
Vision-and-Language Navigation: Interpreting visually-grounded

navigation instructions in real environments

Peter Anderson1 Qi Wu2 Damien Teney2 Jake Bruce3 Mark Johnson4

Niko Sünderhauf3 Ian Reid2 Stephen Gould1 Anton van den Hengel2

1Australian National University 2University of Adelaide 3Queensland University of Technology 4Macquarie University
1
firstname.lastname@anu.edu.au,

3
jacob.bruce@hdr.qut.edu.au,

3
niko.suenderhauf@qut.edu.au

2{qi.wu01,damien.teney,ian.reid,anton.vandenhengel}@adelaide.edu.au, 4
mark.johnson@mq.edu.au

Abstract

A robot that can carry out a natural-language instruc-

tion has been a dream since before the Jetsons cartoon se-

ries imagined a life of leisure mediated by a fleet of attentive

robot helpers. It is a dream that remains stubbornly distant.

However, recent advances in vision and language meth-

ods have made incredible progress in closely related areas.

This is significant because a robot interpreting a natural-

language navigation instruction on the basis of what it sees

is carrying out a vision and language process that is simi-

lar to Visual Question Answering. Both tasks can be inter-

preted as visually grounded sequence-to-sequence transla-

tion problems, and many of the same methods are applica-

ble. To enable and encourage the application of vision and

language methods to the problem of interpreting visually-

grounded navigation instructions, we present the Matter-

port3D Simulator – a large-scale reinforcement learning

environment based on real imagery [11]. Using this simula-

tor, which can in future support a range of embodied vision

and language tasks, we provide the first benchmark dataset

for visually-grounded natural language navigation in real

buildings – the Room-to-Room (R2R) dataset1.

1. Introduction

The idea that we might be able to give general, verbal

instructions to a robot and have at least a reasonable prob-

ability that it will carry out the required task is one of the

long-held goals of robotics, and artificial intelligence (AI).

Despite significant progress, there are a number of major

technical challenges that need to be overcome before robots

will be able to perform general tasks in the real world. One

of the primary requirements will be new techniques for link-

ing natural language to vision and action in unstructured,

previously unseen environments. It is the navigation version

1https://bringmeaspoon.org

Instruction: Head upstairs and walk past the piano through an
archway directly in front. Turn right when the hallway ends at
pictures and table. Wait by the moose antlers hanging on the wall.

Figure 1. Room-to-Room (R2R) navigation task. We focus on

executing natural language navigation instructions in previously

unseen real-world buildings. The agent’s camera can be rotated

freely. Blue discs indicate nearby (discretized) navigation options.

of this challenge that we refer to as Vision-and-Language

Navigation (VLN).

Although interpreting natural-language navigation in-

structions has received significant attention previously [12,

13, 20, 38, 41, 52], it is the recent success of recurrent neu-

ral network methods for the joint interpretation of images

and natural language that motivates the VLN task, and the

associated Room-to-Room (R2R) dataset described below.

The dataset particularly has been designed to simplify the

application of vision and language methods to what might

otherwise seem a distant problem.

Previous approaches to natural language command of

robots have often neglected the visual information process-

ing aspect of the problem. Using rendered, rather than real

images [7, 27, 62], for example, constrains the set of vis-

3674

whiteandblue

biketheiscolorWhat

a
0

tablediningformal...andinsideMove ...

a
1

a
2

a
3

.

?

a
T-2

a
T-1

a
T

VQA:

VLN:

Figure 2. Differences between Vision-and-Language Navigation (VLN) and Visual Question Answering (VQA). Both tasks can be formu-

lated as visually grounded sequence-to-sequence transcoding problems. However, VLN sequences are much longer and, uniquely among

vision and language benchmark tasks using real images, the model outputs actions 〈a0, a1, . . . aT 〉 that manipulate the camera viewpoint.

ible objects to the set of hand-crafted models available to

the renderer. This turns the robot’s challenging open-set

problem of relating real language to real imagery into a far

simpler closed-set classification problem. The natural ex-

tension of this process is that adopted in works where the

images are replaced by a set of labels [13, 52]. Limiting

the variation in the imagery inevitably limits the variation

in the navigation instructions also. What distinguishes the

VLN challenge is that the agent is required to interpret a

previously unseen natural-language navigation command in

light of images generated by a previously unseen real envi-

ronment. The task thus more closely models the distinctly

open-set nature of the underlying problem.

