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Abstract

Image captioning is an important task, applicable to

virtual assistants, editing tools, image indexing, and sup-

port of the disabled. In recent years significant progress

has been made in image captioning, using Recurrent Neu-

ral Networks powered by long-short-term-memory (LSTM)

units. Despite mitigating the vanishing gradient problem,

and despite their compelling ability to memorize depen-

dencies, LSTM units are complex and inherently sequential

across time. To address this issue, recent work has shown

benefits of convolutional networks for machine translation

and conditional image generation [9, 34, 35]. Inspired by

their success, in this paper, we develop a convolutional im-

age captioning technique. We demonstrate its efficacy on

the challenging MSCOCO dataset and demonstrate perfor-

mance on par with the LSTM baseline [16], while having

a faster training time per number of parameters. We also

perform a detailed analysis, providing compelling reasons

in favor of convolutional language generation approaches.

1. Introduction

Image captioning, i.e., describing the content observed

in an image, has received a significant amount of atten-

tion in recent years. It is applicable in various scenarios,

e.g., recommendation in editing applications, usage in vir-

tual assistants, for image indexing, and support of the dis-

abled. With the availability of large datasets, deep neural

network (DNN) based methods have been shown to achieve

impressive results on image captioning tasks [16, 37].

These techniques are largely based on recurrent neural nets

(RNNs), often powered by a Long-Short-Term-Memory

(LSTM) [10] component.

LSTM nets have been considered as the de-facto stan-

dard for vision-language tasks of image captioning [5, 16,

37, 39, 38], visual question answering [3, 30, 28], ques-

tion generation [14, 20], and visual dialog [7, 13], due

to their compelling ability to memorize long-term depen-

∗ Denotes equal contribution.

dencies through a memory cell. However, the complex

addressing and overwriting mechanism combined with in-

herently sequential processing, and significant storage re-

quired due to back-propagation through time (BPTT), poses

challenges during training. Also, in contrast to CNNs,

that are non-sequential, LSTMs often require more care-

ful engineering, when considering a novel task. Previously,

CNNs have not matched up to the LSTM performance on

vision-language tasks. Inspired by the recent successes of

convolutional architectures on other sequence-to-sequence

tasks – conditional image generation [34], machine transla-

tion [9, 35] – we study convolutional architectures for the

vision-language task of image captioning. To the best of

our knowledge, ours is the first convolutional network for

image captioning that compares favorably to LSTM-based

methods.

Our key contributions are: a) A convolutional (CNN-

based) image captioning method that shows comparable

performance to an LSTM based method [16] (Section 6.2,

Table 1 and Table 2); b) Improved performance with a CNN

model that uses attention mechanism to leverage spatial im-

age features. With attention, we outperform the attention

baseline [39] and qualitatively demonstrate that our method

finds salient objects in the image. (Figure 5, Table 2); c)

We analyze the characteristics of CNN and LSTM nets and

provide useful insights such as – CNNs produce more en-

tropy (useful for diverse predictions), better classification

accuracy, and do not suffer from vanishing gradients (Sec-

tion 6 and Figure 6, 7 and 8). We evaluate our architecture

on the challenging MSCOCO [18] dataset, and compare it

to an LSTM [16] and an LSTM+Attention baseline [39].

The paper is organized as follows: Section 2 gives our

notation, Section 3 reviews the RNN based approach, Sec-

tion 4 describes our convolutional method, Section 5 gives

the details of CNN architecture, Section 6 contains results

and Section 7 discusses related work.

2. Problem Setup and Notation

For image captioning, we are given an input image I and

we want to generate a sequence of words y = (y1, . . . , yN ).
The possible words yi at time-step i are subsumed in a dis-

crete set Y of options. Its size, |Y|, easily reaches several
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Figure 1: A sequential RNN powered by an LSTM cell.

At each time step output is conditioned on the previously

generated word, the image is fed at the start only.

thousands. Y contains special tokens that denote a start to-

ken (<S>), an end of sentence token (<E>), and an un-

known token (<UNK>) which refers to all words not in Y .

