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Abstract

Deep Neural Networks (DNNs) have been demonstrated

to perform exceptionally well on most recognition tasks

such as image classification and segmentation. However,

they have also been shown to be vulnerable to adversarial

examples. This phenomenon has recently attracted a lot of

attention but it has not been extensively studied on multi-

ple, large-scale datasets and complex tasks such as seman-

tic segmentation which often require more specialised net-

works with additional components such as CRFs, dilated

convolutions, skip-connections and multiscale processing.

In this paper, we present what to our knowledge is the

first rigorous evaluation of adversarial attacks on mod-

ern semantic segmentation models, using two large-scale

datasets. We analyse the effect of different network architec-

tures, model capacity and multiscale processing, and show

that many observations made on the task of classification do

not always transfer to this more complex task. Furthermore,

we show how mean-field inference in deep structured mod-

els and multiscale processing naturally implement recently

proposed adversarial defenses. Our observations will aid

future efforts in understanding and defending against ad-

versarial examples. Moreover, in the shorter term, we show

which segmentation models should currently be preferred in

safety-critical applications due to their inherent robustness.

1. Introduction

Computer vision has progressed to the point where Deep

Neural Network (DNN) models for most recognition tasks

such as classification or segmentation have become a widely

available commodity. State-of-the-art performance on var-

ious datasets has increased at an unprecedented pace, and

as a result, these models are now being deployed in more

and more complex systems. However, despite DNNs per-

forming exceptionally well in absolute performance scores,

they have also been shown to be vulnerable to adversar-

ial examples – images which are classified incorrectly (of-

ten with high confidence), although there is only a minimal

perceptual difference with correctly classified inputs [59].

This raises doubts about DNNs being used in safety-critical

applications such as driverless vehicles [36] or medical di-

agnosis [21] since the networks could inexplicably classify

a natural input incorrectly although it is almost identical to

examples it has classified correctly before (Fig. 1). More-

over, it allows the possibility of malicious agents attacking

systems that use neural networks [40, 53, 57, 23]. Hence,

the robustness of networks perturbed by adversarial noise

may be as important as the predictive accuracy on clean in-

puts. And if multiple models achieve comparable perfor-

mance, we should always consider deploying the one which

is inherently most robust to adversarial examples in (safety-

critical) production settings.

This phenomenon has recently attracted a lot of attention

and numerous strategies have been proposed to train DNNs

to be more robust to adversarial examples [29, 41, 55, 48].

However, these defenses are not universal; they have fre-

quently been found to be vulnerable to other types of at-

tacks [11, 9, 10, 34] and/or come at the cost of perfor-

mance penalties on clean inputs [12, 31, 48]. To the best of

our knowledge, adversarial examples have not been exten-

sively analysed beyond standard image classification mod-

els, and often on small datasets such as MNIST or CIFAR10

[48, 31, 55]. Hence, the vulnerability of modern DNNs to

adversarial attacks on more complex tasks such as semantic

segmentation in the context of real-world datasets covering

different domains remains unclear.

In this paper, we present what to our knowledge is the

first rigorous evaluation of the robustness of semantic seg-

mentation models to adversarial attacks. We focus on se-

mantic segmentation, since it is a significantly more com-

plex task than image classification [5]. This has also been

witnessed by the fact that state-of-the-art semantic segmen-

tation models are typically based on standard image classi-

fication architectures [39, 58, 33], extended by additional

components such as dilated convolutions [14, 65], spe-

cialised pooling [15, 67], skip-connections [45, 7], Condi-

tional Random Fields (CRFs) [68, 1] and/or multiscale pro-

cessing [15, 13] whose impact on the robustness has never

been thoroughly studied.

First, we analyse the robustness of various DNN ar-
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(a) Input image (perturbed half on right) (b) Ground Truth (c) PSPNet [67]

(d) DilatedNet [65] (e) ICNet [66] (f) CRF-RNN [68]

Figure 1: The left hand side shows the original image, and the right the output when modified with imperceptible adversarial

perturbations. There is a large variance in how each network’s performance is degraded, even though the perturbations are

created individually for each network with the same ℓ∞ norm of 4. We rigorously analyse a diverse range of state-of-the-art

segmentation networks, observing how architectural properties such as residual connections, multiscale processing and CRFs

all influence adversarial robustness. These observations will help future efforts to understand and defend against adversarial

examples, whilst in the short term they suggest which networks should currently be preferred in safety-critical applications.

chitectures to adversarial examples and show that the

Deeplab v2 network [15] is significantly more robust than

approaches which achieve better prediction scores on pub-

lic benchmarks [67]. Second, we show that adversarial ex-

amples are less effective when processed at different scales.

