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Abstract

We propose a novel method for fitting multiple geometric

models to multi-structural data via convex relaxation. Un-

like greedy methods - which maximise the number of inliers

- our approach efficiently searches for a soft assignment of

points to geometric models by minimising the energy of the

overall assignment. The inherently parallel nature of our

approach, as compared to the sequential approach found

in state-of-the-art energy minimisation techniques, allows

for the elegant treatment of a scaling factor that occurs as

the number of features in the data increases. This results

in an energy minimisation that, per iteration, is as much as

two orders of magnitude faster on comparable architectures

thus bringing real-time, robust performance to a wider set

of geometric multi-model fitting problems.

We demonstrate the versatility of our approach on two

canonical problems in estimating structure from images:

plane extraction from RGB-D images and homography es-

timation from pairs of images. Our approach seamlessly

adapts to the different metrics brought forth in these dis-

tinct problems. In both cases, we report results on publicly

available data-sets that in most instances outperform the

state-of-the-art while simultaneously presenting run-times

that are as much as an order of magnitude faster.

1. Introduction

Many interesting applications in computer vision such

as homography estimation, plane detection, and motion es-

timation demand the ability to fit geometric models onto

noisy data. This is a non-trivial task in that the scene typ-

ically consists of multiple geometric structures. Moreover,

the observed data is likely to be contaminated with noise

from different sources including measurement sensor noise

and outliers. These are the main factors leading to biased

solutions. Therefore, many multi-model fitting algorithms

are driven fundamentally by their capacity to robustly deal

with the complexity of the data and unknown distributions

of data errors and outliers [15]. Extracted geometric mod-

els are often also drivers of other algorithms such as camera

calibration, robotic navigation, and 3D reconstructions cre-

ating an increased desire for algorithms that are not only ro-

bust to contamination but exhibit quick and repeatable run-

times.

The most well-known solution to the geometric multi-

model fitting problem found in the literature is RANSAC

[5], a greedy approach consisting of two steps: in the first

step, a set of model proposals is sampled from the model pa-

rameter space in a hypothesis-verification fashion. A refine-

ment step is applied over the best-selected model, supported

by the maximum number of inliers. To deal with multi-

ple models, an extended solution like [19] suggests apply-

ing RANSAC sequentially over the remaining data points.

Running alongside this are clustering methods that greed-

ily maximise the inliers of geometric models [10]. Present-

ing approaches such as J-linkage [18] and its expansion to

the continuous space T-linkage [8] that analyse and merge

clusters in the preference space. However, as these greedy

approaches do not implicitly consider the overall classifi-

cation of the data to geometric models, their performance

deteriorates in situations with high noise or outlier clutter.

Global energy-based approaches [7, 22, 4] have gained

popularity by presenting a more general optimisation

framework that jointly fit all models present in multi-

structural data. In practice, global energy methods aim to

find an optimal fitting solution by accounting for the model

error in a data fidelity term for a given metric. In addition,

the set of solutions can be constrained by encouraging spa-

tial smoothness in a regularisation term. A more complete

formulation also considers the number of models as a pa-

rameter to optimise for [7]. These approaches have been

shown to outperform greedy methods such as RANSAC at

the expense of intractable computational complexity with

respect to the number of models fitted.

Minimisation of this energy can be performed via combi-

natorial algorithms, such as α-expansion [2], which operate

in a discrete domain. These approaches have been largely

applied to the multi-label image segmentation problem for-

malised as a graph cut Markov Random Field (MRF) based

approach but when applied to geometric multi-model fitting

have exhibited better performance than greedy methods [7].

However, attempts to parallelise this approach have so far
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Figure 1: Comparison of the run-time per iteration of α-

expansion and that of the primal-dual optimisation (PD)

in an experiment with four models. The times are aver-

aged over 100 runs on a machine with a 12 core Intel i7-

5930K 3.50GHz CPU and a Nvidia GeForce GTX Titan

Black 6048MB GPU. On this architecture, as the number

of features increases so does the difference between the run

times per iteration of the two methods. With the PD run-

ning at speeds two orders of magnitude (100x) faster than

the α-expansion.

proven to be unsuccessful [14], leading to a linear increase

of run-times with the number of features in the data and the

number of geometric models to be fitted. Limiting their use

with high-resolution data in applications with real-time de-

mands.

