, significantly reducing it.

The first term in both Eqs. 1 & 2 is the object radiance

resulting from photons traveling directly from the object

to the observer, and the second term is the path radiance,

which accounts for the photons reaching the observer from

all directions. From here on, we will refer to them as D for

direct signal, and B for backscattered signal. Then, Eq. 1

can be written as:

L = D +B . (3)

Note that in Eq. 1, we omitted the in-scattering term (also

called forward scattering, F ). This term would have rep-

resented the light that was reflected from the object away

from the line of sight (LOS), but through re-scattering, got

realigned at small angles along the LOS. Authors in [35]

showed quantitatively that F ≪ D, and it does not con-

tribute significantly to the degradation of an image.

2.3. Backscattered Signal, B

We investigated the direct signal in Eq. 1 in [1]. Here, we

focus on backscatter [35], also called path radiance [33].

Particles in the medium scatter the light incident on

them in many other directions, acting as sources of light.

Backscatter is the signal formed by these photons reaching

the observer carrying no information regarding the scene

that is being viewed. In Eq. 1, the path radiance L∗ is the

radiance gained along a direction ξ owing to scattering into

that direction from photons traveling in all other directions

ξ′ [28]. The probability of a photon traveling in a given di-

rection after hitting a particle is determined by the volume

scattering function (VSF). The VSF (a fundamental IOP

from which all other scattering coefficients are derived),

changes based on the type and concentration of particulate

matter in the water body, is difficult to measure, and has

only generally been quantified for a clear lake and a turbid

coastal harbor [28]. The integral of the VSF across all di-

rections yields the total scattering coefficient b(λ), which is

the main parameter governing backscatter [17, 30, 35, 41],

and is readily available for Jerlov’s water types [38].

Consider again an infinitesimally small disk of thickness

dz, that is not on the LOS (upper disk in Fig. 2). The ra-
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diance dL scattered from this disk in all directions is given

by [17, 20, 28, 33]:

dL(z, λ) = b(λ)E(d, λ)dz , (4)

where E(d, λ) is ambient light at depth d, which is also the

radiance incident on the disk in this case. Along the LOS,

at a distance z away, the received radiance based on Beer’s

Law of exponential decay becomes [1, 28, 33]:

dB(z, λ) = dL(z, λ)e−β(λ)z . (5)

Substituting Eq. 4 in Eq. 5 and integrating with respect to z
from z1 = 0 to z2 = z gives us the backscattered signal as

a function of wavelength λ:

B(z, λ) =
b(λ)E(d, λ)

β(λ)

(

1− e−β(λ)z
)

. (6)

When z is selected to be large enough, we can obtain the

value of backscatter at infinity, also termed veiling light.

Thus as z → ∞:

B∞(λ) =
b(λ)E(d, λ)

β(λ)
. (7)

Then, the total signal T at the observer is:

T = E(d, λ)e−β(λ)z +B∞(λ)(1− e−β(λ)z) . (8)

2.4. Working in Camera Space

Now, we assume the observer has a camera with spectral
response Sc(λ) where c = R,G,B represents color chan-
nels. The signal in Eq. 8 is integrated to obtain the intensity
of the image formed at the sensor at a horizontal distance z
away from the object:

Ic =
1

κ

∫ λ2

λ1

Sc(λ)ρ(λ)E(d, λ)e−β(λ)z
dλ +

1

κ

∫ λ2

λ1

Sc(λ)B
∞(λ)(1− e

−β(λ)z)dλ ,

(9)

where ρ(λ) is the reflectance spectrum of the object, κ is a

scalar governing image exposure and camera pixel geome-

try [19], and λ1 and λ2 define the bounds of integration over

the electromagnetic spectrum.

At depth d, the unattenuated image Jc is:

Jc =
1

κ

∫ λ2

λ1

Sc(λ)ρ(λ)E(d, λ)dλ . (10)

The veiling light B∞

c as captured by the same sensor is:

B∞

c =
1

κ

∫ λ2

λ1

Sc(λ)
bcEc

βc

dλ . (11)

2.5. The Current Underwater Imaging Model

The current underwater imaging model for ambient il-

lumination assumes camera response to be delta functions

(Sc(λ) = Scδ(λ)), or alternatively, attenuation to vary neg-

ligibly with wavelength. Accordingly, Eq. 9 is simplified

to [4, 8, 12, 17, 26, 30, 35]:

Ic = Jc · e
−βcz +B∞

c · (1− e−βcz) , (12)

similarly to the atmospheric dehazing equation. Here βc are

the wideband (R,G,B) attenuation coefficients.