Furthermore, multiscale networks are more robust to multi-

ple different attacks and white-box attacks on them produce

more transferable perturbations. Third, we show that struc-

tured prediction models have a similar effect as “gradient-

masking” defense strategies [54, 55]. As such, mean field

CRF inference increases robustness to untargeted adversar-

ial attacks, but in contrast to the gradient masking defense, it

also improves the network’s predictive accuracy. Our fourth

contribution shows that some widely accepted observations

about robustness and model size or iterative attacks, which

were made in the context of image classification [41, 48]

do not transfer to semantic segmentation and different, real-

world datasets. Finally, in contrast to the prior art [41, 44],

our experiments are carried out on two large-scale, real-

world datasets and (most of) our observations remain con-

sistent across them. We believe our findings will facilitate

future efforts in understanding and defending against adver-

sarial examples without compromising predictive accuracy.

2. Adversarial Examples

Adversarial perturbations cause a neural network to

change its original prediction, when added to the original

input x. For a neural network f parametrised by θ that

maps x ∈ R
m to y, a target class from L = {1, 2, . . . , L},

Szegedy et al. [59] defined an adversarial perturbation r as

the solution to the optimisation problem

argmin ‖r‖
2

subject to f(x+ r; θ) = yt, (1)

where yt is the target label of the adversarial example

x
adv = x + r. For clarity of exposition, we consider only

a single label y. This naturally generalises to the case of

semantic segmentation where networks are trained with an

independent cross-entropy loss at each pixel.

Constraining the neural network to output y is difficult to

optimise. Hence, [59] added an additional term to the ob-

jective based on the loss function used to train the network

argmin
r

c ‖r‖
2
+ L(f(x+ r; θ), yt). (2)

Here, L is the loss function between the network predic-

tion and desired target, and c is a positive scalar. Szegedy

et al. [59] solved this using L-BFGS, and [11] and [16]

have proposed further advances using surrogate loss func-

tions. However, this method is computationally very expen-

sive as it requires several minutes to produce a single attack.

Hence, the following methods are used in practice:

Fast Gradient Sign Method (FGSM) [29]. FGSM pro-

duces adversarial examples by increasing the loss (usually

the cross-entropy) of the network on the input x as

x
adv = x+ ǫ · sign(∇xL(f(x; θ), y)). (3)

This is a single-step, untargeted attack, which approxi-

mately minimises the ℓ∞ norm of the perturbation bounded

by the parameter ǫ.

889



FGSM ll [41]. This single-step attack encourages the net-

work to classify the adversarial example as yt by assigning

x
adv = x− ǫ · sign(∇xL(f(x; θ), yt)). (4)

We follow the convention of choosing the target class as the

least likely class predicted by the network [41].

Iterative FGSM [41, 48]. This attack extends FGSM by

applying it in an iterative manner, which increases the

chance of fooling the original network. Using the subscript

to denote the iteration number, this can be written as

x
adv

0 = x (5)

x
adv

t+1 = clip(xadv

t
+ α · sign(∇

x
adv

t

L(f(xadv

t
; θ), y)), ǫ)

The clip(a, ǫ) function makes sure that each element ai of

a is in the range [ai − ǫ, ai + ǫ]. This ensures that the max-

norm constraint of each component of the perturbation r,

being no greater than ǫ is maintained. It thus corresponds

to projected gradient descent [48], with step-size α, into an

ℓ∞ ball of radius ǫ around the input x.

Iterative FGSM ll [41]. This is a stronger version of

FGSM ll. This attack sets the target to be the least likely

class predicted by the network, yll, in each iteration

x
adv

t+1 = clip(xadv

t
− α · sign(∇

x
adv

t

L(f(xadv

t
; θ), yll)), ǫ).

(6)

The aforementioned attacks were all proposed in the con-

text of image classification, but they have been adapted to

the problems of semantic segmentation [26, 16], object de-

tection [62] and visual question answering [64].