In contrast, we present a general-purpose solution that

exploits continuous multi-label optimisation, a framework

that has been shown to be superior in terms of parallelisa-

tion and run-time performance [14]. Analogous to [7], the

problem of geometric multi-model fitting is converted to a

multi-labelling problem where each model is represented

through a label function over the data points. The opti-

mal solution to the relaxed problem is obtained efficiently

through a first order primal-dual (PD) optimisation [3]. As

this supports per-element evaluation it facilitates a parallel

implementation on General Purpose Graphical Processing

Unit (GPGPU) hardware.

In Figure 1 a comparison of the run-time per iteration

of α-expansion1 and a CUDA implementation of the PD

optimisation on dedicated hardware is shown. It can be seen

that there is a clear reduction in run-time per iteration, of up

to two orders of magnitude, through the PD optimisation as

the number of features increases.

We summarise the main contributions in this paper as

follows:

• We propose a novel global energy-based approach to

fit and segment multi-structural data via a COnvex Re-

laxation ALgorithm (CORAL). Unlike greedy meth-

1Code obtained from [20]

ods, which maximise the number of inliers, this ap-

proach efficiently searches for a soft assignment of

points to models by minimising the energy of the over-

all classification.

• We provide a designed energy functional that en-

compasses spatial regularisation on a continuous label

function while simultaneously minimising the number

of labels. This without making any assumptions on the

underlying data structure.

• We demonstrate the adaptability of the approach to

two important vision applications including multi ho-

mography estimation and plane detection from RGB-

D images. These applications show the versatility

of our approach to different metrics with different

norms used in both instances. Further, they show that

when applied to both simulated and publicly available

datasets with real imagery, the proposed approach out-

performs other global energy based methods for geo-

metric multi-model fitting in terms of both speed and

accuracy.

This paper is organised as follows. In Section 2 the pro-

posed framework is described using a continuous energy

formulation. Section 2.1 describes the two-stage convex re-

laxation algorithm. The practical advantages of the geomet-

ric model fitting framework are demonstrated in Section 3.

Finally, advantages of the proposed method are discussed

and conclusions drawn in Section 4.

2. Energy Minimisation for Multi-Model Fit-

ting

In this work geometric multi-model fitting is framed as

an optimisation problem where the quality of the solution

is linked to an energy functional. The first term of the en-

ergy considers the geometric error of all data points to their

corresponding models/labels. The energy also encompasses

prior knowledge about locality by ensuring that data points

that are spatially close have a higher likelihood of belonging

to the same model. Finally, a different sort of regularisation

that promotes compactness is imposed by favouring solu-

tions that explain the data using as few models as possible.

Equation 1 represents these three ideas in a general formu-

lation.

L∑

l=1

∫

Ω

ρl(u, φl(u))dΩ

︸ ︷︷ ︸

Data Energy

+λ

L∑

l=1

∫

Ω

ωNR(∇Nφl(u))dΩ

︸ ︷︷ ︸

Smoothness Energy

+

βL
︸︷︷︸

Model Count Energy

(1)

The first term, ρl, in Equation 1 is a data fidelity term,

defined over the data points u ∈ Ω, where Ω ⊂ R
m repre-
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sents a continuous domain. The data term captures the ge-

ometric cost of a data point supporting a particular model.

The assignment of data points to their respective models is

encapsulated through the indicator function φl(·):

φl(u) =

{

1 if u ∈ Ll

0 otherwise
(2)

where the uniqueness in the label assignment is achieved by

adding the constraint
∑L

l=1 φl(u) = 1.

In practice, some data points might not be explained by

a geometric model. For this case, a special label, ∅, repre-

senting the outlier model is added. In this way, a constant

cost, γ, can be assigned to these points. The model cost for

this model is given by ρ∅(u, φ∅(u)) = γ.

