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Abstract

We propose a method for learning non-linear face ge-

ometry representations using deep generative models. Our

model is a variational autoencoder with multiple levels of

hidden variables where lower layers capture global geome-

try and higher ones encode more local deformations. Based

on that, we propose a new parameterization of facial geom-

etry that naturally decomposes the structure of the human

face into a set of semantically meaningful levels of detail.

This parameterization enables us to do model fitting while

capturing varying level of detail under different types of ge-

ometrical constraints.

1. Introduction

Building robust and expressive face models is challeng-

ing because they must be able to capture deformations at

many different scales. These range from large ones to repre-

sent the overall shape of specific person’s face to small ones

to capture subtle expressions such as a smirk or a frown.

Most existing methods can be roughly split into two cat-

egories depending on whether they use global linear mod-

els [3, 18, 9] or local ones [34, 39]. While the former are

simple to use and usually robust to noise and mismatches,

the underlying linear space is over-constrained and does not

provide sufficient flexibility to represent high-frequency de-

formations. By contrast local models bring flexibility by

separately modeling local deformations. However, they are

also more vulnerable to noise and outliers, and can easily

produce non-face shapes. Even recent hybrid methods that

enforce global anatomical constraints [39] remain limited

to person-specific settings and it is not clear how to extend

them to capture facial features across multiple identities.

With the advent of Deep Learning, there have been sev-

eral attempts at using deep nets for data-driven face recon-

struction [35, 11, 29]. However, these methods still rely on

global linear models, which precludes from performing re-

∗ Work done during an internship at Facebook Reality Labs, Pittsburgh.

quired multi-scale modeling.

In this work, we propose a novel method to model multi-

scale face geometry that learns the facial geometry from

the data without making any restrictive linear assumptions.

Our approach starts with the observation that both global

and local linear models can be viewed as specific instances

of autoencoders. They can therefore both be incorporated

into a generic compositional architecture that combines the

strengths of both local and global models, while being com-

pletely data-driven. In particular, our approach features a

new Variational Autoencoder (VAE) with multiple layers of

hidden variables that capture various level of geometrical

details. In effect, some network layers capture the low-

frequency geometry while others represent high-frequency

details.

In the experimental evaluation we demonstrate our

model’s effectiveness on a variety of fitting tasks, includ-

ing dense depth data, sparse 2D and 3D correspondences, as

well as shape-from-shading reconstruction. We show that it

can capture high-quality face geometry even when trained

using a database featuring only 16 different people.

In short, our main contribution is a model that en-

codes facial geometry over a range of scales and general-

izes to new identities and arbitrary expressions, while be-

ing learned from a small number of different people. The

last point is important because creating databases of high-

quality meshes that cover a wide range of human expres-

sions and a large number of different identities is both ex-

pensive and time-consuming.

2. Related Work

One of the main motivations of our work is to demon-

strate that it is possible to use deep generative models to

learn meaningful geometric representations directly from

the data. In this section, we therefore first review exist-

ing face models and several recent efforts on applying deep

learning to data-driven face reconstruction. We then give a

very brief introduction into deep generative models with a

focus on VAEs.

13877



2.1. Parametric Face Models

Many different global 3D face parameterizations have

been proposed over the years. They include Active Ap-

pearance Models (AAM) [7], blendshapes [23], principal

components analysis (PCA) derived from a set of training

shapes [22, 3], and multilinear models [37]. They have been

successfully used to overcome the ambiguities associated

with monocular face tracking [24, 2, 8, 14, 15, 9, 32]. How-

ever, because they are designed to model the whole face at

once, it is difficult to use them to represent small details

without making them exceedingly large and unwieldy.

Local or region-based shape models have therefore also

been proposed to remedy this problem. For example Joshi et

al. [18] use a region-based blendshape model for keyframe

facial animation and automatically determine the best seg-

mentation using a physical model. Na and Jung [25] use lo-

cal blendshapes for motion capture retargeting and devise a

method for choosing the local regions and their correspond-

ing weighting factors automatically. Tena et al. [34] learn

a region-based PCA model based on motion capture data,

which allows direct local manipulation of the face. Neu-

mann et al. [26] extract sparse localized deformation com-

ponents from an animated mesh sequence, for the purpose

of intuitive editing as well as statistical processing of the

face. Brunton et al. [4] rely on many localized multilinear

models to reconstruct faces from noisy or occluded point

cloud data. All these approaches offer more flexibility than

the globals models but at the cost of being less constrained

to realistically represent human faces.