3. The Need for a Revised Model

3.1. Dependencies of Attenuation Coefficients

We showed in [1] that the wideband attenuation coef-

ficients βc estimated from the direct signal approximated

by Eq. 12 have implicit dependencies on sensor response

Sc(λ), imaging range z, scene reflectance ρ(λ), and irradi-

ance E(λ). From this point on, we label this coefficient βD
c

to indicate that it has been derived from the direct transmis-

sion (D) term. From Eq. 12, it is given as [1]:

βD
c = ln

[

Dc(z)

Dc(z +∆z)

]/

∆z . (13)

Evaluating the first term in Eq. 10 with z1 = z, and

z2 = z +∆z, we obtain [1]:

βD
c = ln











∫ λ2

λ1

Sc(λ)ρ(λ)E(λ)e−β(λ)zdλ

∫ λ2

λ1

Sc(λ)ρ(λ)E(λ)e−β(λ)(z+∆z)dλ











/

∆z .

(14)

Now we examine the backscattered signal. Following Eq. 9,

the backscatter at the sensor at a distance z is:

Bc =
1

κ

∫ λ2

λ1

Sc(λ)B
∞(λ)

(

1− e−β(λ)z
)

dλ , (15)

We equate this exact equation to the backscatter term of the

current underwater imaging model given by Eq. 12:

Bc(z) = B∞

c (1− e−βcz) . (16)

Thus, the wideband backscatter coefficient from Eq. 12 is:

βB
c = − ln

(

1−
Bc(z)

B∞

c

)/

z, (17)

Substituting Eq. 15 into Eq. 17 yields

βB
c = − ln

(

1−

∫ λ2

λ1

Sc(λ)B
∞(λ)(1− e−β(λ)z)dλ

∫ λ2

λ1

B∞(λ)Sc(λ)dλ

)

/

z .

(18)
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Figure 3. a) Physically valid space of backscatter Bc (Eq. 15) for

a Nikon D90. Black x’s denote the veiling light B∞

c for a given

water type. b) Veiling light distance (when backscatter is satu-

rated), varies an order of magnitude across absorption dominated

(I-IB) versus scattering dominated water types (II,III,1-9C). Col-

ored patches are RGB renderings of the expected hue at 2m depth

when backscatter is saturated. Water properties are used from [38].

We can see that βB
c depends on the sensor response Sc(λ),

range z, and the veiling light B∞

c , which depends on the

scattering and attenuation coefficients b(λ) and β(λ), and

ambient light E(λ) (Eq. 11). Comparing Eq. 17 with the

direct signal effective attenuation

βD
c = − ln

(

Ic(z)−Bc(z)

Jc

)/

z , (19)

reveals that the effective wideband coefficients βc from the

two terms of Eq. 12 are theoretically different although they

are currently treated the same.

3.2. Physically Valid Space of βB

c

Next, we derive the physically valid space of βB
c anal-

ogous to that of βD
c in [1]. We use the spectral response

of a Nikon D90 and assume CIE D65 at the surface. We

use Eq. 15 to calculate Bc, and Eq. 17 to extract βB
c for z

values ranging from 1m to the veiling light distance (i.e.

when backscatter saturates). Values of b(λ) were taken

from [38]. Fig. 3a shows Bc for each water type at 2m

depth, where each ‘x’ denotes the veiling light B∞ calcu-

lated using Eq. 11. Note that the distance at which veiling

light is reached can range from 10s to 100s of meters de-

pending on the attenuation coefficient of the water (Fig. 3b).

Fig. 4a shows that βB
c changes very little with z for a

given water type (filled circles). This allows us to use the

mean βB
c value as a representation of each water type. We

fit two lines to these βB
c means in 3-space: one for clear wa-

ter where attenuation is dominated by absorption (Fig. 1c;

I-IB), and one for water types where scattering is more dom-

inant (Fig. 1c; II, III, 1-9C). These lines denote the locus of

βB
c in 3-space (Fig. 4b).

