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Abstract

In this work, we focus on the challenge of taking partial

observations of highly-stylized text and generalizing the ob-

servations to generate unobserved glyphs in the ornamented

typeface. To generate a set of multi-content images following

a consistent style from very few examples, we propose an end-

to-end stacked conditional GAN model considering content

along channels and style along network layers. Our pro-

posed network transfers the style of given glyphs to the con-

tents of unseen ones, capturing highly stylized fonts found in

the real-world such as those on movie posters or infograph-

ics. We seek to transfer both the typographic stylization (ex.

serifs and ears) as well as the textual stylization (ex. color

gradients and effects.) We base our experiments on our col-

lected data set including 10,000 fonts with different styles

and demonstrate effective generalization from a very small

number of observed glyphs.

1. Introduction

Text is a prominent visual element of 2D design. Artists

invest significant time into designing glyphs that are visually

compatible with other elements in their shape and texture.

This process is labor intensive and artists often design only

the subset of glyphs that are necessary for a title or an an-

notation, which makes it difficult to alter the text after the

design is created, or to transfer an observed instance of a

font to your own project. In this work, we propose a neu-

ral network architecture that automatically synthesizes the

missing glyphs from a few image examples.

Early research on glyph synthesis focused on geomet-

ric modeling of outlines [29, 2, 27], which is limited to

particular glyph topology (e.g., cannot be applied to decora-

tive or hand-written glyphs) and cannot be used with image

input. With the rise of deep neural networks, researchers

have looked at modeling glyphs from images [1, 33, 22, 3].

We improve this approach by leveraging recent advances in

conditional generative adversarial networks (cGANS) [11],
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which have been successful in many generative applications,

but produce significant artifacts when directly used to gen-

erate fonts (Figure 6, 2nd row). Instead of training a single

network for all possible typeface ornamentations, we show

how to use our multi-content GAN architecture to retrain

a customized network for each observed character set with

only a handful of observed glyphs.

Our network operates in two stages, first modeling the

overall glyph shape and then synthesizing the final appear-

ance with color and texture, enabling transfer of fine dec-

orative elements. Some recent texture transfer techniques

directly leverage glyph structure as guiding channels to im-

prove the placement of decorative elements [34]. While this

approach provides good results on clean glyphs it tends to

fail on automatically-generated glyphs, as the artifacts of the

synthesis procedure make it harder to obtain proper guid-

ance from the glyph structure. Instead, we propose to train

an ornamentation network jointly with the glyph generation

network, enabling our ornament synthesis approach to learn

how to decorate automatically generated glyphs with color

and texture and also fix issues that arise during glyph genera-

tion. We demonstrate that users strongly preferred the output

of our glyph ornamentation network in the end-to-end glyph

synthesis pipeline.

Our Contributions. In this paper, we propose the first

end-to-end solution to synthesizing ornamented glyphs from

images of a few example glyphs in the same style. To en-

able this, we develop a novel stacked cGAN architecture

to predict the coarse glyph shapes, and a novel ornamenta-

tion network to predict color and texture of the final glyphs.

These networks are trained jointly and specialized for each

typeface using a very small number of observations, and we

demonstrate the benefit of each component in our architec-

ture (Figure 6). We use a perceptual evaluation to demon-

strate the benefit of our jointly-trained network over effect

transfer approaches augmented with a baseline glyph-outline

inference network (Section 5.3).

Our Multi-Content GAN (MC-GAN) code and dataset

are available at https://github.com/azadis/

MC-GAN.
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Figure 1: Schematic of our Glyph Network to be trained on

our 10K font data set.

2. Related Work

Font glyph synthesis from few examples has been a long-

studied problem. Earlier methods [29, 2, 27] mostly relied on

explicit shape modeling to construct the transformation be-

tween existing and novel glyphs. Glyph part models for radi-

cals [36] and strokes [19] were designed specifically for Chi-

nese characters. Based on a shape representation, machine

learning techniques, including statistical models [27] and bi-

linear factorization [30], have been used to infer and transfer

stroke styles and composition rules. More recently, with the

rise of deep learning, convolutional neural networks have

also been applied to novel glyph synthesis. Promising results

were obtained with conventional model structures [1, 33] as

well as generative adversarial networks (GANs) [22, 3]. All

these networks only predict glyph shape, a goal also targeted

by our glyph network. We adopt a distinct multi-content rep-

resentation in our glyph network which proves to effectively

capture the common style among multiple glyphs.