The smoothness energy term in Equation 1 takes into ac-

count locality by promoting a homogeneous assignment of

labels to neighbouring points. The ∇N operator calculates

the gradient of the indicator function over the neighbour-

hood, N , of a point. The function R is designed to pe-

nalise points that belong to the same neighbourhood but do

not share the same model. This penalty can be evaluated

using different norms, | · |p. For instance, the standard 4-

connected lattice implemented in graph cut algorithms [2]

can be obtained by implementing ∇N using forward dif-

ferences combined with a Manhattan norm | · |1,1
2. In

the continuous domain this is equivalent to penalising the

anisotropic total variation over the gradient of the indicator

function [11].

The parameter λ controls the trade-off between the

smoothness/locality cost and the model cost. The weights,

ωN , allow for finer control of the dependencies between

neighbouring data points through an appropriate metric e.g.

distance.

Finally, the model count energy term in Equation 1 pe-

nalises the number of models L by adding a constant cost β

per model.

2.1. Convex Relaxation Algorithm

The constraint in Equation 2 makes the problem com-

binatorial and NP-hard so it can only be approximately

solved. A fast known relaxation approach [23] that trans-

forms the original problem into a convex one is thus used.

While this relaxation is not the tightest, it produces good re-

sults in practice. The relaxation is based on allowing φl(u)
to take values in the interval φl(u) ∈ [0, 1] instead of the

binary set {0, 1}. As a result, for a fixed number of models

L, Equation 1 with the linear equality constraint in φl(u)
becomes a convex optimisation problem.

The solution adopted to solve the energy in Equation 1

depends on the selection of the functionals ρl and R. In this

work the outlier-robust L1 norm is opted for, as it is non-

smooth its non-differentiable intrinsics exclude the use of

2In the 2D case, |∇Nφl(u)|1,1 = |∇xφl(u)|+ |∇yφl(u)|

Algorithm 1: Primal-Dual Optimisation

Initialisation;

τ, α > 0, θ ∈ [0, 1];

φ0 = φ̄0 = Ψ0 = 0;

while k < N do

Dual Step;

Ψk+1 = πΨ(Ψ
k + τ∇φ̄k);

Primal Step;

φk+1 = πφ(φ
k − α(ρl(u, φ

k) + λ∇TΨk+1);
Relaxation step;

φ̄k+1 = φk+1 + θ(φk+1 − φk)
end

standard optimisation techniques. However, recent achieve-

ments on continuous optimisation [3] show that non-smooth

priors used in similar relaxed convex problems can be trans-

formed into saddle point problems from which existing effi-

cient convex optimisation techniques can be applied. In this

transformation, the indicator function over the smoothing

term is represented by its dual function as shown in Equa-

tion 3.
∫

Ω

|∇φl(u)|pdΩ = max
Ψl(u)

∫

Ω

∇φl(u) ·Ψl(u)dΩ (3)

s.t. |Ψl(u)|p∗ ≤ 1 (4)

where Ψl(u) : Ω → R
2 is known as the dual function of

φl(u) and both | · |p and | · |p∗ are dual norms. The optimal

values of φ(·) and Ψ(·) are obtained from the first-order

primal-dual optimisation shown in Algorithm 1. As this

optimisation performs per-point evaluations, it supports a

parallel GPGPU implementation.

The two-stage approach for minimising the global en-

ergy given in Equation 1 is summarised as follows.

1. Data and Smoothness Energy optimisation:

Algorithm 1 shows the steps of the primal-dual optimi-

sation that minimises the data and smoothness energy

terms. Where τ, α are the step size parameters of the

algorithm, with θ controlling the relaxation. The val-

ues of these are determined using the diagonal precon-

ditioning scheme [17].