3. Adversarial Defenses and Evaluations

Liu et al. [44] have thoroughly evaluated the transferabil-

ity of adversarial examples generated on one network and

tested on another unknown model, i.e. only as “black-box”

attacks [59, 54, 50, 51]. Kurakin et al. [41], contrastingly,

studied the adversarial training defense, which generates

adversarial examples online and adds them into the training

set [29, 48, 60]. They found that training with adversarial

examples generated by single-step methods conferred ro-

bustness to other single-step attacks with negligible perfor-

mance difference to normally trained networks on clean in-

puts. However, the adversarially trained network was still as

vulnerable to iterative attacks as standard models. Madry et

al. [48], conversely, found robustness to iterative attacks by

adversarial training with them. However, this was only on

the small MNIST dataset. The defense was not effective on

CIFAR-10, underlining the importance of testing on multi-

ple datasets. Tramer et al. [60] also found that adversarially

trained models were still susceptible to black-box, single-

step attacks generated from other networks. Other adversar-

ial defenses based on detecting the perturbation in the input

[49, 30, 25, 63] have also all been subverted [10, 34, 9].

Currently, no effective defense to all adversarial attacks

exist. This motivates us, for the first time to our knowledge,

to study the properties of state-of-the-art segmentation net-

works and how they affect robustness to various adversarial

attacks. Previous evaluations have only considered standard

classification networks (Inception in [41], and GoogleNet,

VGG and ResNet in [44]). We consider the more com-

plex task of semantic segmentation, and evaluate eight dif-

ferent architectures, some of them with multiple classifica-

tion backbones, and show that some features of semantic

segmentation models (such as CRFs and multi-scale pro-

cessing) naturally implement recently proposed adversarial

defenses. Moreover, our evaluation is carried out on two

large-scale datasets instead of only ImageNet as [41, 44].

This allows us to show that not all previously observed em-

pirical results on classification transfer to segmentation.

The conclusions from our evaluations may thus aid fu-

ture efforts to develop defenses to adversarial attacks that

preserve predictive accuracy. Moreover, our results sug-

gests which state-of-the-art models for semantic segmen-

tation should currently be preferred in (safety-critical) set-

tings where both accuracy and robustness are a priority.

4. Experimental Set-up

We describe the datasets, DNN models, adversarial at-

tacks and evaluation metrics used for our evaluation in this

section. Exhaustive details are included in the supplemen-

tary. We will publicly release our raw experimental data,

evaluation code and models to aid reproducibility.

Datasets. We use the Pascal VOC [22] and Cityscapes

[18] validation sets, the two most widely used semantic seg-

mentation benchmarks. Pascal VOC consists of internet-

images labelled with 21 different classes. The reduced

validation [68, 45] set contains 346 images, and the train-

ing set has about 70000 images when combined with addi-

tional annotations from [32] and [43]. Cityscapes consists

of road-scenes captured from car-mounted cameras and has

19 classes. The validation set has 500 images, and the train-

ing set totals about 23000 images. As this dataset provides

high-resolution imagery (2048×1024 pixels) which require

too much memory for some models, we have resized all im-

ages to 1024× 512 when evaluating.

Models. We use a wide variety of current or previous

state-of-the-art models, ranging from lightweight networks

suitable for embedded applications to complex models

which explicitly enforce structural constraints. Whenever

possible, we have used publicly available code or trained
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models. The models we had to retrain achieve similar per-

formance to the ones trained by the original authors.

We used the public models of CRF-RNN [68], Dilated-

Net [65], PSPNet [67] on Cityscapes, ICNet [67] and Seg-

Net [4]. We retrained FCN [45] and E-Net [56], as well as

Deeplab v2 [15] and PSPNet for VOC as the public models

are trained with the validation set. Our selection of net-

works are based on both VGG [58] and ResNet [33] back-

bones, whilst E-Net and ICNet employ custom architec-

tures for real-time applications whose parameters measure

only 1.5MB and 30.1MB in 32-bit floats, respectively. Fur-

thermore, the models we evaluate use a variety of unique

approaches including dilated convolutions [65, 15], skip-

connections [45], specialised pooling [67, 15], encoder-

decoder architecture [4, 56], multiscale processing [15] and

CRFs [68]. In all our experiments, we evaluate the model

in the same manner it was trained – CRF post-processing

or multiscale ensembling is not performed unless the net-

work incorporated CRFs [68] or multiscale averaging [15]

as network layers whilst training.