Transferring artistic styles of color and texture to new

glyphs is a challenging problem distinct from inferring the

overall glyph shape. The problem was investigated in [34]

with the assumption that the unstylized glyph shape is given.

A patch-based texture synthesis algorithm is employed to

map sub-effect patterns to correlated positions on text skele-

ton for effect generation. Style transfer has been more ac-

tively studied on general images with the aid of convolutional

neural networks (CNNs). CNN features are successfully

used to represent image styles, and serve as the basis for

optimization [7, 16, 20]. Recently, networks trained with

feed-forward structure and adversarial loss have achieved

much improved efficiency [17, 12] and generalization abil-

ity [10, 18]. Our proposed ornamentation network is the

first to employ deep networks for text effect transfer. Our

ornamentation network learns transferring texture similar to

the deep image prior approach [32] where structure of a ran-

domly initialized generator (rather than a large training set)

captures the essential prior knowledge in this transformation.

Several problems in graphics and vision require synthesiz-

ing data consistent with partial observations. These methods

typically focus on learning domain-specific priors to accom-

plish this task. For example, given a single-view image,

encoder-decoder architectures have been proposed to halluci-

nate novel views of faces [15, 31, 4], bodies [35], and other

rigid objects [37, 25]. CNNs were also used to complete

missing regions in images [26] and new stereo and lightfield

views [6, 13] given a set of input images. Similarly, 3D mod-

els can be completed from a partial 3D shape [5, 28]. Unlike

one object under different viewpoints, different glyphs in the

same font share the same style, but not structure. Various ge-

ometry modeling techniques have been proposed for learning

structural priors from example 3D shapes [9, 14] and trans-

ferring style from a few examples to an input model [21].

Font data provides a cleaner factorization of style and content

that we leverage in our approach.

3. Multi-Content GAN Architecture

We propose an end-to-end network to take a subset of

stylized images of specific categories (such as font glyphs)

and predict the whole set of stylistically similar images. We

have specifically designed our model for the font genera-

tion problem to predict the set of letters from A to Z for

in-the-wild fonts with a few observed letters. We divide this

problem into two parts: glyph generation and texture transfer.

Our first network, called GlyphNet, predicts glyph masks

while our second network, called OrnaNet, fine-tunes color

and ornamentation of the generated glyphs from the first

network. Each sub-network follows the conditional genera-

tive adversarial network (cGAN) architecture [11] modified

for its specific purpose of stylizing glyphs or ornamentation

prediction. GlyphNet is trained on our 10K font dataset

and generalizes to glyph prediction for any arbitrary font

given a few of its letters in gray-scale, and thus learns the

general shape of the “font manifold”. We fine-tune the color

and ornamentation of these coarse glyph shapes for each

arbitrary font through OrnaNet generating clean and well-

stylized letters, which is not possible in a one-stage network.

By pre-training GlyphNet and fine-tuning the full model, we

break the problem into easier sub-problems with a dedicated

loss on the intermediate output (of the GlyphNet) and a grad-

ual training scheme that regularizes better the problem. We

assume the label for each observed letter is known for the

model and thus, skip the need for categorizing each letter

into the 26 letters. In the following sections, we will first

summarize the cGAN model, and then discuss our proposed

GlyphNet and OrnaNet architectures and stack them together

in an end-to-end final design which we refer to as MC-GAN.

3.1. Conditional Generative Adversarial Networks

Starting from a random noise vector z, generative adver-

sarial networks (GANs) [8] train a model to generate images
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Figure 2: Schematic of our end-to-end MC-GAN model including (a) GlyphNet and (b) OrnaNet. Inputs and Outputs are

illustrated in white, network layers in green, and loss functions are shown in blue. We use a leave-one-out approach among

all observed letters of a word like TOWER (in orange) to construct a batch of input image stacks to be fed into G1: For each

input stack in the batch, we extract the left out generated glyph. In addition, the remaining 21 glyphs will be generated by

feeding in all observed letters together. After a reshape and gray-scale channel repetition, T , these extracted generated glyphs,

Ã, B̃, · · · , Z̃ will be fed into OrnaNet.

y following a specific distribution by adversarially training

a generator versus a discriminator (z → y). While the dis-

criminator tries to distinguish between real and fake images,

the generator opposes the discriminator by trying to generate

realistic-looking images. In the conditional GAN (cGAN)

scenario [11, 24], this mapping is modified by feeding an

observed image x alongside the random noise vector to the

generator ({x, z} → y), and thus, the adversary between

generator and discriminator is formulated as:

LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x, y)]

+Ex∼pdata(x),z∼pz(z)[1− logD(x,G(x, z))], (1)

where G and D minimize and maximize this loss function,

respectively.