To enable the reproducible evaluation of VLN methods,

we present the Matterport3D Simulator. The simulator is a

large-scale interactive reinforcement learning (RL) environ-

ment constructed from the Matterport3D dataset [11] which

contains 10,800 densely-sampled panoramic RGB-D im-

ages of 90 real-world building-scale indoor environments.

Compared to synthetic RL environments [7, 27, 62], the

use of real-world image data preserves visual and linguis-

tic richness, maximizing the potential for trained agents to

be transferred to real-world applications.

Based on the Matterport3D environments, we collect

the Room-to-Room (R2R) dataset containing 21,567 open-

vocabulary, crowd-sourced navigation instructions with an

average length of 29 words. Each instruction describes a

trajectory traversing typically multiple rooms. As illus-

trated in Figure 1, the associated task requires an agent to

follow natural-language instructions to navigate to a goal

location in a previously unseen building. We investigate the

difficulty of this task, and particularly the difficulty of op-

erating in unseen environments, using several baselines and

a sequence-to-sequence model based on methods success-

fully applied to other vision and language tasks [4, 14, 19].

In summary, our main contributions are:

1. We introduce the Matterport3D Simulator, a software

framework for visual reinforcement learning using the

Matterport3D panoramic RGB-D dataset [11];

2. We present Room-to-Room (R2R), the first benchmark

dataset for Vision-and-Language Navigation in real,

previously unseen, building-scale 3D environments;

3. We apply sequence-to-sequence neural networks to the

R2R dataset, establishing several baselines.

The simulator, R2R dataset and baseline mod-

els are available through the project website at

https://bringmeaspoon.org.

2. Related Work

Navigation and language Natural language command of

robots in unstructured environments has been a research

goal for several decades [57]. However, many existing

approaches abstract away the problem of visual percep-

tion to some degree. This is typically achieved either by

assuming that the set of all navigation goals, or objects

to be acted upon, has been enumerated, and that each

will be identified by label [13, 52], or by operating in

visually restricted environments requiring limited percep-

tion [12, 20, 24, 29, 35, 38, 55]. Our work contributes for

the first time a navigation benchmark dataset that is both lin-

guistically and visually rich, moving closer to real scenarios

while still enabling reproducible evaluations.

Vision and language The development of new bench-

mark datasets for image captioning [14], visual question

answering (VQA) [4, 19] and visual dialog [17] has spurred

considerable progress in vision and language understand-

ing, enabling models to be trained end-to-end on raw pixel

data from large datasets of natural images. However, al-

though many tasks combining visual and linguistic reason-

ing have been motivated by their potential robotic appli-

cations [4, 17, 26, 36, 51], none of these tasks allow an

agent to move or control the camera. As illustrated in Fig-

ure 2, our proposed R2R benchmark addresses this limita-

tion, which also motivates several concurrent works on em-

bodied question answering [16, 18].

3675

Navigation based simulators Our simulator is related to

existing 3D RL environments based on game engines, such

as ViZDoom [27], DeepMind Lab [7] and AI2-THOR [30],

as well as a number of newer environments developed

concurrently including HoME [10], House3D [58], MI-

NOS [47], CHALET [59] and Gibson Env [61]. The

main advantage of our framework over synthetic environ-

ments [30, 10, 58, 59] is that all pixel observations come

from natural images of real scenes, ensuring that almost ev-

ery coffee mug, pot-plant and wallpaper texture is unique.

This visual diversity and richness is hard to replicate using

a limited set of 3D assets and textures. Compared to MI-

NOS [47], which is also based on Matterport data [11], we

render from panoramic images rather than textured meshes.

Since the meshes have missing geometry – particularly for

windows and mirrors – our approach improves visual real-

ism but limits navigation to discrete locations (refer Sec-

tion 3.2 for details). Our approach is similar to the (much

smaller) Active Vision Dataset [2].