The magnitude of veiling light B∞

c is directly propor-

tional to the ambient light (i.e., depth), which in turn, causes

the locus of βB
c to move (Fig. 4c,d). Finally, we note that

while the locus of βD
c was shown to depend on camera sen-

sor response, that of βB
c is less sensitive to it. This is likely

because the backcattered signal is formed independent of

the reflectance of objects in a scene, and depends, most

strongly, on ambient light, which attenuates rapidly with

depth. Fig. 4e shows the βB
c locus for 74 cameras (Arri-

flex, Canon, Casio, Fuji, Hasselblad, Kodak, Leica, Manta,

Nikon, Nokia, Olympus, Panasonic, Pentax, Phase One,

Point Gray, Sony, Sigma) for absorption-dominated water

types; camera details and loci for scattering-dominated wa-

ter types are given in Supplementary Material.

3.3. βD

c
Vs. βB

c

Fig. 4f&g compare βD
c and βB

c for the same scene in

the same water. We simulated a diver at 5m, photograph-

ing two Macbeth charts placed horizontally at 1&10m from

him. We calculated the RGB values of these charts using

Eq. 9 with the response of a Nikon D90, assuming CIE D65

at the surface for clear oceanic water (Jerlov I, Fig. 4f), and

a murky coastal harbor (Jerlov III, Fig. 4g). Then, using

Eqs. 17&19, we extracted the wideband attenuation coeffi-

cients. As we showed in [1], βD
c depends on reflectance,

and ends up having a different value for each patch of the

Macbeth chart (colored squares). The value of βD
c also de-

pends on the distance between the camera and the charts,

so the charts cluster in different parts of the βc space. In

contrast, there is one βB
c value per scene (black x’s), and it

varies very little by distance. Yet, the value of βB
c for both

water types is different than the βD
c values for both charts.

4. A Revised Image Formation Model

In light of our findings in Secs. 3.1 & 3.2, we propose

the following revised underwater image formation model:

Ic = Jce
−βD

c
(vD)·z +B∞

c

(

1− e−βB

c
(vB)·z

)

. (20)

Here, the vectors vD and vB represent the coefficient de-

pendencies vD = {z, ρ, E, Sc, β} and vB = {E,Sc, b, β}.

To parallel Eq. 12, we also only considered the horizontal

imaging case, but extension to other directions as given in

Eq. 1 is straightforward.

5. Validation Via Real-world Experiments

5.1. Backscatter Estimation From Photographs

The image signal Ic in Eq. 9 is exactly equal to backscat-

ter Bc for a perfect black object (ρ = 0). While efforts

have been made to manufacture a surface close to a perfect

black [18], these materials are not commercially available

in small quantities. Thus, we used a color chart and lever-

aged the fact that the gray patches reflect light uniformly at

different percentages in a linear image [2]. We fit a line to

the RGB intensities corresponding to each patch using their

known luminances (chromaticity coordinate Y ). The value

of this line at Y = 0, which would have been the luminance

of perfect black (Fig. 5a), is the Bc for that color channel.
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Figure 4. Physically valid space of βB
c . a) We calculated βB

c at a vertical depth of 1m, for horizontal distances from 1m up to the veiling

light distance. The resulting βB
c varied only slightly with horizontal distance. b) We averaged the βB

c for all horizontal distances within

each water type, and fit two lines in 3-space that describe its locus in absorption (black) and scattering (red) dominated water types. The

coefficient of determination, R2, shows an excellent linear fit for both. c & d): The locus of βB
c is sensitive to ambient light, which affects

B∞(λ). Lines are plotted according to vertical depth, which attenuates the ambient illumination. e) For most common cameras the locus

of βB
c is weakly sensitive to sensor response. Here we show the locus for 74 cameras, for absorption dominated water types only, at 10 m

depth, and D65 as surface light. See Supplementary Material for camera details and other water types. f) The behavior of βB
c (black x’s)

vs. βD
c (colored squares) in clear and g) murky water. As predicted by Eqs. 14 & 18, βB

c and βD
c are different. Moreover, there is a single

βB
c value for the entire scene, but a βD

c value for every color (and distance) in the scene.

Figure 5. a) Calculating Bc from gray patches, here

Y = 3, 9, 30, 35, 58, 90% for Macbeth chart. The ordinates

of each line (X’s) denote backscatter. b) Simulation of the ex-

pected behavior of Bc based on Eq. 8. c) Underwater experiment

validating the backscatter estimation method in Sec. 5.1. d) Bc

extracted for each chart in c), showing the expected exponential

increase with distance.