Given the ground truth output of the generator, it is ben-

eficial to force the model to generate images close to their

targets through an L1 loss besides fooling the discriminator.

The generator’s objective can be summarized as:

G∗ = argmin
G

max
D

LcGAN(G,D) + λLL1
(G), (2)

where LL1
(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1].

We follow this conditional GAN setting in each of our

sub-networks to generate the whole set of letters with a

consistent style, y, by observing only a few examples fed in

as a stack, x. Similar to [11], we ignore random noise as

the input to the generator, and dropout is the only source of

randomness in the network.

3.2. Glyph Network

Generalizing all 26 capital letters of a font from a few ex-

ample glyphs requires capturing correlations and similarities

among source letters and the unseen ones. Our GlyphNet

learns such correlations automatically in order to generate a

whole set of stylistically similar glyphs.

Due to the style similarity among all content images,

we add one input channel for each individual glyph in the

GlyphNet resulting in a “glyph stack” in both input and the

generated output (as illustrated in Figure 1). A basic tiling

of all 26 glyphs into a single image, however, fails to capture

correlations among them specifically for those far from each

other along the image length. This occurs due to the smaller

size of convolution receptive fields than the image length

within a reasonable number of convolutional layers.

With our novel input glyph stack design, correlation be-

tween different glyphs are learned across network channels

in order to transfer their style automatically. We employ our

generator, G1, based on the image transformation network

introduced in [12] including six ResNet blocks. The full

architectual specification of both GlyphNet and OrnaNet are

provided as supplemental materials.

We consider 64 × 64 glyphs in gray-scale resulting in

the input and output dimension of B × 26 × 64 × 64 for

the 26 capital English alphabets, with B indicating batch

size. Following the PatchGAN model proposed by [11], we

apply a 21× 21 local discriminator with three convolutional

layers on top of the generated output stack in order to dis-
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criminate between real and fake local patches resulting in a

receptive field size equal to 21. In parallel, we add two extra

convolutional layers as a global discriminator, resulting in a

receptive field covering the whole image to distinguish be-

tween realistic font images and generated ones. In Figure 1,

our local and global discriminators are shown within one

discriminator block and will be referred as D1.

For higher quality results and to stabilize GAN train-

ing [38], we use two least squares GAN (LSGAN) loss

functions [23] on our local and global discriminators added

with an L1 loss penalizing deviation of generated images

G1(x1) from their ground truth y1:

L(G1) = λLL1
(G1) + LLSGAN(G1, D1)

= λEx1,y1∼pdata(x1,y1)[‖y1 −G1(x1)‖1]

+Ey1∼pdata(y1)[(D1(y1)− 1)2] (3)

+Ex1∼pdata(x1)[D1(G1(x1))
2],

where LLSGAN(G1, D1) = Llocal
LSGAN(G1, D1) +

Lglobal
LSGAN(G1, D1). We train this network on our col-

lected 10K font data set (Section 4) where in each training

iteration, x1 includes a randomly chosen subset of y1 glyphs

with the remaining input channels being zeroed out. We will

refer to this trained model as G′

1 in the following sections.

We explored adding in a separate input indicator channel

denoting which of the glyphs are present, but did not find

this to significantly affect the quality of the generator.

While we pre-train the GlyphNet using the conditional

discriminator, we will remove this discriminator when train-

ing the joint network (Section 3.4).

3.3. Ornamentation Network

OrnaNet is designed to transfer ornamentation of the few

observed letters to the gray-scale glyphs through a condi-

tional GAN network consisting of a generator, G2, and a

discriminator, D2. Feeding in the glyphs as input images,

x2, this network generates outputs, G2(x2), enriched with

desirable color and ornamentation. The main difference

between our proposed OrnaNet and GlyphNet lies in the

dimension and type of inputs and outputs, as well as in how

broad vs. specific the model is in generating images with a

particular style; the generator and conditional discriminator

architectures are otherwise identical to GlyphNet.