Adversarial attacks. We use the FGSM, FGSM ll, It-

erative FGSM and Iterative FGSM ll attacks described in

Sec. 2. Following [41], we set the number of iterations

of iterative attacks to min(ǫ + 4, ⌈1.25ǫ⌉) and step-size

α = 1 meaning that the value of each pixel is changed

by 1 every iteration. The Iterative FGSM (untargeted) and

FGSM ll (targeted) attacks are only reported in the sup-

plementary as we observed similar trends on FGSM and

Iterative FGSM ll. We evaluated these attacks when set-

ting the ℓ∞ norm of the perturbations ǫ to each value from

{0.25, 0.5, 1, 2, 4, 8, 16, 32}. Even small values such as

ǫ = 0.25 introduce errors among all the models we eval-

uated. The maximum value of ǫ was chosen as 32 since the

perturbation is conspicuous at this point. Qualitative exam-

ples of these attacks are shown in the supplementary.

Evaluation metric. The Intersection over Union (IoU) is

the primary metric used in evaluating semantic segmenta-

tion [22, 18]. However, as the accuracy of each model

varies, we adapt the relative metric used by [41] for image

classification and measure adversarial robustness using the

IoU Ratio – the ratio of the network’s IoU on adversarial

examples to that on clean images computed over the entire

dataset. As the relative ranking between models for the IoU

Ratio and absolute IoU is typically the same, we report the

latter only in the supplementary.

5. The robustness of different architectures

We evaluate the robustness of different architectures and

show how our observations regarding model capacity and

single-step attacks do not corroborate with some previous

findings in the context of image classification [41, 48]. Ad-

ditionally, our results also support why JPEG compression

as a pre-processing step mitigates small perturbations [20].

5.1. The robustness of different networks

Fig. 2 shows the robustness of several state-of-the-art

models on the VOC dataset. In general, ResNet-based mod-

els not only achieve higher accuracy on clean inputs but are

also more robust to adversarial inputs. This is particularly

the case for the single-step FGSM attack (Fig. 2a). On the

more effective Iterative FGSM ll attack, the margin between

the most and least robust network is smaller as none of them

perform well (Fig. 2b). However, we note that iterative at-

tacks tend not to transfer to other models [41] (Sec. 6.2).

Thus, they are less useful in practical, black-box attacks.

In particular, we have evaluated the FCN8s [45] and

Deeplab-v2 with ASPP [15] models based on the popu-

lar VGG-16 [58] and ResNet-101 [33] backbones. In both

cases, the ResNet variant shows greater robustness. We also

observe that most of the networks achieve similar scores on

clean inputs. As a result, the relative rankings of models in

Fig. 2 for the IoU Ratio is about the same as their ranking

on clean inputs. Furthermore, the best performing model

on clean inputs, PSPNet [67] is actually less robust than

Deeplab v2 with Multiscale ASPP [15]: For all ǫ values we

tested, the absolute IoU score of Deeplab v2 was higher than

PSPNet. These observations as well as results on FGSM ll

and Iterative FGSM showing that the relative ranking of ro-

bustness for the different networks is similar, are detailed in

the supplementary material.

5.2. Model capacity and residual connections

Madry et al. [48] and Kurakin et al. [41] have studied

the effect of model capacity on adversarial robustness by

changing the number of filters at each DNN layer, since

they used the parameter count as a proxy for model ca-

pacity. Madry et al. [48] observed on MNIST and CIFAR-

10, that networks, trained on clean examples, with a small

number of parameters are the most vulnerable to adversarial

examples. This observation would have serious safety im-

plications on deployment of lightweight models, typically

required by embedded platforms. Instead, we analyse dif-

ferent network structures and show in Fig. 3 that lightweight

networks such as E-Net [56] (only 1.5 MB) and IC-Net [66]

(only 30.1 MB) are affected by adversarial examples simi-

larly as Dilated-Net [65] which has 512.6 MB in parameters

(using 32-bit floats). Dilated-Net is only more robust than

both of these lightweight networks for FGSM and FGSM-ll

with ǫ ≥ 4 (which is also when perturbations become visi-

ble to the naked eye). Note that both E-Net and IC-Net have

custom backbones and heavily use residual connections.