RL in navigation A number of recent papers use rein-

forcement learning (RL) to train navigational agents [31,

50, 53, 62, 21], although these works do not address lan-

guage instruction. The use of RL for language-based navi-

gation has been studied in [12] and [41], however, the set-

tings are visually and linguistically less complex. For ex-

ample, Chaplot et al. [12] develop an RL model to execute

template-based instructions in Doom environments [27].

Misra et al. [41] study complex language instructions in a

fully-observable blocks world. By releasing our simulator

and dataset, we hope to encourage further research in more

realistic partially-observable settings.

3. Matterport3D Simulator

In this section we introduce the Matterport3D Simulator,

a new large-scale visual reinforcement learning (RL) sim-

ulation environment for the research and development of

intelligent agents based on the Matterport3D dataset [11].

The Room-to-Room (R2R) navigation dataset is discussed

in Section 4.

3.1. Matterport3D Dataset

Most RGB-D datasets are derived from video sequences;

e.g. NYUv2 [42], SUN RGB-D [48] and ScanNet [15].

These datasets typically offer only one or two paths through

a scene, making them inadequate for simulating robot mo-

tion. In contrast to these datasets, the recently released

Matterport3D dataset [11] contains a comprehensive set of

panoramic views. To the best of our knowledge it is also the

largest currently available RGB-D research dataset.

In detail, the Matterport3D dataset consists of 10,800

panoramic views constructed from 194,400 RGB-D images

of 90 building-scale scenes. On average, panoramic view-

points are distributed throughout the entire walkable floor

plan of each scene at an average separation of 2.25m. Each

panoramic view is comprised of 18 RGB-D images captured

from a single 3D position at the approximate height of a

standing person. Each image is annotated with an accurate

6 DoF camera pose, and collectively the images capture the

entire sphere except the poles. The dataset also includes

globally-aligned, textured 3D meshes annotated with class

and instance segmentations of regions (rooms) and objects.

In terms of visual diversity, the selected Matterport

scenes encompass a range of buildings including houses,

apartments, hotels, offices and churches of varying size and

complexity. These buildings contain enormous visual diver-

sity, posing real challenges to computer vision. Many of the

scenes in the dataset can be viewed in the Matterport 3D

spaces gallery2.

3.2. Simulator

3.2.1 Observations

To construct the simulator, we allow an embodied agent to

virtually ‘move’ throughout a scene by adopting poses coin-

ciding with panoramic viewpoints. Agent poses are defined

in terms of 3D position v ∈ V , heading ψ ∈ [0, 2π), and

camera elevation θ ∈ [−π

2
, π
2
], where V is the set of 3D

points associated with panoramic viewpoints in the scene.

At each step t, the simulator outputs an RGB image obser-

vation ot corresponding to the agent’s first person camera

view. Images are generated from perspective projections of

precomputed cube-mapped images at each viewpoint. Fu-

ture extensions to the simulator will also support depth im-

age observations (RGB-D), and additional instrumentation

in the form of rendered object class and object instance seg-

mentations (based on the underlying Matterport3D mesh

annotations).

3.2.2 Action Space

The main challenge in implementing the simulator is de-

termining the state-dependent action space. Naturally, we

wish to prevent agents from teleporting through walls and

floors, or traversing other non-navigable regions of space.

Therefore, at each step t the simulator also outputs a set

of next step reachable viewpoints Wt+1 ⊆ V . Agents

interact with the simulator by selecting a new viewpoint

vt+1 ∈ Wt+1, and nominating camera heading (∆ψt+1)

and elevation (∆θt+1) adjustments. Actions are determin-

istic.

To determine Wt+1, for each scene the simulator in-

cludes a weighted, undirected graph over panoramic view-

points, G = 〈V,E〉, such that the presence of an edge sig-

nifies a robot-navigable transition between two viewpoints,

2https://matterport.com/gallery/

3676

and the weight of that edge reflects the straight-line distance

between them. To construct the graphs, we ray-traced be-

tween viewpoints in the Matterport3D scene meshes to de-

tect intervening obstacles. To ensure that motion remains

localized, we then removed edges longer than 5m. Finally,

we manually verified each navigation graph to correct for

missing obstacles not captured in the meshes (such as win-

dows and mirrors).