Fig. 5b shows Bc simulated in water type II (equally

dominated by absorption and scattering) using Eq. 9, along

a horizontal transect of 10m, at a depth of 2m. We used the

response of a Sony NEX5N and assumed surface light was

CIE D65. Fig. 5c&d show the validation of this method in

the coastal part of the Red Sea (type IB or II [1]). For this

experiment, we used a Sony RX100. Due to the differences

in sensor response and ambient conditions, magnitudes in

Fig. 5b&d are not directly comparable, but both convey the

expected exponential behavior of Bc with z.

5.2. Validation of βB
c locus

We conducted underwater experiments in the Red Sea

and the Mediterranean (Fig. 6). For each experiment, we

laid out 5 colors charts at horizontal distances of 1,3,5,7

and 9m from the camera. In the Red Sea, we tested a Nikon

D810 and a Sony RX100 simultaneously (Fig. 6a), taking

5-10 photographs of scenes at 2&6m depth. In the Mediter-

ranean, we photographed scenes at 6&10m only with a

Nikon D810. All images were taken in raw format, in man-

ual mode, keeping the settings consistent for each camera

for a given scene.

From each photo, we calculated Bc as described in

Sec. 5.1, and extracted βB
c using Eq. 17. We did not

have the Nikon D810 response, so used the mean re-

sponse of all Nikons from Fig. 4e to draw the loci in

Fig. 6b, and used CIE D65 for surface light. The loci

for the Red Sea 2&6m scenes (Fig. 6b) were differ-

ent as predicted. The βB
c extracted from both Nikon

(green dots) and Sony photos (red dots) aligned closely

with the ‘mean Nikon’ locus; each dot represents the av-

erage coefficient (βB
c 2m = [0.32, 0.22, 0.18] for 2m, and

βB
c 6m = [0.29, 0.25, 0.2]) of five color charts in each photo.

The locus of βD
c is expected to move based on sensor [1].

We did not have Sony RX100 response, so in Fig. 6c we

show βD
c locus for ‘mean Nikon’, for water type II, for

distances varying from 1-9m (matching our experiments).

Each filled circle represents βD
c for a given color patch at a

given distance in the scene. As with βB
c , experimental data

validate the expected locus of βD
c , and as predicted, βB

c and

βD
c do not have the same values.
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Figure 6. Real-world experiments in the Red Sea and the Mediterranean. a) We laid out 5 DGK waterproof color charts at depths of

2, 6, and 10m at horizontal distances of 1,3,5,7 and 9m from the camera. In the Red Sea, we used a Nikon D810 and a Sony RX100

simultaneously. In the the Mediterranean, we only used the Nikon D810. In all cases loci were drawn for type II, according to the ‘mean

Nikon’ response of cameras in Fig. 4e. b) Estimated βB
c . As our simulations predicted, βB

c varies more strongly with water type and depth,

than with sensor response, and coefficients from both cameras fall on the locus. c) Estimated βD
c . As with βB

c , the coefficients extracted

from underwater experiments fall closely on the predicted locus. More importantly, despite the fact that the current imaging model treats

them to be the same, βB
c and βD

c are different.

6. Error Analysis: Current Vs. Revised Model

While the model in Eq. 20 is the most accurate, we re-

alize it is difficult to obtain all its parameters given their

dependencies. Therefore, we performed an extensive error

analysis to quantify the effect of every part in the revised

model. We tested seven scenarios of color reconstruction

using the current (Eq. 12) and revised (Eq. 20) models with

different parameters:

S1. Current model with βc = βB
c .

S2. Current model with βc derived from the chart at

z = 1m (i.e., βc = βD
c (z = 1m)).

S3. Current model with βc = βD
c (z = 5m).

S4. Revised model with the correct βB
c and βD

c (z = 1m).
S5. Revised model with the correct βB

c and βD
c (z = 5m).

S6. Revised model with the correct βB
c and βD

c (z), where

βD
c (z) is obtained from the average of βD

c (z, ρ) values

for all color patches for each chart at a given z.

S7. Revised model with the correct βB
c and βD

c (z, ρ),
where βD

c (z, ρ) is the coefficient calculated for each

color patch at each range.