Fig. 3 also shows that adding the “Context” module of

Dilated-Net onto the “Front-end” slightly reduces robust-

ness across all ǫ values on both attacks on Cityscapes. Fig. 2
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(a) Untargeted FGSM attack (b) Targeted Iterative FGSM ll. attack

Figure 2: Adversarial robustness of state-of-the-art models on Pascal VOC. Models based on the ResNet backbone tend to be

more robust. For instance, FCN8s and Deeplab v2 ASPP with a ResNet-101 backbone are more robust than with the VGG

backbone. Moreover, as expected, the Iterative FGSM ll attack is more powerful at fooling networks than single-step FGSM.

Models are ordered by increasing IoU on clean inputs. Results on additional attacks are in the supplementary.

shows that this is observed for most ǫ values on VOC as

well. This is even though the additional parameters of

the “Context” module increases accuracy on clean inputs.

Whilst models with higher capacity may be more resistant

to adversarial attacks, one cannot compare the capacities

of different networks, given that neither the most accurate

network (PSPNet) or the network with the most parameters

(Dilated-Net) are actually the most robust.

5.3. The unexpected effectiveness of single­step
methods on Cityscapes

The single-step FGSM and FGSM ll attacks are signif-

icantly more effective on Cityscapes than on Pascal VOC.

The IoU ratio for FGSM at ǫ = 32 for PSPNet and Dilated

Context is 2.5% and 2.8%, respectively, on Cityscapes. On

Pascal VOC, it is substantially higher at 27.9% and 12.2%.

Single-step methods (which only search in a 1-D subspace

in the space of images) also appear to outperform iterative

methods for high ǫ values on Cityscapes. In contrast, iter-

ative attacks appear about as effective on Cityscapes as on

Pascal VOC, when using the same hyperparameters as [41].

Thus, it may be a dataset property that causes the net-

work to learn weights more susceptible to single-step at-

tacks. Cityscapes has, subjectively, less variability than

VOC and it also labels “stuff” classes [27]. The effect of

the training set on adversarial attacks has not been consid-

ered before, and most prior work used MNIST [59, 29, 48]

or ImageNet [41, 60, 44]. However, [6] and [37], showed

that the test error of an SVM and neural network could re-

spectively be increased by inserting “poisonous” examples

into its training set. Results from the FGSM ll attack, which

shows the same trend as FGSM, are in the supplementary.

5.4. Imperceptible perturbations

With ǫ = 0.25, the perturbation is so small that the RGB

values of the image pixels (assuming integers ∈ [0, 255])

are usually unchanged. Nevertheless, Fig. 2 and 3 show

that the performance of all analysed models were degraded

by at least 9% relative IoU for each attack. The observation

of [20], that lossy JPEG as a pre-processing step helps to

mitigate FGSM for small ǫ is thus not surprising as JPEG

does not entirely preserve these small, high-frequency per-

turbations and the result is also finally rounded to integers.

5.5. Discussion

We have showed that models with residual connections

(ResNet, E-Net, ICNet) are inherently more robust than

chain-like VGG-based networks, even if the number of pa-

rameters of the VGG model is orders of magnitude larger.

Moreover, Dilated-Net, without its “Context” module is

more robust than its more performant, full version. This

is contrary to the observations regarding parameter count of

[48] and [41] who simply increased the number of filters at

each layer. The most robust model was Deeplab v2 with

Multiscale ASPP, outperforming the current state-of-the-art

PSPNet [67], in absolute IoU on adversarial inputs.

We also found that perturbations that do not even change

the image’s integral RGB values still degraded performance

of all models, and that single-step attacks are significantly

more effective on Cityscapes than VOC, achieving as low as

0.8% relative IoU. This was unexpected, given that single-

step methods only search in a one-dimensional subspace,

and raises questions about how the training data of a net-

work affects its decision boundaries. Also, explaining the

effect of residual connections on adversarial robustness re-

mains an open research question. As Deeplab v2 showed a

significant increase in robustness over its single-scale vari-

ant, we analyse the effects of multiscale processing next in

Sec. 6. Thereafter, we study CRFs, a common component

in semantic segmentation models.
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(a) Untargeted FGSM attack (b) Targeted Iterative FGSM ll. attack

Figure 3: Adversarial robustness of state-of-the-art models on the Cityscapes dataset. Contrary to Madry et al. [48], we

observe that lightweight networks such as E-Net [56] and ICNet [66] are often about as robust as Dilated-Net [65] (341×
more parameters than E-Net). Dilated-Net without its “Context” module is slightly more robust than the full network. As

with the VOC dataset, ResNet (PSPNet) architectures are more robust than VGG (Dilated-Net and FCN8). Curiously, the

FGSM attack is more effective than Iterative FGSM ll which computes adversarial examples from a larger search space.