Given navigation graph G, the set of next-step reachable

viewpoints is given by:

Wt+1 =
{

vt
}

∪
{

vi ∈ V | 〈vt, vi〉 ∈ E ∧ vi ∈ Pt

}

(1)

where vt is the current viewpoint, and Pt is the region of

space enclosed by the left and right extents of the camera

view frustum at step t. In effect, the agent is permitted to

follow any edges in the navigation graph, provided that the

destination is within the current field of view, or visible by

glancing up or down3. Alternatively, the agent always has

the choice to remain at the same viewpoint and simply move

the camera.

Figure 3 illustrates a partial example of a typical naviga-

tion graph. On average each graph contains 117 viewpoints,

with an average vertex degree of 4.1. This compares favor-

ably with grid-world navigation graphs which, due to walls

and obstacles, must have an average degree of less than

4. As such, although agent motion is discretized, this does

not constitute a significant limitation in the context of most

high-level tasks. Even with a real robot it may not be prac-

tical or necessary to continuously re-plan higher-level ob-

jectives with every new RGB-D camera view. Indeed, even

agents operating in 3D simulators that notionally support

continuous motion typically use discretized action spaces

in practice [62, 16, 18, 47].

The simulator does not define or place restrictions on

the agent’s goal, reward function, or any additional context

(such as natural language navigation instructions). These

aspects of the RL environment are task and dataset depen-

dent, for example as described in Section 4.

3.2.3 Implementation Details

The Matterport3D Simulator is written in C++ using

OpenGL. In addition to the C++ API, Python bindings are

also provided, allowing the simulator to be easily used with

deep learning frameworks such as Caffe [25] and Tensor-

Flow [1], or within RL platforms such as ParlAI [39] and

OpenAI Gym [9]. Various configuration options are offered

for parameters such as image resolution and field of view.

Separate to the simulator, we have also developed a WebGL

browser-based visualization library for collecting text anno-

tations of navigation trajectories using Amazon Mechanical

Turk, which we will make available to other researchers.

3This avoids forcing the agent to look at the floor every time it takes a

small step.

Figure 3. Example navigation graph for a partial floor of one

building-scale scene in the Matterport3D Simulator. Navigable

paths between panoramic viewpoints are illustrated in blue. Stairs

can also be navigated to move between floors.

3.2.4 Biases

We are reluctant to introduce a new dataset (or simulator, in

this case) without at least some attempt to address its limita-

tions and biases [54]. In the Matterport3D dataset we have

observed several selection biases. First, the majority of cap-

tured living spaces are scrupulously clean and tidy, and of-

ten luxurious. Second, the dataset contains very few people

and animals, which are a mainstay of many other vision and

language datasets [14, 4]. Finally, we observe some cap-

ture bias as selected viewpoints generally offer command-

ing views of the environment (and are therefore not neces-

sarily in the positions in which a robot might find itself). Al-

leviating these limitations to some extent, the simulator can

be extended by collecting additional building scans. Refer

to Stanford 2D-3D-S [5] for a recent example of an aca-

demic dataset collected with a Matterport camera.

4. Room-to-Room (R2R) Navigation

We now describe the Room-to-Room (R2R) task and

dataset, including an outline of the data collection process

and analysis of the navigation instructions gathered.

4.1. Task

As illustrated in Figure 1, the R2R task requires an em-

bodied agent to follow natural language instructions to nav-

igate from a starting pose to a goal location in the Mat-

terport3D Simulator. Formally, at the beginning of each

episode the agent is given as input a natural language in-

struction x̄ = 〈x1, x2, . . . xL〉, where L is the length of the

instruction and xi is a single word token. The agent ob-

serves an initial RGB image o0, determined by the agent’s

initial pose comprising a tuple of 3D position, heading and

elevation s0 = 〈v0, ψ0, θ0〉. The agent must execute a se-

quence of actions 〈s0, a0, s1, a1, . . . , sT , aT 〉, with each ac-

3677

Standing in front of the family picture,
turn left and walk straight through the
bathroom past the tub and mirrors. Go
through the doorway and stop when the
door to the bathroom is on your right
and the door to the closet is to your left.