We synthesized a scene using Eq. 9 where a diver at 2m

depth is photographing 5 color charts horizontally in front

of him at z = 1, 3, 5, 7, 9m. For all simulations we used b
and β of Jerlov II, Sc of a Nikon D90, took E(0, λ) to be

CIE D65, and the reflectances ρ of a Macbeth chart. The

ground truth βc corresponding to this simulation are shown

in Fig. 7a. Error between the unattenuated color J (Eq. 10)

and the reconstructed one Ĵ (found either inverting Eq. 12

or 20) is measured as the dissimilarity α between them in

RGB space (Fig. 7b):

cosα = J · Ĵ/(|J | · |Ĵ |) . (21)

6.1. Corrections Using The Current Model

For all patches, errors resulting from using the current

image formation model using only βB
c are consistent across

range z (S1, black curves in Fig. 7b), except for colored

patches where they slightly increase with z. In contrast, us-

ing the current model with βD
c extracted from only one of

the charts at z = 1m, averaged for all colors, yields errors

that are small for z = 1m but significantly increase with

z (S2). This is because the magnitude of βD
c (z = 1m)

is larger than βD
c at other z, and it also yields an incor-

rect backscatter calculation. However when the same cor-

rection is carried out using only βD
c (z = 5m) (S3), the

overall errors are reduced. This is because βD
c (z = 5m)

for every color channel is much closer to the mean βD
c in

the scene, and also closer in magnitude to βB
c , resulting in

an acceptable backscatter removal. Thus, when using the

current model errors are reduced when calibration of coef-

ficients takes places not at proximity to the camera. Thus,

if one is only able to estimate a single βD
c value, choosing

coefficients from a mean z might prevent extremely high or

low values in the corrected image. Note that this suggests

that estimating coefficients from color charts that are close

to the camera, as is often done, is a bad habit. Yet, S3 still

yields visible errors in the hues of the reconstructed colors,

especially for large z.

6.2. Corrections Using The Revised Model

If backscatter is removed using the correct βB
c , but the

colors are reconstructed using the βD
c extracted only from

the first chart (S4), errors remain almost identical to S2, im-

plying that βD
c has a more prominent role in color recon-

struction than βB
c . The only noticeable improvement is in

the reconstruction of black, but the errors still increase with
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Figure 7. a) Ground truth values for βB
c (dashed line) and βD

c (lines colored according to the 24 patches). The value of βB
c almost does not

change with z, while βD
c decreases logarithmically. b) Color reconstruction error for the seven cases listed in Sec. 6 using Eq. 21, and c)

RGB visualization of errors. Each chart is white balanced using the white patch of the ground truth image.

z, likely due to the overcompensation from βD
c calculated

at z = 1m. The overcompensation due to βD
c calculated at

distances close to the camera is relevant for all water types

(see Supplementary Material).

In S5, we extract βD
c from the middle chart placed at

z = 5m (yellow curves in Fig. 7b). This causes a drop

in error when compared to S4 because as Fig. 7a shows,

βD
c decreases logarithmically with increasing distance in a

scene. Thus, βD
c (z = 1m) greatly overcompensates the

colors in the rest of the scene, whereas βD
c (z = 5m) is

close to the average βD
c in the entire scene.

When βD
c is expressed as a function of z, the error mag-

nitudes decrease significantly (S6). In this case, we calcu-

lated one βD
c value calculated per chart (i.e., at the z cor-

responding to each chart), which is averaged over all re-

flectances ρ. For this scenario, the highest errors arise for

the colors that contain red. This is because for those col-

ors when z > 5m the magnitude of βD
c (z) becomes less

than that of βD
c (z = 5m), and βD

c (z = 5m) estimates the

corresponding coefficient better. In contrast, for colors con-

taining blue, when z > 5m, the opposite happens: βD
c (z)

value becomes closer to the corresponding coefficients and

the errors decrease when compared to S5. Yet, even with

the higher errors associated with colors containing red, er-

rors resulting from S6 are almost as low as errors resulting

from S7 - a nearly perfect reconstruction using βD
c (z, ρ)

(magenta curves in Fig. 7b).

In real life, having βD
c for every z and ρ for a scene is dif-

ficult, but can be done, for example, using structure-from-

motion to group patches corresponding to the same objects

at different known distances [8]. Then our loci calculation

and simulation might be used to estimate the βD
c value per

distance per object. Even if this scheme is not possible, our

insights demonstrate the importance of choosing the best

distance to estimate βD
c from.

7. Discussion

We demonstrated through theoretical analysis and real-

world experiments that the commonly used underwater im-

age formation model yields errors that were not accounted

for thus far. We showed that the coefficient associated with

backscatter varies with sensor, ambient illumination, and

water type; and most importantly, it is different than the co-

efficient associated with the direct signal. These, together

with dependencies we showed in [1], might explain many

inaccuracies and instabilities in current algorithms. Our re-

vised model will lead to the development of methods that

will better correct complex underwater scenes.
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