To fulfil the constraint in Equation 4, the gradient as-

cent step of the dual variable gets projected onto the

feasible set with the projection, πΨ(·), defined by:

πΨ(Ψ) =
Ψ

max(1, |Ψ|p∗)
(5)

Similarly, the function πφ(·) projects the gradient de-

scent step of the primal variable onto the simplex

φl(u) ∈ [0, 1] |
∑L

l=1 φl(u) = 1 as described in

[12].
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Algorithm 2: CORAL Energy Minimisation

{Initialisation};

Propose s models;

while not converged do

Primal-Dual Optimisation;

Merge Models;

Re-estimate models;

end

2. Model Count Optimisation:

Although it is not explicitly formulated into the primal-

dual optimisation, the minimisation of the smoothness

energy reduces the model count energy by enforcing a

single model for spatially connected regions. In this

way redundant models are reduced as they have no

support in the data leading to a more compact solution.

This does not hold for non-spatially connected regions.

To account for this an extra explicit step is performed

that merges separated models with similar parameters.

In the presence of noise, merging two models results

in an increase in the data energy. If this increase is

however less than β, the global energy still decreases,

ensuring an optimal compact solution.

Analogous to the PEARL algorithm [7], the proposed

optimisation cannot be directly applied to continuous data

as the number of possible labels for a model with p param-

eters is Rp. To reduce the search space, stochastic sam-

pling for a finite number of models, s, should be performed.

Moreover, to re-estimate models after the primal-dual op-

timisation is completed, a one-to-one correspondence be-

tween indicator functions and models is needed. To this

end, the continuous labels are thresholded by selecting the

maximum value of the indicator function at each data point.

The data energy can be further reduced by re-estimating

models based on the assignment given by the thresholded

solution. This provides a new initialisation point to the inner

primal-dual optimisation. This is continued until the global

energy converges, hence the CORAL algorithm shown in

Algorithm 2.

3. Experiments and Applications

In this section the proposed algorithm is employed to ad-

dress the extraction of planar regions in images for two dif-

ferent problems: the first corresponds to the known multi-

homography estimation from two views. The second is

plane detection from a single RGB-D image. The motiva-

tion is driven by the fact that detection of geometric struc-

ture from images is of widespread importance to applica-

tions such as camera calibration, camera motion estimation,

and surface reconstruction. We argue that the existing ap-

proaches could be prohibitive for online, real-time function-

ality. The implicit assumption in both cases is that scenes

consist mostly of man-made objects commonly found in ur-

ban outdoor and indoor environments (e.g. buildings, walls,

screens, desks, etc.). The image setup choice (i.e. colour

images versus range data) allows us to deal with different

situations. On the one hand, indoor environments usually

expose texture-less surfaces. In addition, matching algo-

rithms will be affected by low-light conditions thus moti-

vating the use of an RGB-D sensor. On the other hand,

outdoor scenes are more abundant in texture. However, the

use of a depth sensor is practically limited by its maximum

range. A two-view homography estimation approach for

plane detection with feature correspondences would result

in a better choice. Under these assumptions, the versatility

of the proposed formulation is shown in the next sections

with no special distinction on the distribution of data over

the space.

For the run-time experimentation presented in the fol-

lowing sections, a machine equipped with a 12-core Intel

i7-5930K 3.50GHz CPU and a GeForce GTX TITAN Black

6048MB GPU was utilised.

3.1. TwoView MultiHomography Estimation

Our first application considers two views of a static scene

with multiple planes. Given a sparse set of n pixel corre-

spondences in homogeneous coordinates between the two

views, ui = (u1
i ,u

2
i ) ∈ R

2, i = 1 · · ·n, the homogra-

phy H21 ∈ R
3×3 establishes the mapping of pixels from

the first view to the second view through an observed plane.

This operation is denoted by u
2
i = H21u

1
i . We aim to find

the classification of pixel matches w.r.t several homogra-

phies while simultaneously rejecting outliers. A simplified

version of the energy in Equation 1 for this problem is pro-

posed in Equation 6,

L∑

l=1

(
1

2

n∑

i=1

(‖D(ui,H12)‖Σ12
+ ‖D(ui,H21)‖Σ21

)φl(u)

+ λ

n∑

i=1

ωN |∇Nφl(u)|1,1

)

+ βL (6)

The data term is chosen to account for the symmetric trans-

fer error of the re-projection operation 3. The ∇N opera-

tor takes into account the variation over the label function

on a specified neighbourhood, N . In this work, a four-

connectivity neighbourhood is used although it can be eas-

ily extended to any connectivity pattern. ωN penalises pix-

els that are far away in terms of Euclidean distance. Model

initialisation is carried out by applying the Direct Linear

Transform (DLT) algorithm [6].