Wu et al. [39] propose a hybrid approach that combines

a local 3D model made of many overlapping patches, which

can be locally deformed, and a global model in the form of

anatomical constraints that simulate the existence of a skull

and jaw bone. This is effective, but it has to be tailored to

each individual, and only considers bone structure, while

ignoring other types of constraints.

2.2. Deep Learning for 3D Face Reconstruction.

Deep models have been successfully used for 3D face

reconstruction. In [35], the authors propose a weakly-

supervised approach to learning a CNN-based regressor

from the space of images into a pre-defined semantic space,

which includes global pose and facial expressions, as well

as illumination and texture. Similarly, in [28], used a large

dataset of artificially rendered face images to train a CNN

that maps images into the space of facial geometry. Both

these approaches, however, rely on a pre-defined geometry

space based on a variation of a bilinear AAM model [7].

By contrast, applying deep generative models to learn-

ing a geometric representation has been largely overlooked.

The approach of [13] is an exception that relies on deep re-

stricted Boltzmann machines to model the shape of the face.

However, that approach does not model the entire facial ge-

ometry, but is restricted to represent a sparse set of facial

landmarks.

2.3. Deep Generative Models

Deep Generative Models, including Variational Autoen-

coders (VAEs) [20] and Generative Adversarial Networks

(GANs) [16, 12, 10], are highly effective at learning com-

plex high-dimensional distributions and have been put to

good use for image synthesis and unsupervised learning.

However, GANs are notoriously hard to train, which we no-

ticed empirically in preliminary experiments. We therefore

chose to rely on VAEs. We provide the basics of VAE be-

low and will use the same formalism in the next section to

describe how we use it for our purposes.

Let M = {M(1), . . . ,M(M)} be a set of observations

M
(i) which are distributed according to the generative dis-

tribution p(M(i), z(i);θd) = p(M(i)|z(i);θd) · p(z
(i);θd),

where z
(i) is a vector of latent (hidden) variables, and θd

are the parameters of the distribution. In theory, these pa-

rameters can be learned by maximizing the log-likelihood

of the observed data

log p(M1:M ;θd) =
M∑

i=1

log p(M(i);θd) . (1)

In practice, computing the actual log-likelihood is in-

tractable for non-trivial generative models. As a result, a

number of approximations have been introduced, including

Variational Bayes methods which instead maximize the fol-

lowing lower-bound:

L = 〈log p(M, z;θd)− log q(z|M;θe)〉q(z|M;θe) , (2)

where we dropped the indices (i) for clarity and 〈·〉q denotes

expectation with respect to the variational distribution q de-

fined over hidden variables z and parameterized by θe. The

fact that L is a lower bound follows directly from Jensen’s

inequality and Eq. 2 can be rewritten as

L = 〈log p(M|z;θd)〉q − 〈log
q(z|M;θe)

p(z;θd)
〉q , (3)

where the left-hand term can be understood as a nega-

tive reconstruction error of the generative model (decoder)

p(M|z) and the right-hand term is the KL divergence be-

tween the approximate posterior (encoder) q(z|M) and the

prior p(z), which acts as a reguralizer. Without this term,

there would be no incentive to learn a smooth and meaning-

ful representation for z, which is crucial if we want to then

traverse this space when doing model fitting. In the con-

text of deep generative models, both the generative model

p(M|z) and the approximate posterior q(z|M) are param-

eterized using deep neural networks. Distribution q is usu-

ally taken to be a diagonal Gaussian, but more sophisticated

distributions have been investigated in [27, 20, 36].
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3. Method
In this section, we first describe the mesh parameteriza-