Given a training set D = {(I, y∗)} which contains pairs

(I, y∗) of input image I and corresponding ground-truth

caption y∗ = (y∗1 , . . . , y
∗

N ), consisting of words y∗i ∈ Y ,

i ∈ {1, . . . , N}, we maximize w.r.t. parameters w, a proba-

bilistic model pw(y1, . . . , yN |I).
A variety of probabilistic models have been considered

(Section 7), from hidden Markov models [40] to recurrent

neural networks.

3. RNN Approach

An illustration of a classical RNN architecture for image

captioning is provided in Figure 1. It consists of three ma-

jor components, all of which contain trainable parameters:

the input word embeddings, the sequential LSTM units con-

taining the memory cell, and the output word embeddings.

Inference. RNNs sequentially predict one word at a time,

from y1 up to yN . At every time-step i, a conditional prob-

ability distribution pi,w(yi|hi, I), which depends on param-

eters w, is predicted (see top of Figure 1). For modeling

pi,w(yi|hi, I), in the spirit of auto-regressive models, the

dependence of word yi on its ancestors y<i is implicitly cap-

tured by a hidden representation hi (see arrows in Figure 1).

Formally, the probability is computed via

pi,w(yi|hi, I) = gw(yi, hi, I), (1)

where gw can be any differentiable function/deep net. Note,

image captioning techniques usually encode the image into

the hidden representation h0 (Figure 1).

Importantly, RNNs are described by a recurrence rela-

tion which governs computation of the hidden state hi via

hi = fw(hi−1, yi−1, I). (2)

Again, fw can be any differentiable function. For image

captioning, long-short-term-memory (LSTM) [10] nets and

variants thereof based on gated recurrent units (GRU) [6],

or forward-backward LSTM nets are used here.

Figure 2: Our convolutional model for image captioning.

We use a feed forward network with masked convolutions.

Unlike RNNs, our model operates over all words in parallel.

Learning. Following classical supervised learning, it is

common to find the parameters w of the word embed-

dings and the LSTM unit by minimizing the negative log-

likelihood of the training data D, i.e., we optimize:

min
w

∑

D

N∑

i=1

− ln pi,w(y
∗

i |hi, I). (3)

To compute the gradient of the objective given in Eq. (3),

we use back-propagation through time (BPTT). BPTT is

necessary due to the recurrence relationship encoded in fw
(Eq. (2)). Note, the gradients of the function fw at time i

depend on the gradients obtained in successive time-steps.

To avoid more complicated gradient flows through the

recurrence relationship, during training, it is common to use

hi = fw(hi−1, y
∗

i−1, I), (4)

rather than the form provided in Eq. (2). I.e., during train-

ing, when computing the latent representation hi, we use the

ground-truth symbol y∗i−1 rather than the prediction yi−1.

This is termed as teacher forcing.

Although highly successful, RNN-based techniques suf-

fer from some drawbacks. First, the training process is in-

herently sequential for a particular image-caption pair. This

results from unrolling the recurrent relation in time. Hence,

the output at time-step i has a true dependency on the output

at i− 1. Secondly, as we will show in our results for image

captioning, RNNs tend to produce lower classification ac-

curacy (Figure 6), and, despite LSTM units, they still suffer

to some degree from vanishing gradients (Figure 8).

Next, we describe an alternative convolutional approach

to image captioning which attempts to overcome some of

these challenges.

4. Convolutional Approach

Our model is based on the convolutional machine trans-

lation model used in [9]. Figure 2 provides an overview of
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Figure 3: Our convolutional architecture for image captioning. It has four components: (i) Input embedding layer, (ii) Image

embedding, (iii) Convolutional module and (iv) Output embedding layer. Details of each component are in Section 5.

our feed-forward convolutional (or CNN-based) approach

for image captioning. As the figure illustrates, our tech-

nique contains three main components similar to the RNN

technique. The first and the last components are in-

put/output word embeddings respectively, in both cases.