3Here, D is the Mahalanobis distance ‖D(ui,Hab)‖Σab
= (ua

i −

u
a′

i )Σ−1

ab
(ua

i −u
a′

i )T . Σab represents the propagated covariance matrix

through the mapping induced by the corresponding homography.
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(a) (b) (c)

Figure 2: Results from the simulation experiment on two-view homography segmentation. In (a) the performance of

RANSAC, PEARL, and CORAL are compared in an experiment with increasing sensor noise, σpixel, in the absence of out-

liers. The ME was then evaluated over ten different two-view pairs with CORAL outperforming both PEARL and RANSAC.

In (b) with the sensor noise σpixel set to one the run-times of the two energy minimisation algorithms were compared as the

number of features in the simulation was increased, CORAL yielding a run-time that is up to an order of magnitude faster.

(c) shows the evolution of the run-times, ME and energy of the two energy minimisation algorithms when the number of

features is twenty thousand. It can be seen that PEARL converges within fewer iterations. However, this still results in a

slower run-time at the point of energy equivalence shown by the red dotted line. CORAL ultimately converges to a faster

run-time (10x) as well as a lower ME and energy.

The accuracy and run-time performance of CORAL was

analysed firstly through a controlled simulated experiment

before extending the analysis to the extensively validated

Adelaide benchmark dataset [21].

3.1.1 Simulation Experiments

To characterise the performance and robustness of CORAL

with respect to existing algorithms, experiments were first

run in a controlled simulation environment. The simula-

tion environment consists of three planes, placed mutually

orthogonally to each other. This configuration resembles,

for instance, the end of a corridor or the corner of a build-

ing such that two walls and the ground are simultaneously

observed. Uniform sampling of the planes creates the point

features observable from two frames by a camera with asso-

ciated noise, σpixel. Samples of the simulation environment

are shown in Figure 3.

CORAL was first tested under different values of σpixel

in the absence of any outliers. This was compared to a im-

plementation of sequential RANSAC. In addition, a com-

parison to PEARL using the open-source implementation

available in [20] was made with the Misclassification Error

(ME) given in Equation 7 used as the metric to quantify the

accuracy.

ME =
#Misclassified points

#points
(7)

Results from the three approaches are shown in Fig-

ure 2. It is clear that the global energy approaches out-

perform RANSAC as the sensor noise increases, in fact

CORAL reports better results than PEARL for the largest

noise value. The higher ME reported by RANSAC in the

presence of noise can be explained by analysing Figure 3,

this shows the triangulated noisy points in the simulation

environment for σpixel = [0.5, 1.5, 1.5] together with the

ground-truth planes from which they were originally sam-

pled from. Colour coding of membership to a particular

model is used to show the results of the multi-homography

extraction for the three stated approaches.

For σpixel = 1.5, RANSAC selects models that, though

geometrically valid, are not consistent with the ground truth

planes. See for example the combination of green and red

points on the two vertical planes. The energy approaches

are more robust to this kind of noise as the smoothness prior

ensures convergence to a better solution which is consistent

with the ground truth. This is shown in the last column of

Figure 3.

By varying the number of point features sampled from

the mutually orthogonal planes, an analysis of the run-

time performance of CORAL was undertaken. With results

showing CORAL’s time performance to be as much as an

order of magnitude faster than PEARL as shown in Figure

2(b). While digging deeper into the simulation result when

the number of features was set to twenty thousand, in Figure

2(c) shows that CORAL not only outputs a faster and more

accurate ME but also converges to a slightly lower energy.

3.1.2 Benchmark Experiments

With the performance and robustness of the proposed ap-

proach verified in simulation, the proposed approach was

bench-marked against the state-of-the-art on real imagery.