While GlyphNet is designed to generalize glyph correla-

tions across all our training fonts, OrnaNet is specialized to

apply only the specific ornamentation observed in a given

observed font. It is trained only on the small number of

observations available. Moreover, inputs and outputs of the

OrnaNet include a batch of images with three RGB channels

(similar to [11]) where the the input channels are repeats of

the gray-scale glyphs. Next, we will describe how to com-

bine our GlyphNet and OrnaNet in an end-to-end manner in

order to generate stylized glyphs in an ornamented typeface.

3.4. EndtoEnd Network

The goal of our end-to-end model, illustrated in Figure 2,

is to generalize both style and ornamentation of the observed

letters to the unobserved ones. For this purpose, we gener-

ate all 26 glyphs including the observed ones through the

pre-trained GlyphNet and feed them to the OrnaNet (initial-

ized with random weights) to be fine-tuned. To accomplish

this, we use a leave-one-out approach to cycle all possible

unobserved letters:

For instance, given 5 observed letters of the word TOWER

shown in Figure 2, we first use 4 letters T, O, W, E as the

given channels in a 1× 26× 64× 64 input stack and feed

it to the pre-trained GlyphNet to generate all 26 letters and

then extract the one fake glyph, R̃, not included in the input

stack. Repeating this process would generate all of the 5

observed letters from the pre-trained GlyphNet. Similarly,

we extract the 21 remaining letters from the pre-trained

model by feeding in a 1×26×64×64 input stack filled with

all 5 observed letters simultaneously while zeroing out all

other channels. This whole process can be summarized by

passing 6 input stacks each with dimension 1×26×64×64
through GlyphNet as a batch, extracting the relevant channel

from each output stack, and finally concatenating them into

one 1× 26× 64× 64 output. After a reshape transformation

and gray-scale channel repetition, represented by T , we can

transform this generated output to 26 images with dimension

3× 64× 64 and feed them as a batch, x2, to OrnaNet. This

leave-one-out approach enables OrnaNet to generate high

quality stylized letters from coarse generated glyphs.

To stabilize adversarial training of the OrnaNet generator

(G2) and discriminator (D2), we likewise use an LSGAN

loss added with an L1 loss function on generated images of

the observed letters, x2, and their ground truth, y2. More-

over, to generate a set of color images with clean outlines,

we minimize the mean square error (MSE) between binary

masks of the outputs and inputs of the generator in OrnaNet

which are fake color letters, G2(x2), and fake gray-scale

glyphs, x2, respectively. Binary masks are obtained by pass-

ing images through a sigmoid function, indicated as σ in (4).

In summary, the loss function applied on top of the OrnaNet

in the end-to-end scenario can be written as:

L(G2) = LLSGAN(G2, D2) + λ1LL1
(G2) + λ2LMSE(G2)

= Ey2∼pdata(y2)[(D2(y2)− 1)2]

+Ex2∼pdata(x2)[D2(G2(x2))
2] (4)

+Ex2,y2∼pdata(x2,y2)

[

λ1‖y2 −G2(x2)‖1

+λ2(σ(y2)− σ(G2(x2)))
2
]

,

where x2 = T (G1(x1)) and

LLSGAN(G2, D2) = Llocal
LSGAN(G2, D2) + Lglobal

LSGAN(G2, D2).

. In the final end-to-end training, we do not use discrimi-

nator D1 in the GlyphNet and instead, OrnaNet plays the
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Figure 3: Random subset of our 10K gray-scale font dataset

role of a loss function by back propagating the gradients of

the objective in (4) to improve style of the generated glyphs.

Adding a weighted L1 loss on top of the generator in Glyph-

Net, G1, also penalizes deviating from the predictions of

the pre-trained GlyphNet, G′

1. We also add an MSE loss

function between binary masks of fake versions of the ob-

served glyphs, T (G1(x1)), and masks of their corresponding

ground truth glyphs, y2. Putting this all together, the gradi-

ents of the following loss functions would be passed through

GlyphNet in addition to the gradient coming from OrnaNet:

L(G1) = λ3Lw,L1
(G1) + λ4LMSE(G1)

= Ex1∼pdata(x1),y2∼pdata(y2)

[

λ3

26
∑

i=1

wi × |Gi
1(x1)−G

′i
1 (x1)|+

λ4(σ(y2)− σ(T (G1(x1)))
2
]

, (5)

where wi allows us to apply different weights to observed

vs. unobserved glyphs. Ratio between different terms in loss

functions in (4), (5) is defined based on hyper-parameters

λ1 to λ4. Moreover, as mentioned in Section 3.2, G′

1(x)
indicates the prediction of the pre-trained GlyphNet before

being updated through end-to-end training.