However, while the middle component contains LSTM or

GRU units in the RNN case, masked convolutions are em-

ployed in our CNN-based approach. This component, un-

like the RNN, is feed-forward without any recurrent func-

tion. We briefly review inference and learning of our model.

Inference. In contrast to the RNN formulation, where the

probabilistic model is unrolled in time via the recurrence

relation given in Eq. (2), we use a simple feed-forward deep

net, fw, for modeling pi,w(yi|I). Prediction of a word yi
relies on past words y<i or their representations:

pi,w(yi|y<i, I) = fw(yi, y<i, I). (5)

To disallow convolution operations from using informa-

tion of future word tokens, we use masked convolutional

layers that operate only on ‘past’ data [9, 34].

Inference can now be performed sequentially, one word

at a time. Hence, inference begins with the start token <S>

and employs a feed-forward pass to generate p1,w(y1|∅, I).
Afterwards, y1 ∼ p1,w(y1|∅, I) is sampled. Note that it

is possible to retrieve the maximizing argument or to per-

form beam search. After sampling, y1 is fed back into the

feed-forward network to generate subsequent words y2, etc.

Inference continues until the end token is predicted, or until

we reach a fixed upper bound of N steps.

Learning. Similar to RNN training, we use ground-truth

y∗<i for past words, instead of using the predicted word. For

prediction of word probability pi,w(yi|y
∗

<i, I), the consid-

ered feed-forward network is fw(yi, y
∗

<i, I) and we opti-

mize for parameters w using a likelihood similar to Eq. (3).

Since there are no recurrent connections and all ground-

truth words are available at any given time-step i, our CNN

based model can be trained in parallel for all words. In Sec-

tion 5, we describe our convolutional architecture in detail.

5. Architecture

In Figure 3, we show a training iteration of our con-

volutional architecture with input (ground-truth) words

{y∗1 , . . . , y
∗

5} = { a, woman, is, playing, tennis }. Addi-

tionally, we add the start token <S> at the beginning, and

also the end of sentence token <E>.

These words are processed as follows: (1) they pass

through an input embedding layer; (2) they are combined

with the image embedding; (3) they are processed by the

CNN module; and (4) the output embedding (or classifi-

cation) layer produces output probability distributions (see

{p1, . . . , p6} at top of Figure 3). Each of the four aforemen-

tioned steps is discussed below.

Input Embedding. For consistency with the RNN/LSTM

baseline, we train (from scratch) an embedding layer over

one-hot encoded input words. We use |Y| = 9221 and we

embed the input words to 512-dimensional vectors, follow-

ing the baseline. This embedding is concatenated to the im-

age embedding (discussed next) and provided as input to the
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Method
MSCOCO Val Set MSCOCO Test Set

B1 B2 B3 B4 M R C S B1 B2 B3 B4 M R C S

Baselines:

LSTM [16] .710 .535 .389 .281 .244 .521 .899 .169 .713 .541 .404 .303 .247 .525 .912 .172

LSTM + Attn (Soft) [39] - - - - - - - - .707 .492 .344 .243 .239 - - -

LSTM + Attn (Hard) [39] - - - - - - - - .718 .504 .357 .250 .230 - - -

Our CNN:

CNN .693 .518 .374 .268 .238 .511 .855 .167 .695 .521 .380 .276 .241 .514 .881 .171

CNN + Weight Norm. .702 .528 .384 .279 .242 .517 .881 .169 .699 .525 .382 .276 .241 .516 .878 .170

CNN +WN +Dropout .707 .532 .386 .278 .242 .517 .883 .171 .704 .532 .389 .283 .243 .520 .904 .173

CNN +WN +Dropout

+Residual
.706 .532 .389 .284 .244 .519 .899 .173 .704 .532 .389 .284 .244 .520 .906 .175

CNN +WN +Drop.