Walk with the family photo on your
right. Continue straight into the
bathroom. Walk past the bathtub. Stop
in the hall between the bathroom and
toilet doorways.

Walk straight passed bathtub and stop
with closet on the left and toilet on the
right.

Pass the pool and go indoors using the
double glass doors. Pass the large table
with chairs and turn left and wait by the
wine bottles that have grapes by them.

Walk straight through the room and exit
out the door on the left. Keep going past
the large table and turn left. Walk down
the hallway and stop when you reach the
2 entry ways. One in front of you and one
to your right. The bar area is to your left.

Enter house through double doors,
continue straight across dining room, turn
left into bar and stop on the circle on the
ground.

Exit the office then turn left and then
turn left in the hallway and head down
the hallway until you get to a door on
your left and go into office 359 then
stop.

Go out of the room and take a left. Go
into the first room on your left.

Leave the office and take a left. Take
the next left at the hallway. Walk down
the hall and enter the first office on the
left. Stop next to the door to office 359.

Go up the stairs and turn right. Go past
the bathroom and stop next to the bed.

Walk all the way up the stairs, and
immediately turn right. Pass the
bathroom on the left, and enter the
bedroom that is right there, and stop
there.

Walk up the stairs turn right at the top
and walk through the doorway continue
straight and stop inside the bedroom.

Figure 4. Randomly selected examples of navigation instructions

(three per trajectory) shown with the view from the starting pose.

tion at leading to a new pose st+1 = 〈vt+1, ψt+1, θt+1〉,
and generating a new image observation ot+1. The episode

ends when the agent selects the special stop action, which

is augmented to the simulator action space defined in Sec-

tion 3.2.2. The task is successfully completed if the action

sequence delivers the agent close to an intended goal loca-

tion v∗ (refer to Section 4.4 for evaluation details).

4.2. Data Collection

To generate navigation data, we use the Matterport3D

region annotations to sample start pose s0 and goal location

v∗ pairs that are (predominantly) in different rooms. For

each pair, we find the shortest path v0 : v∗ in the relevant

weighted, undirected navigation graph G, discarding paths

that are shorter than 5m, and paths that contain less than

four or more than six edges. In total we sample 7,189 paths

capturing most of the visual diversity in the dataset. The

average path length is 10m, as illustrated in Figure 5.

For each path, we collect three associated navigation in-

structions using Amazon Mechanical Turk (AMT). To this

Figure 5. Distribution of instruction length and navigation trajec-

tory length in the R2R dataset.

end, we provide workers with an interactive 3D WebGL en-

vironment depicting the path from the start location to the

goal location using colored markers. Workers can interact

with the trajectory as a ‘fly-through’, or pan and tilt the cam-

era at any viewpoint along the path for additional context.

We then ask workers to ‘write directions so that a smart

robot can find the goal location after starting from the same

start location’. Workers are further instructed that it is not

necessary to follow exactly the path indicated, merely to

reach the goal. A video demonstration is also provided.

The full collection interface (which is included as sup-

plementary material) was the result of several rounds of

experimentation. We used only US-based AMT workers,

screened according to their performance on previous tasks.

Over 400 workers participated in the data collection, con-

tributing around 1,600 hours of annotation time.

4.3. R2R Dataset Analysis

In total, we collected 21,567 navigation instructions with

an average length of 29 words. This is considerably longer

than visual question answering datasets where most ques-

tions range from four to ten words [4]. However, given

the focused nature of the task, the instruction vocabulary

is relatively constrained, consisting of around 3.1k words

(approximately 1.2k with five or more mentions). As illus-

trated by the examples included in Figure 4, the level of

abstraction in instructions varies widely. This likely reflects

differences in people’s mental models of the way a ‘smart

robot’ works [43], making the handling of these differences

an important aspect of the task. The distribution of navi-

gation instructions based on their first words is depicted in

Figure 6. Although we use the R2R dataset in conjunction

with the Matterport3D Simulator, we see no technical rea-

son why this dataset couldn’t also be used with other simu-

lators based on the Matterport dataset [11].