4. Font Dataset

We have collected a dataset including 10K gray-scale

Latin fonts each with 26 capital letters. We process the

dataset by finding a bounding box around each glyph and

resize it so that the larger dimension reaches 64 pixels, then

pad to create 64 × 64 glyphs. A few exemplar fonts from

our dataset are depicted in Figure 3. These fonts contain rich

information about inter-letter correlations in font styles, but

only encode glyph outlines and not font ornamentations. To

create a baseline dataset of ornamented fonts, we apply ran-

dom color gradients and outlining on the gray-scale glyphs

resulting in a 20K color font data set. A few examples are

shown in the supplemental. Size of this data set can be ar-

bitrarily increased through generating more random colors.

These gradient fonts do not have the same distribution as

in-the-wild ornamentations but can be used for applications

such as network pre-training.

5. Experiments and Results

We demonstrate the quality of our end-to-end model pre-

dictions on multiple fonts with various styles and decorations.

First, we study the advantage of various components of our

model through multiple ablation studies. Next, we will show

the significant improvement obtained by our model in trans-

ferring ornamentations on our synthesized glyphs compared

with patch-based text effect transfer approach [34]. In the

following experiments, we have set λ1 = 300, λ2 = 300 if

epoch < 200 and λ2 = 3 otherwise, λ3 = 10, λ4 = 300,

while wi = 10 if i is an observed glyph and wi = 1 other-

wise. In all our qualitative experiments on our full model,

three to eight observed characters for each font are chosen

randomly and illustrated in red squares in the figures. Batch

size B is thus random and equal to the number of observed

letters. Glyph network is pre-trained in 400 epochs with a

fixed batch size of 150 fonts in each iteration. The full model

is then fine-tuned for 700 iterations on each specific font.

For evaluation, we download ornamented fonts from the

web1. In all experiments in sections 5.1 and 5.2, we made

sure that all used font examples were not included in our 10K
font training set by manually inspecting nearest neighbors

computed over the black-and-white glyphs.

5.1. Image Translation Baseline

To illustrate the significant quality improvement of our

end-to-end approach, we have implemented a baseline image-

to-image translation network [11] for this task. In this base-

line approach, we consider channel-wise letters in input and

output stacks with dimensions B × 78 × 64 × 64, where

B stands for training batch size and 78 corresponds to the

26 RGB channels. The input stack is given with “observed”

color letters while all letters are generated in the output stack.

We train this network on our color font data set where we

have applied randomly chosen color gradients on each gray-

scale font. Feeding in a random subset of RGB letters of

an arbitrary font into this model during test time, it is ex-

pected to generate stylistically similar 26 letters. Results

of this model are shown in the second rows of Figure 6

for each example font. Observe that while the network has

learned rough aspects of glyph structure, the predictions do

not follow a consistent color or ornamentation scheme, as the

network is not able to effectively specialize for the provided

ornamentation style. Similar artifacts are observered even

when evaluating on a test set derived from our simplified

color-gradient dataset (see supplemental materials).

1http://www6.flamingtext.com/All-Logos
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Figure 4: Text Effect Transfer [34] failure example on clean input glyphs.

Ground Truth

OrnaNet

T-Effect

Figure 5: Failure cases on clean input glyphs.

5.2. Ablation Study

In Figure 6, we demonstrate the incremental improvement

of our proposed regularizers, Lw,L1
(G1),LMSE(G1), and

LMSE(G2). We found that pretraining on our OrnaNet on

gradient-based ornamentations was not helpful, and that the

best result comes from a random initialization of OrnaNet

and using all the proposed loss terms.

As mentioned in Section 3.4, Lw,L1
(G1) prevents net-

work predictions from going far from the original pre-trained

predictions of the GlyphNet. However, it also reduces the

freedom in modifying the style of the new glyphs during

the end-to-end training. We show this trade-off in the fourth

rows of each instance font in Figure 6 by highlighting letters

with additional artifacts in red and improved letters in blue

when this regularizer is excluded from the network. The

other two MSE loss regularizers weighted by λ2 and λ4 pre-

vent blurry predictions or noisy artifacts to appear on the

generated gray-scale and color letters.