+Res. +Attn
.710 .537 .391 .281 .241 .519 .890 .171 .711 .538 .394 .287 .244 .522 .912 .175

Table 1: Comparison of different methods on standard evaluation metrics: BLEU-1 (B1), BLEU-2 (B2), BLEU-3 (B3),

BLEU-4 (B4), METEOR (M), ROUGE (R), CIDEr (C) and SPICE (S). Our CNN with attention (attn) achieves comparable

performance (equal CIDEr scores on MSCOCO test set) to [16] and outperforms LSTM+Attention baseline of [39]. We start

with a CNN comprising masked convolutions and fully connected layers only. Then, we add weight normalization, dropout,

residual connections and attention incrementally and show that performance improves with every addition. Here, for CNN

and [16] we use the model that obtains the best CIDEr scores on val-set (over 30 epochs) and report its scores for the test set.

For [39], we report all the available metrics for soft/hard attention from their paper (missing numbers are marked by -).

feed-forward CNN module.

Image Embedding. Image features for image I are ob-

tained from the fc7 layer of the VGG16 network [31]. The

VGG16 is pre-trained on the ImageNet dataset [27]. We ap-

ply dropout, ReLU on the fc7 and use a linear layer to obtain

a 512-dimensional embedding. This is consistent with the

image features used in the baseline LSTM method [16].

CNN Module. The CNN module operates on the combined

input and image embedding vector. It performs three lay-

ers of masked convolutions. Consistent with [9, 34], we use

gated linear unit (or GLU) activations for our conv layers.

However, we did not observe a significant change in perfor-

mance when using the standard ReLU activation. The fea-

ture dimension after convolution layer and GLU is 512. We

add weight normalization, residual connections and dropout

in these layers as they help improve performance (Table 1).

Our masked convolutions have a receptive field of 5 words

in the past. We set N (steps or max-sentence length) to 15
for both CNN/RNN. The output of the CNN module after

three layers is a 512-dimensional vector for each word.

Classification Layer. We use a linear layer to encode the

512-dimensional vectors obtained from the CNN module

into a 256-dimensional representation per word. Then, we

upsample this vector to a |Y|-dimensional activation via a

fully connected layer, and pass it through a softmax to ob-

tain the output word probabilities pi,w(yi|y<i, I).

Training. We use a cross-entropy loss on the probabilities

pi,w(yi|y<i, I) to train the CNN module and the embedding

layers. Consistent with [16], we start to fine-tune VGG16

along with our network after 8 training epochs. We optimize

with RMSProp using an initial learning rate of 5e−5 and

decay it by multiplying with a factor of .1 every 15 epochs.

All methods were trained for 30 epochs and we evaluate the

metrics (in Section 6.2) on the validation set, after every

epoch, to pick the best model for all methods.

5.1. Attention

In addition to the aforementioned CNN architecture, we

also experiment with an attention mechanism, since atten-

tion benefited [9, 35]. We form an attended image vector of

dimension 512 and add it to the word embedding at every

layer (shown with red, green and blue arrows in Figure 3).

We compute separate attention parameters and a separate at-

tended vector for every word. To obtain this attended vector

we predict 7×7 attention parameters, over the VGG16 max-

pooled conv-5 features of dimensions 7× 7× 512 [31]. We

use attention on all three masked convolution layers in our

CNN module. We continue to use the fc7 image embedding

discussed above.

To discuss attention more formally, let dj denote the

embedding of word j in the conv module (i.e., its activa-

tions after GLU shown in Figure 3), let W refer to a linear

layer applied to dj , let ci denote a 512-dimensional spa-

tial conv-5 feature at location i (in 7 × 7 feature map) and

let aij indicate the attention parameters. With this nota-

tion at hand, the attention parameter aij is computed via

aij =
exp(W (dj)

T ci)∑

i

exp(W (dj)T ci)
, and the attended image vector for

word j is obtained from
∑
i

aijci. Note that [39] uses the

LSTM hidden state to compute the attention parameters.