The Adelaide dataset [21] is used in this evaluation. It con-

sists of image pairs with extracted keypoints and manually

labelled ground-truth. The performance on this dataset of

different multiple model fitting approaches is available in

[10]. From these results, a comparison of CORAL to T-

linkage [8], J-linkage [18], RPA [9], SA-RCM [16], Grdy-

RansaCov and ILP-RansaCov [10] was carried out. These

results are shown in Table 1.
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J-Lnkg T-Lnkg RPA SA-RCM Grdy-RansaCov ILP-RansaCov Multi-H CORAL

mean 25.50 24.66 17.20 28.30 26.85 12.91 4.40 4.2117

median 24.48 24.53 17.78 29.40 28.77 12.34 2.41 3.48

Table 1: Misclassification error for two view plane segmentation in the Adelaide dataset. Part of the results in this table are

reported in [10].

σpixel = 0.5 σpixel = 1.0 σpixel = 1.5

Figure 3: The triangulated positions of noisy pixels together with the ground truth planes (red, green,and blue patches) are

shown under different values of σpixel. The results of the multi-homography detection are displayed by colour coding the

point classification to their assigned models. RANSAC, PEARL and CORAL results are shown in the first, second and third

row respectively.

From Table 1 it can be seen that the best mean perfor-

mance is achieved using our algorithm. The better median

performance reported by Multi-H [1] can be explained by

its specialised initialisation for homographies using affine

transformations that have been shown to be superior to the

DLT. The proposed approach would also benefit from this

specialised initialisation; however, for consistent compari-

son with the state-of-the-art an initialisation based on the

DLT for model generation is retained.

A subset of the images with the detected homographies

are shown in Figure 4, with the membership to different

models colour-coded. From this it can be seen that the pro-

posed formulation is able to accurately deal with the varied

range of models present in a scene.

3.2. Plane detection with RGBD images

The second case of structure detection involves the ex-

traction of planes from a single RGB-D image. In this sce-

nario, the regularity of the pixel grid is leveraged by work-

ing with an inverse depth representation on a per-pixel basis.

It can be shown that if two pixels, u and u
∗, belong to the

same planar surface in 3D, their inverse depths, ξ(u) and

ξ(u∗), satisfy the following equation:

ξ(u)− ξ(u∗) = 〈w,u− u
∗〉 (8)

where 〈·, ·〉 represents the inner product between two vec-

tors. w = (wu, wv) codifies the projection of the 3D plane

normals into the image plane. A proof of the validity of this

expression is given in the supplementary material.

In this application, the energy to be minimised is given

by:

L∑

l=1

(∫

Ω

(‖ξ(u)− ξ(u∗)− 〈w,u− u
∗〉‖σξ

)φi(u)dΩ

+λ

∫

Ω

ωα
N |∇Nφ(u)|1,2dΩ

)

+ βL (9)

where ωα
N = e−‖∇N I(u)‖α and I represents the intensity

of the corresponding RGB image. These weights serve as a

measure of edginess that can be controlled with the param-

eter α thus aiding to preserve sharp discontinuities between

objects. Note that the Mahalanobis distance on the inverse

depth was used as the data term. The remaining elements

in this equation are similar to the general-purpose energy

proposed in Equation 1.
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(a) Johnsona (b) Johnsonb (c) ladysymon

Figure 4: Sample of images from the Adelaide dataset, with the membership to the different homographies given by CORAL

indicated by the different colours. Crosses are used to signify points that belong to the uniform outlier label, ∅, while points

that are mislabelled are shown in black through all figures.

Ground Truth RANSAC PEARL CORAL

Figure 5: Plane segmentation on a sample of RGB-D images from the NYU-Depth dataset. with the Ground Truth, RANSAC,

PEARL, and CORAL results presented for each image. Pixel membership to a plane model is shown by superposing on a

pixel a colour-coded point that assigns it to a specific plane model.