5.3. Perceptual Evaluation

To evaluate the performance of our model, we compare

the generated letters of our end-to-end MC-GAN against the

output of the patch-based synthesis method in [34]. Since

this model is designed only for transferring text decorations

on clean glyphs, it is not fully comparable with our ap-

proach which synthesizes unobserved letters. To explore

this method, we use the predictions of our pretrained Glyph-

Net as the input to this algorithm. Moreover, this model

transfers stylization from only one input decorated glyph,

while our method uses all observed examples simultaneously.

Therefore, to enable a fair comparison in transferring orna-

mentations, we allow their model to choose the most similar

glyph among the observed instances to the generated glyph

mask using a simple image-space distance metric.

We generated the output of both methods on 33 font ex-

amples downloaded from web and asked 11 people to choose

which character set they preferred when presented with the

observed letters and the full glyph results of both methods.

Overall users preferred our method 80.0% of the time. We

visualize a subset of these examples in Figure 7 including

ground truth and given letters (first rows), predictions of the

text effect transfer method [34]which are applied on top of

the glyphs synthesized by our GlyphNet (second rows), and

predictions of our full end-to-end model in the last rows. The

two best and two worst scoring results for each method are

shown on the top and bottom examples of the figure. Please

see supplemental for the complete perceptual evaluation re-

sults and description of our experimental procedure.

The text effect transfer approach is designed to generate

text patterns on clean glyphs but mostly fails to transfer style

given our synthesized gray-scale letters. In addition, due to

their dependency on a patch matching based algorithm, they

often cannot transfer style correctly when the shape of the

given and new letters are not very similar (e.g., they cannot

transfer straight line patterns when there is a curvature in

their new input glyph as clear from the sixth and seventh

examples in Figure 7).

5.4. Ground Truth Glyph Ornamentation

We further compare the performance of our ornamenta-

tion network against patch-based synthesis in the case where

we are given correct grayscale glyphs (i.e. the ground-truth

for GlyphNet). Figure 4 indicates a failure mode of patch-

based effect transfer, where spatial patterns present in the

input are often violated. Figure 5 represents a failure mode

of both methods: our method averages over the distinct

colors present and does not always generate the observed or-

namentation such as eyes, while patch-based effect transfer

better preserves the input color distrubtion but can still fail

to capture the frequency of stylistic elements.

7569



Figure 6: Ablation study on our MC-GAN model components: For each exemplar font, we show ground truth (1st row),

observed letters (red squares in the 1st row), predictions of a baseline image translation network (2nd row), predictions of our

end-to-end model with randomly initialized (RI) OrnaNet and λ2 = λ3 = λ4 = 0 (3rd row), with pretrained (PT) OrnaNet

weights and λ2 = λ3 = λ4 = 0 (4th row), selectively disabled loss terms (rows 5-7), and the full end-to-end MC-GAN model

(bottom row). Style transfer improvements by λ3 are highlighted in blue and degradation in the predictions by omitting each

individual regularizer is highlighted in red.
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Figure 7: Comparison of our end-to-end MC-GAN model (3rd rows) with the text effect transfer approach [34] using

GlyphNet synthesized glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of each

example font. Scores next to each example reveal the percentage of people who preferred the given results.

6. Conclusion

We propose the first end-to-end approach to synthesizing

ornamented glyphs from a few examples. Our method takes

a few example images as an input stack and predicts coarse

shape and fine ornamentations for the remaining glyphs. We

train two networks: one for the shape and one for the texture,

and demonstrate that by training them jointly, we can pro-

duce results that are strongly preferred by users over existing

texture transfer approaches that focus on glyphs. A surpris-

ing discovery of this work is that one can efficiently leverage

GANs to address a multi-content style transfer problem. In

many practical settings, however, fonts need to be generated

at extremely high resolution, motivating extensions to this

approach such as hierarchical generation or directly syn-

thesizing smooth vector graphics. In the future, we would

also like to explore other problems where content has to be

stylized consistently from a few examples. For example,

modifying a particular human face (style) to have a specific

expression (content), consistent stylization of shapes such

as emoticons, or transferring materials to consistent sets of

objects such as clothing or furniture.
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