Instead, we compute attention parameters using the conv-

layer activations. This form of attention mechanism was

first proposed in [4].
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Method
Beam Size=2 Beam Size=3 Beam Size=4

B1 B2 B3 B4 M R C S B1 B2 B3 B4 M R C S B1 B2 B3 B4 M R C S

LSTM [16] .715 .545 .407 .304 .248 .526 .940 .178 .715 .544 .409 .310 .249 .528 .946 .178 .714 .543 .410 .311 .250 .529 .951 .179

CNN .712 .541 .404 .303 .248 .527 .937 .178 .709 .538 .403 .303 .247 .525 .929 .176 .706 .533 .400 .302 .247 .522 .925 .175

CNN+Attn .718 .549 .411 .306 .248 .528 .942 .177 .722 .553 .418 .316 .250 .531 .952 .179 .718 .550 .415 .314 .249 .528 .951 .179

Table 2: Comparison of different methods (metrics same as Table 1) with beam search on the output word probabilities.

Our results show that with beam size= 3 our CNN outperforms LSTM [16] on all metrics. Note, compared to Table 1, the

performance improves with beam search. We use the MS COCO test split for this experiment. For beam search, we pick one

caption with maximum log probability (sum of log probability of words) from the top-k beams and report the above metrics

for it. Beam = 1 is same as the test set results reported in Table 1.

c5 (Beam = 1) c40 (Beam = 1)

B1 B2 B3 B4 M R C B1 B2 B3 B4 M R C

LSTM .704 .528 .384 .278 .241 .517 .876 .880 .778 .656 .537 .321 .655 .898

CNN+Attn .708 .534 .389 .280 .241 .517 .872 .883 .786 .667 .545 .321 .657 .893

c5 (Beam = 3) c40 (Beam = 3)

B1 B2 B3 B4 M R C B1 B2 B3 B4 M R C

LSTM .710 .537 .399 .299 .246 .523 .904 .889 .794 .681 .570 .334 .671 .912

CNN+Attn .715 .545 .408 .304 .246 .525 .910 .896 .805 .694 .582 .333 .673 .914

Table 3: Above, we show that CNN outperforms LSTM on BLEU metrics and gives comparable scores to LSTM on other

metrics for test split on MSCOCO evaluation server. Note, this hidden test split of 40, 775 images on the evaluation server is

different from the 5000 images test split used in Tables 1 and 2. We compare our CNN+Attn method to the LSTM baseline

(metrics same as Table 1). The c5, c40 scores above are computed with 5, 40 reference captions per test image respectively.

We show comparison results for beam size 1 and beam size 3 for both the methods.

6. Results and Analysis

In this section, we demonstrate the following results:

• Our convolutional (or CNN) approach performs on par

with LSTM (or RNN) based approaches on image cap-

tioning metrics (Table 1). Our performance improves

with beam search (Table 2).

• Adding attention to our CNN gives improvements

on metrics and we outperform the LSTM+Attn base-

line [39] (Table 1). Figure 5 shows that with attention

we identify salient objects for the given image.

• We analyze the CNN and RNN approaches and show

that CNN produces (1) more entropy in the output

probability distribution, (2) gives better word predic-

tion accuracy (Figure 6), and (3) does not suffer as

much from vanishing gradients (Figure 8).

• In Table 4, we show that a CNN with 1.5× more pa-

rameters can be trained in comparable time. This is

because we avoid the sequential processing of RNNs.

The details of our experimental setup and these results

are discussed below. The PyTorch implementation of our

convolutional image captioning is available on github.1

1https://github.com/aditya12agd5/convcap

6.1. Dataset and Baselines

We conducted experiments on the MS COCO

dataset [18]. Our train/val/test splits follow [16, 39].

We use 113287 training images, 5000 images for valida-

tion, and 5000 for testing. Henceforth, we will refer to

our approach as CNN, and our approach with the attention

(Section 5.1) as CNN+Attn. We use the following naming

convention for our baselines: [16] is denoted by LSTM and

[39] is referred to as LSTM+Attn.

6.2. Comparison on Image Captioning Metrics

We consider multiple conventional evaluation metrics,

BLEU-1, BLEU-2, BLEU-3, BLEU-4 [23], METEOR [8],

ROUGE [17], CIDEr [36] and SPICE [1]. See Table 1 for

the performance on all these metrics for our val/test splits.