8144



Figure 6: Intermediate optimisation result showcasing the

difference between the | · |1,2 norm (left) and the Manhattan

norm (right) used by PEARL on the smoothing optimisa-

tion. The Manhattan norm preserves edges aligned with the

axes leading to a stair-case effect when dealing with dense

data, whereas our flexible formulation allows for the selec-

tion of the more appropriate | · |1,2 norm alleviating this

effect in the smoother result (left).

To evaluate the performance of CORAL for plane detec-

tion using RGB-D images, the NYU-depth dataset [13] was

used. This contains 1449 tuples of RGB, depth, and labelled

images for multiple instances of objects each of resolution

420 x 560. For the evaluation a subset of 232 images con-

taining scenes where either the walls, ceilings, desks, floor

or a combination of all of these surfaces are observed were

selected. This ensures that the selection contains images

with significant planar regions. To obtain a ground truth,

the labels provided were employed and planes fitted to in-

dividual instances of objects in the scene with a minimum

number of inliers. In addition, planes with similar planar

parameters were merged to reduce redundancy.

Four samples of the dataset are shown in Figure 5. Each

column represents the ground truth, RANSAC, PEARL and

CORAL solutions with a colour-code representing the dif-

ferent labels. The results show that the energy based meth-

ods produce more consistent plane models aligned with

the expected ground truth. CORAL solutions show greater

quality compared to PEARL solutions, in particular consid-

ering the first two images. In such cases, CORAL is able to

identify more plane models than PEARL.

Additionally the Manhattan norm used to penalise

smoothness in PEARL was compared to the | · |1,2 norm

used in this experiment. Focusing on an intermediate opti-

misation result in Figure 6, it can be seen that the Manhat-

tan norm preserves edges aligned with the axes leading to a

stair-case effect when dealing with dense data, the change

in the norm allows for a much smoother result as shown.

Table 2 condenses the ME results for all three methods.

As observed, CORAL outperforms PEARL in three of the

four instances and over the whole test set. To quantify per-

formance over the test set, an optimal value of λ was trained

using a quarter of the images in the subset.

RANSAC PEARL CORAL

Image 1 22.96 16.24 13.95

Image 2 28.70 20.59 17.12

Image 3 36.60 26.30 25.30

Image 4 15.72 7.77 7.83

Test set 29.38 23.04 18.99

Table 2: Mislabelling error for RGB-D segmentation.

Run-times for the two energy optimisation algorithms

were evaluated and shown in Table 3. CORAL runs on av-

erage around twenty times faster than PEARL on this task,

even as the number of models increases.

L=4 L=8 L=16

PEARL 0.163843 0.659035 1.42582

CORAL 0.007628 0.026909 0.071628

Table 3: Time taken in seconds for the energy minimisation

for PEARL and CORAL evaluated and averaged over the

images shown in Figure 5. CORAL implementation was

on average about twenty times faster even as the number of

models, L, varied.

4. Discussion and Conclusions

In this work CORAL, a global energy minimisation al-

gorithm for geometric multi-model fitting, has been intro-

duced. Our general solution uses a convex relaxation for

model assignment before leveraging advanced optimisation

techniques in the continuous domain. Our approach inher-

its all the benefits described in the available survey pre-

sented in [14]. The advantages of CORAL over discrete

solutions analysed in previous sections are mainly driven by

its potential for parallel implementation compared to state-

of-the-art methods that require sequential evaluations of la-

bels. CORAL intrinsically boosts run-time performance by

simultaneously handling per-point evaluations over the la-

bels as demonstrated in the previous sections. This makes

our approach more suitable for geometric model extraction

in applications with real-time performance constraints.

Our formulation also allows for flexibility on the norms

applied, which we characterise through the structure detec-

tion problem from images in two different scenarios. All

without degradation of performance, as results that outper-

form or are at least equivalent to the best performances

achieved using state-of-the-art methods are reported.

In summary, CORAL incorporates powerful optimisa-

tion machinery into the solution of geometric multi-model

fitting. Offering an algorithm that is simultaneously able

to robustly extract accurate models in the presence of con-

tamination and offer improved time performance guarantees

over the state-of-the-art.
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