6. Multiscale Processing and Transferability of

Adversarial Examples

Deeplab v2 with Multiscale ASPP was the most robust

model to various attacks in Sec. 5, with a significant dif-

ference to its single-scale variant. In this section, we first

examine the effect of multiscale processing and then relate

our observations to concurrent work.

6.1. Multiscale processing

The Deeplab v2 network processes images at three dif-

ferent resolutions, 50%, 75% and 100% where the weights

are shared among each of the scale branches. The results

from each scale are upsampled to a common resolution,

and then max-pooled such that the most confident predic-

tion at each pixel from each of the scale branches is chosen

[15]. This network is trained in this multiscale manner, al-

though it is possible to perform this multiscale ensembling

as a post-processing step at test-time only [14, 19, 42, 67].

We hypothesise that adversarial attacks, when generated

at a single scale, are no longer as malignant when processed

at another. This is because CNNs are not invariant to scale,

and a range of other transformations [24, 35]. And although

it is possible to generate adversarial attacks from multiple

different scales of the input, these examples may not be as

effective at a single scale, making networks which process

images at multiple scales more robust. We investigate the

transferability of adversarial perturbations generated at one

scale and evaluated at another in Sec. 6.2, and the robust-

ness and transferability of multiscale networks in Sec. 6.3.

Thereafter, we relate our findings to concurrent work.

6.2. The transferability of adversarial examples at
different scales

Table 1 shows results for the FGSM and Iterative FGSM

ll attacks. The diagonals show “white-box” attacks where

the adversarial examples are generated from the attacked

network. These attacks typically result in the greatest per-

formance degradation, as expected. The off-diagonals show

the transferability of perturbations generated from other net-

works. In constrast to Iterative FGSM ll, FGSM attacks

transfer well to other networks, which confirms the obser-

vations [41] made in the context of image classification.

The attack produced from 50% resolution inputs trans-

fers poorly to other scales of Deeplab v2 and other archi-

tectures, and vice versa. This is seen by looking across the

columns and rows of Tab. 1 respectively. All other mod-

els, FCN (VGG and ResNet) and Deeplab v2 VGG were

trained at 100% resolution, and Tab. 1 shows that perturba-

tions generated from the multiscale and 100% resolutions of

Deeplab v2 transfer the best. This supports the hypothesis

that adversarial attacks produced at one scale are not as ef-

fective when evaluated at another since CNNs are not scale

invariant (the network activations change considerably).

6.3. Multiscale networks and adversarial examples

The multiscale version of Deeplab v2 is the most robust

to white-box attacks (Tab. 1, Fig. 2) as well as perturbations

generated from single-scale networks. Moreover, attacks

produced from it transfer the best to other networks as well,

as shown by the bolded entries. This is probably because at-

tacks generated from this model are produced from multiple

input resolutions simultaneously. For the Iterative FGSM ll

attack, only the perturbations from the multiscale version of

Deeplab v2 transfer well to other networks, achieving a sim-

ilar IoU ratio as a white-box attack. However, this is only

the case when attacking a different scale of Deeplab. Whilst

perturbations from multiscale Deeplab v2 transfer better on

FCN than from single-scale inputs, they are still far from

the efficacy of a white-box attack (which has an IoU ratio

of 15.2% on FCN-VGG and 26.4% on FCN-ResNet).

Adversarial perturbations generated from multiscale in-

puts to FCN8 (which has only been trained at a single

scale) behave in a similar way: FCN8 with multiscale in-
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Table 1: Transferability of adversarial examples generated from different scales of Deeplab v2 (columns) and evaluated on

different networks (rows). The underlined diagonals for each attack show white-box attacks. Off-diagonals, show transfer

(black-box) attacks. The most effective one in bold, is typically from the multiscale version of Deeplab v2.