Note that we obtain comparable CIDEr scores and better

SPICE scores than LSTM on test set with our CNN+Attn

method. Our BLEU, METEOR, ROUGE scores are less

than the LSTM ones, but the margin is very small. Our

CNN+Attn method outperforms the LSTM+Attn baseline

on the test set for all metrics reported in [39]. For Table 1,

we form the caption by choosing the word with maximum

probability at each step. The metrics are reported for this

one caption formed by choosing the maximum probability

word at every step.

Instead of sampling the maximum probability words, we

also perform beam search with different beam sizes. We
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LSTM: a man and a woman

in a suit and tie

CNN: a black and white photo

of a man and woman in a suit

GT: A man sitting next to a

woman while wearing a suit.

LSTM: a cat is laying

down on a bed

CNN: a polar bear is drinking

water from a white bowl

GT: A white polar bear laying

on top of a pool of water

LSTM: a bear is standing

on a rock in a zoo

CNN: two bears are walking

on a rock in the zoo

GT: two bears touching

noses standing on rocks

LSTM: a box of donuts with

a variety of toppings

CNN: a box of doughnuts with

sprinkles and a sign

GT:A bunch of doughnuts

with sprinkles on them

LSTM: a dog and a

dog in a field

CNN: two cows are

standing in a field of grass

GT: A dog and a horse

standing near each other

Figure 4: Captions generated by our CNN are compared to the LSTM and ground-truth caption. In the examples above our

CNN can describe things like black and white photo, polar bear/white bowl, number of bears, sign in the donut image which

LSTM fails to do. The last image (rightmost) shows a failure case for CNN. Typically we observe that CNN and LSTM

captions are of similar quality. We use our CNN+Attn method (Section 5.1) and the MSCOCO test split for these results.

perform beam search for both LSTM and our CNN meth-

ods. With beam search, we pick the maximum probability

caption (sum of log word probability in the beam). The re-

sults reported in Table 2 demonstrate that with beam size

of 3 we achieve better BLEU, ROUGE, CIDEr scores than

LSTM and equal METEOR and SPICE scores.

In Table 3, we show the results obtained on the

MSCOCO evaluation server. These results are computed

over a test set of 40, 775 images for which ground-truth

is not publicly available. We demonstrate that our method

does better on all BLEU metrics, especially with beam size

3, we perform better than the LSTM based method.

Comparison to recent state-of-the-art. For better perfor-

mance on the MSCOCO leader board we use ResNet fea-

tures instead of VGG-16. Table 5 shows ResNet boosts

our performance on the MSCOCO split (cf. Table 1) and

we compare it to more recent methods [2] and [41]. We are

almost as good as [41]. If we had access to their pre-trained

attribute network, we may outperform it. [2] uses a sophisti-

cated attention mechanism, which can be incorporated into

our architecture as part of future work.

6.3. Qualitative Comparison

See Figure 4 for a qualitative comparison of captions

generated by CNN and LSTM. In Figure 5, we overlay the

attention parameters on the image for each word prediction.

Note that our attention parameters are 7 × 7 as described

in Section 5.1 and therefore the image is divided in a 7× 7
grid. These results show that our attention focuses on salient

objects such as man, broccoli, ocean, bench, etc., when pre-

dicting these respective words. Our results also show that

the attention is uniform when predicting words such as a,

of, on, etc., which are unrelated to the image content.

6.4. Analysis of CNN and RNN

In Table 4 we report the number of trainable parameters

and the training time per epoch. CNNs with ∼ 1.5× param-

eters can be trained in comparable time.

Table 1, 2 and 3 show that we obtain comparable per-

formance from both CNN and RNN/LSTM-based methods.

Encouraged by this result, we analyze the characteristics of

these two methods. For fair comparison, we use our CNN

without attention, since the RNN method does not use spa-

tial image features. First, we compare the negative log-

likelihoods (or cross-entropy loss) on a subset of train and

the entire val set (see Figure 6 (a)). We find that the loss

is higher for CNN than RNN. This is because CNNs are

being penalized for producing less-peaky word probability

distributions. To evaluate this further, we plot the entropy

of the output probability distribution (Figure 6 (b)) and the

classification accuracy, i.e., the number of times the max-

imum probability word is the ground truth (Figure 6 (c)).