4.4. Evaluation Protocol

One of the strengths of the R2R task is that, in contrast

to many other vision and language tasks such as image cap-

tioning and visual dialog, success is clearly measurable. We

define navigation error as the shortest path distance in the

navigation graph G between the agent’s final position vT

3678

Figure 6. Distribution of navigation instructions based on their first

four words. Instructions are read from the center outwards. Arc

lengths are proportional to the number of instructions containing

each word. White areas represent words with individual contribu-

tions too small to show.

(i.e., disregarding heading and elevation) and the goal lo-

cation v∗. We consider an episode to be a success if the

navigation error is less than 3m. This threshold allows for

a margin of error of approximately one viewpoint, yet it is

comfortably below the minimum starting error of 5m. We

do not evaluate the agent’s entire trajectory as many instruc-

tions do not specify the path that should be taken.

Central to our evaluation is the requirement for the agent

to choose to end the episode when the goal location is iden-

tified. We consider stopping to be a fundamental aspect of

completing the task, demonstrating understanding, but also

freeing the agent to potentially undertake further tasks at

the goal. However, we acknowledge that this requirement

contrasts with recent works in vision-only navigation that

do not train the agent to stop [62, 40]. To disentangle the

problem of recognizing the goal location, we also report

success for each agent under an oracle stopping rule, i.e.

if the agent stopped at the closest point to the goal on its

trajectory. Misra et al. [41] also use this evaluation.

Dataset Splits We follow broadly the same train/val/test

split strategy as the Matterport3D dataset [11]. The test set

consists of 18 scenes, and 4,173 instructions. We reserve

an additional 11 scenes and 2,349 instructions for validat-

ing in unseen environments (val unseen). The remaining 61

scenes are pooled together, with instructions split 14,025

train / 1,020 val seen. Following best practice, goal loca-

tions for the test set will not be released. Instead, we will

provide an evaluation server where agent trajectories may

be uploaded for scoring.

5. Vision-and-Language Navigation Agents

In this section, we describe a sequence-to-sequence neu-

ral network agent and several other baselines that we use to

explore the difficulty of the R2R navigation task.

5.1. Sequence­to­Sequence Model

We model the agent with a recurrent neural network pol-

icy using an LSTM-based [23] sequence-to-sequence ar-

chitecture with an attention mechanism [6]. Recall that

the agent begins with a natural language instruction x̄ =
〈x1, x2, . . . xL〉, and an initial image observation o0. The

encoder computes a representation of x̄. At each step t,

the decoder observes representations of the current image ot
and the previous action at−1 as input, applies an attention

mechanism to the hidden states of the language encoder,

and predicts a distribution over the next action at. Using

this approach, the decoder maintains an internal memory of

the agent’s entire preceeding history, which is essential for

navigating in a partially observable environment [56]. We

discuss further details in the following sections.

Language instruction encoding Each word xi in the lan-

guage instruction is presented sequentially to the encoder

LSTM as an embedding vector. We denote the output of the

encoder at step i as hi, such that hi = LSTMenc (xi, hi−1).
We denote h̄ = {h1, h2, . . . , hL} as the encoder context,

which will be used in the attention mechanism. As with

Sutskever et al. [49], we found it valuable to reverse the

order of words in the input language instruction.

Model action space The simulator action space is state-

dependent (refer Section 3.2.2), allowing agents to make

fine-grained choices between different forward trajectories

that are presented. However, in this initial work we simplify

our model action space to 6 actions corresponding to left,

right, up, down, forward and stop. The forward

action is defined to always move to the reachable viewpoint

that is closest to the centre of the agent’s visual field. The

left, right, up and down actions are defined to move

the camera by 30 degrees.

Image and action embedding For each image observa-

tion ot, we use a ResNet-152 [22] CNN pretrained on Im-

ageNet [46] to extract a mean-pooled feature vector. Anal-

ogously to the embedding of instruction words, an embed-

ding is learned for each action. The encoded image and

previous action features are then concatenated together to

form a single vector qt. The decoder LSTM operates as

h
0

t
= LSTMdec (qt, h

0

t−1).

Action prediction with attention mechanism To predict

a distribution over actions at step t, we first use an atten-

tion mechanism to identify the most relevant parts of the

navigation instruction. This is achieved by using the global,

general alignment function described by Luong et al. [34]

3679