Network evaluated
FGSM (ǫ = 8) Iterative FGSM ll (ǫ = 8)

50% 75% 100% Multiscale 50% 75% 100% Multiscale

Deeplab v2 50% scale (ResNet) 37.3 70.5 84.8 60.3 18.0 92.0 96.9 20.0

Deeplab v2 75% scale (ResNet) 85.5 39.7 62.2 50.8 99.5 17.9 89.9 20.4

Deeplab v2 100% scale (ResNet) 93.6 57.9 37.7 37.2 100.0 79.0 15.5 16.8

Deeplab v2 Multiscale (ResNet) 83.7 57.6 62.3 53.1 99.6 90.2 91.9 21.5

Deeplab v2 100% scale (VGG) 94.3 70.6 66.9 66.5 98.9 88.4 86.3 80.9

FCN8 (VGG) 94.7 67.2 65.8 65.4 98.4 85.2 84.9 78.5

FCN8 (ResNet) 94.0 66.3 63.5 63.1 99.4 82.6 80.3 74.1

puts is more robust to white-box attacks, and its perturba-

tions transfer better to other networks. This suggests that

the observations seen in Tab. 1 are not properties of training

the network, but rather the fact that CNNs are not scale in-

variant. Furthermore, an alternative to max-pooling the pre-

dictions at each scale is to average them. Average-pooling

produces similar results to max-pooling. Details of these

experiments, along with results using different attacks and

l∞ norms (ǫ values), are presented in the supplementary.

6.4. Transformations of adversarial examples

Adversarial examples do not transfer well across differ-

ent scales and transformations, as noted by Lu et al. [46].

The authors created adversarial traffic signs after captur-

ing images of them from 0.5m and 1.5m away. Whilst the

printed image taken from 0.5m fooled an object detector

viewing the image from 0.5m, it did not when viewed from

1.5m and vice versa. This result is corroborated by Tab.1

which shows adversarial examples transfer poorly across

different scales. As CNNs are not invariant to many classes

of transformations (including scale) [24], adversarial exam-

ples undergoing them will not be as malicious since the acti-

vations of the network change greatly compared to the orig-

inal input. Whilst we have shown that networks are more

vulnerable to black-box perturbations generated from mul-

tiple scales, there may be other transformations which are

even more difficult to model for the attacks. This effectively

makes it more challenging to produce physical adversar-

ial examples in the real world [47] which can be processed

from a wide range of viewpoints and camera distortions.

6.5. Relation to other defenses

Our observations relate to the “random resizing” defense

of [61] in concurrent work. Here, the input image is ran-

domly resized and then classified. This defense exploits

(but does not attribute its efficacy to) the fact that CNNs are

not scale invariant and that adversarial examples were only

generated at the original scale. We hypothesise that this de-

fense could be defeated by creating adversarial attacks from

multiple scales, as done in this work and concurrently in [3].

7. Effect of CRFs on Adversarial Robustness

Conditional Random Fields (CRFs) are commonly used

in semantic segmentation to enforce structural constraints

[2]. The most common formulation is DenseCRF [38],

which encourages nearby (in terms of position or appear-

ance) pixels to take on the same label and hence prefers

smooth labelling. This is done by a pairwise potential func-

tion, defined between each pair of pixels, which takes the

form of a weighted sum of a bilateral and Gaussian filter.

Intuitively, one may observe that adversarial perturba-

tions typically appear as a high-frequency noise, and thus

the pairwise terms of DenseCRF which act as a low-pass

filter, may provide resistance to adversarial examples. To

verify this hypothesis, we consider CRF-RNN [68]. This

approach formulates mean-field inference of DenseCRF as

an RNN which is appended to the FCN8s network [45],

enabling end-to-end training. We also report in the sup-

plementary material similar results for DeepLab v2, which

performs mean-field inference as a post-processing step.

7.1. CRFs confer robustness to untargeted attacks

Fig. 4a shows that CRF-RNN is markedly more robust

than FCN8s to the untargeted FGSM and Iterative FGSM

attacks. To verify the hypothesis that the smoothing effect

of the pairwise terms increases the robustness to adversarial

attacks, we evaluated various values of the bandwidth hy-

perparameters defining the pairwise potentials (not learned;

in Fig. 4a, we used the values of the public model).