These plots show that RNNs are good at producing low en-

tropy and therefore peaky word probability distributions at

the output, while CNNs produce less peaky distributions

(and high entropy). Less peaky distributions are not nec-

essarily bad, particularly for a problem like image caption-

ing, where multiple word predictions are possible. Despite,

less peaky distributions, Figure 6 (c) shows that the maxi-

mum probability word is correct more often on the train set

and it is within approx. 1% accuracy on the val set. Note,

cross-entropy loss is a proxy for the classification accuracy

and we show that CNNs have higher cross entropy loss, but

their classification accuracy is good. Less peaky posterior

distributions provided by a CNN may be indicative of CNNs

being more capable of predicting diverse captions.

Diversity. In Figure 7, we plot the unique words and 2/4-

grams predicted at every word position or time-step. The

plot is for word positions 1 to 13. This plot shows that for

the CNN we have higher unique words for more word po-

sitions and consistently higher 2/4-grams than LSTM. This

supports our analysis that CNNs have less peaky (or one-

hot) posteriors and therefore can produce more diversity.

For these diversity experiments, we perform a beam search

with beam size 10 and use all the top 10 beams.

Vanishing Gradient. Since RNNs/LSTMs are known

5566



CNN: a plate of food with

broccoli and rice

GT: A BBQ steak on a plate

next to mashed potatoes

and mixed vegetables.

a plate of food with broccoli ... rice

CNN: a man sitting on a

bench overlooking the ocean

GT: A man sitting on top

of a bench near the ocean

a man sitting on a bench ... ocean

Figure 5: Attention parameters are overlayed on the image. These results show that we focus on salient regions as broccoli,

bench when predicting these words and that the attention is uniform when predicting words such as a, of and on.

Method # Parameters Train time per epoch

LSTM [16] 13M 1529s

Our CNN 19M 1585s

Our CNN+Attn 20M 1620s

Table 4: We train a CNN faster per parameter than the

LSTM. This is because CNN is not sequential like the

LSTM. We use PyTorch implementation of [16] and our

CNN-based method, and the timings are obtained on Nvidia

Titan X GPU.
Method B1 B2 B3 B4 M R C

Our Resnet-101 .72 .549 .403 .293 .248 .527 .945

Our Resnet-152 .725 .555 .41 .299 .251 .532 .972

LSTM Resnet-152 .724 .552 .405 .294 .251 .532 .961

[41] Resnet-152 .731 .564 .426 .321 .252 .537 .984

[2] Resnet-101 .772 - - .362 .27 .564 1.13

Table 5: Comparison to recent state-of-the-art with Resnet.

to suffer from vanishing gradient problems, in Fig-

ure 8, we plot the gradient norm at the output embed-

ding/classification layer and the gradient norm at the in-

put embedding layer. The values are averaged over 1

training epoch. These plots show that the gradients in

RNN/LSTM diminishes more than the ones in CNNs.

Hence RNN/LSTM nets are more likely to suffer from van-

ishing gradients, which stalls learning. If learning is stalled,

for larger datasets than the ones we currently use for image

captioning, the performance of RNN and CNN may differ

significantly.

7. Related Work

Describing the content of an observed image is related

to a large variety of tasks. Object detection [25, 26, 42] and

semantic segmentation [21, 29, 12] can be used to obtain

a list of objects. Detection of co-occurrence patterns and

relationships between objects can help to form sentences.

Generating sentences by taking advantage of surrogate tasks

is then a multi-step approach which is beneficial for inter-

pretability but lacks a joint objective that can be trained end-

to-end.

Early techniques formulate image captioning as a re-

trieval problem and find the best fitting description from a

pool of possible captions [11, 15, 22, 32]. Those techniques

are built upon the idea that the fitness between available tex-

tual descriptions and images can be learned. While this per-

mits end-to-end training, matching image descriptors to a

sufficiently large pool of captions is computationally expen-

sive. In addition, constructing a database of captions that is

sufficient for describing a reasonably large fraction of im-

ages seems prohibitive.

To address this issue, recurrent neural nets (RNNs) or

probabilistic models like Markov chains, which decompose

the space of a caption into a product space of individual

words are compelling. The success of RNNs for image cap-

tioning is based on a key component, i.e., the Long-Short-

Term-Memory (LSTM) [10] or recent alternatives like the

gated recurrent unit (GRU) [6]. These components capture

long-term dependencies by adding a memory cell, and they

address the vanishing or exploding gradient issue of classi-

cal RNNs to some degree.

Based on this success, [19] train a vision (or image)

CNN and a language RNN that shares a joint embedding

layer. [37] jointly train a vision (or image) CNN with a

language RNN to generate sentences, [39] extends [37]

with additional attention parameters and learns to iden-

tify salient objects for caption generation. [16] use a bi-

directional RNN along with a structured loss function in a

shared vision-language space. [41] use an additional net-

work trained on coco-attributes, and [2, 28] develop an at-

tention mechanism for captioning. These recurrent neural

nets have found widespread use for captioning because they
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(a) CNN gives higher cross-entropy loss on

train/val set of MSCOCO compared to LSTM.

But, as we show in (c), CNN obtains better %

word accuracy than LSTM. Therefore, it as-

signs max. probability to correct word. The

CNN loss is high because its output probability

distributions have more entropy than LSTM.
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(b) The entropy of the softmax layer (or pos-

terior probability distribution) of our CNN is

higher than the LSTM. For ambiguous prob-

lems such as image captioning, it is desirable to

have a less peaky (multi-modal) posterior (like

ours) capable of producing multiple captions,

rather than a peaky one (like LSTM).
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(c) Even though the CNN training loss is

higher than LSTM, its word prediction accu-

racy is better than LSTM on train set. On val

set, the difference in accuracy between LSTM

and CNN is small (only ∼ 1%).

Figure 6: In the figures above we plot (a) Cross-entropy loss, (b) Entropy of the softmax layer, (c) Word accuracy on train/val

set. Blue line denotes our CNN and red denotes the LSTM based method [16]. Solid/dotted lines denote train/val set of

MSCOCO respectively. For train set, we randomly sample 10k images and use the entire val set.
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(b) Unique 2-grams
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Figure 7: We perform beam search of beam size 10 with our

best performing LSTM and CNN models. We use the top

10 beams to plot the unique words, 2/4-grams predicted for

every word position. CNN (blue) produces higher unique

words, 2/4-grams at more positions, and therefore more di-

versity, than LSTM (red).

have been shown to produce remarkably fitting descriptions.

Despite the fact that the above RNNs based on

LSTM/GRU deliver remarkable results, e.g., for image cap-

tioning, their training procedure is all but trivial. For in-

stance, while the forward pass during training can be in par-

allel across samples, it is inherently sequential in time, lim-

iting the parallelism. To address this issue, [34] proposed

a PixelCNN architecture for conditional image generation

that approximates an RNN. [9] and [35] demonstrate that

convolutional architectures with attention achieve state-of-

the-art performance on machine translation tasks. In spirit

similar is our approach for image captioning, which is con-

volutional but addresses a different task.

8. Conclusion

We discussed a convolutional approach for image

captioning and showed that it performs on par with existing

LSTM techniques. We also analyzed the differences

between RNN based learning and our method, and found
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Figure 8: Here, we plot the gradient norm at the input em-

bedding (dotted line) and output embedding/classification

(solid line) layer. The gradient to the first layer of LSTM

decays by a factor ∼ 100 in contrast to our CNN, where it

decays by a factor of ∼ 10. There is prior evidence in litera-

ture that unlike CNNs, RNN/LSTMs suffer from vanishing

gradients [24, 33].

gradients of lower magnitude as well as overly confident

predictions to be existing LSTM network concerns.
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