Higher bandwidth values (increasing smoothness) do not

actually lead to greater robustness. Instead, we observed a

correlation between the final confidence of the predictions

(from different hyperparameter settings) and robustness to

adversarial examples. We measured confidence according

to the probability of the highest-scoring label at each pixel,

as well as the entropy of the marginal distribution over all

labels at each pixel. The mean confidence and entropy for

CRF-RNN (with original hyperparameters) is 99.1% and

0.025 nats respectively, whilst it is 95.2% and 0.13 nats for

FCN8s (additional details in supplementary). The fact that

894



(a) (b) (c)

Figure 4: (a) On untargetted attacks on Pascal VOC, CRF-RNN is noticably more robust than FCN8s. (b) CRF-RNN is

more vulnerable to black-box attacks from FCN8, due to its “gradient masking” effect which results in ineffective white-box

attacks. (c) However, the CRF does not “mask” the gradient for targeted attacks and it is no more robust than FCN8s.

mean-field inference tends to produce overconfident predic-

tions has also been noted previously by [52] and [8].

More confident predictions lead to a smaller loss, making

attacks which use the gradient of the loss with respect to the

input less effective. The “Defensive Distillation” approach

of [55] made use of a similar fact by increasing the confi-

dence of the model’s predictions, resulting in gradients of

smaller norm. The key difference is that CRFs increase the

confidence as a by-product of a technique generally used to

improve accuracy on numerous pixel-wise labelling tasks,

while the effect of [55] on accuracy is unknown, as it was

only tested on the saturated MNIST and CIFAR10 datasets.

7.2. Circumventing the CRF

Although CRFs are more resistant to untargeted attacks,

they can still be subverted in two ways. CRF-RNN is effec-

tively FCN8s with an appended mean-field layer. Fig. 4b

shows, that adversarial examples generated via FGSM from

FCN8s (“unary” potentials) are more effective on CRF-

RNN than attacks from the output layer of CRF-RNN.

Also, targeted attacks with FGSM ll and Iterative FGSM

ll are more effective since the label used to compute the loss

for generating the adversarial example is not the network’s

(highly confident) prediction but rather the least likely label.

Consequently, the loss is high and there is a strong gradi-

ent signal from which to compute the adversarial example.

Fig. 4c shows that CRF-RNN and FCN8s barely differ in

their adversarial robustness to targeted attacks.

7.3. Discussion

The smoothing effect of CRFs, perhaps counter-

intuitively, has no impact on the adversarial robustness of

a DNN. However, mean-field inference produces confident

marginals, making untargeted attacks less effective since

they rely on the gradient of the final loss with respect to the

prediction. Black-box attacks generated from models with-

out a CRF transfer well to networks with a CRF, and are ac-

tually more effective. This is the case for both CRFs trained

end-to-end [68] and used as post-processing [15], as shown

in the supplementary. Finally, CRFs confer no robustness

to untargeted attacks. Our investigation of the CRF also

underlines the importance of testing thoroughly with black-

box attacks and multiple attack algorithms, which is not the

case for numerous proposed defenses [17, 28, 29, 55].

8. Conclusion

We have presented what to our knowledge is the first rig-

orous evaluation of the robustness of semantic segmentation

models to adversarial attacks. We believe our main observa-

tions will facilitate future efforts to understand and defend

against these attacks without compromising accuracy:

Networks with residual connections are inherently more

robust than chain-like networks. This extends to the case of

models with very few parameters, contrary to the prior ob-

servations of [41, 48]. Multiscale processing makes CNNs

more robust since adversarial inputs are not as malignant

when processed at a different scale from which they were

generated at, probably as CNNs are not invariant to scale.

The fact that CNNs are not invariant to many classes of

transformations also makes producing physical adversarial

attacks more difficult. Note, however, that multiscale per-

turbations also transfer better to other models. Mean-field

inference for Dense CRFs, which increases the confidence

of predictions confers robustness to untargeted attacks, as it

naturally performs “gradient masking” [54, 55].

In the shorter term, our observations suggest that net-

works such as Deeplab v2, which is based on ResNet

and performs multiscale processing, should be preferred in

safety-critical applications due to their inherent robustness.

As the most accurate network on clean inputs is not neces-

sarily the most robust network, we recommend evaluating

robustness to a variety of adversarial attacks as done in this

paper to find the best combination of accuracy and robust-

ness before deploying models in practice.

Adversarial attacks are arguably the greatest challenge

affecting DNNs. The recent interest into this phenomenon

is only the start of an important longer-term effort, and we

should also study the influence of other factors such as train-

ing regimes and attacks tailored to evaluation metrics. In

this paper, we have made numerous observations and raised

questions that will aid future work in understanding adver-

sarial examples and developing more effective defenses.
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