tion that enables us to efficiently apply CNNs to the face ge-

ometry. We then discuss an important insight of this paper,

which is that both global and local linear models that are

central to most state-of-the-art approaches to modeling 3D

faces can be expressed as shallow auto-encoders. A natural

way to increase their flexibility would therefore be to sim-

ply replace the linear encoders and decoders by non-linear

ones. However, in practice, this would not be enough be-

cause model fitting requires a well-behaved parameter space

that is well suited for optimization. We therefore show that

the convolutional VAEs can be used for this purpose in the

global case. Finally, since this results in a model that is

more flexible than the original ones but still suffers from

the limitations of all global ones, we introduce a compo-

sitional version of VAEs, which combines the strength of

local and global models by explicitly representing various

deformation levels.

3.1. Mesh Representation

Typically, face geometry is represented as a triangular

mesh, or, more formally, as a pair (V, T ), where V ∈ RN×3

is a collection of 3D vertices and T is a set of triangles that

defines the topology. In this work, we keep the same tri-

angulation for all the faces and assume the shape variations

are all captured by the V coordinates. Details on how to

perform mesh registration are given in Section 5.1. Fur-

ther, these coordinates are represented as a 3-channel image

M ∈ RH×W×3 and the triangles in T by triplets of the ver-

tex indices of the form {(i, j), (i+1, j), (i+1, j+1)} and

{(i, j), (i, j +1), (i+1, j +1)}, as shown in Figure 1. Im-

portantly, this means that pixels that are neighbors in terms

of pixel coordinates are also topological neighbors. This

makes it natural to perform 2D convolutions on meshes and

efficiently use the deep learning machinery.

Figure 1. Example of (mean-subtracted) UV parameterization of a

face. From left-to-right: x, y, z coordinates.

3.2. Linear Face Models as Autoencoders

A global linear model such as the one of [3] represents

all possible face shapes as linear combinations in a set of ba-

sis vectors. In [3], it was obtained by performing principal

component analysis on a training database.

Formally, we can write

h = We ·M , M̂ = Wd · h , (4)

where We ∈ Rk×3N , Wd ∈ R3N×k are respectively en-

coding and decoding matrices, and h ∈ Rk is a set of k

linear coefficients, such that ‖M − M̂(h)‖ is mimimized

in the space spanned my We. The transformations of Eq. 4

can be implemented by a shallow linear auto-encoder, as

shown in Figure 2 (a). Given the observations such as depth

maps or the 2D positions of sparse landmarks, which we

will denote X, fitting a model to it can then be expressed as

finding a set of parameters ĥ that maximizes the data likeli-

hood p(X|Wd · h).
Local linear models such as [34] give more flexibility

than global ones by decoupling the parameters between dif-

ferent parts of the mesh. In practice, this means that h is

factored into independent sets of parameters hρ for distinct

patches Mρ of the mesh. Assuming that all these param-

eters are expressed in the same bases θe,θd, these local

models can be seen as shallow convolutional auto-encoders,

whose space of potential deformations is captured by a con-

volutional feature map h, as shown in Figure 2 (b). Bases

θe and θd are then the parameters of the convolutional lay-

ers of respectively encoder and decoder, which are shared

among all the patches.

3.3. Convolutional Mesh VAE

Given that linear models can be viewed as linear auto-

encoders, a natural way to extend them and potentially solve

the problems discussed in Section 2, is to use non-linear

versions of the encoders and decoders.

For global models, we therefore write

h = E(M;θe) , M̂ = D(h;θd) , (5)

where E(·;θe) and D(·;θd) are multi-layer convolutional

encoders and decoders, parameterized by weights θe and

θd respectively, similarly to architectures in Figure 2 (c)-

(d). In a similar manner as for the linear case, we can esti-

mate θe and θd from the training data and then do model

fitting by finding the parameter vector ĥ that maximizes

p(X|D(h;θd)).
The non-linear parameterization of Eq. 5 is more flexible

than the one of Eq. 4. Unfortunately, it does not guarantee

anymore that even small differences in the value of h from

the values observed during training will not result in esti-

mated shapes M̂ = D(h;θd) which are not representative

of the true posterior, or, in other words, which are not face-

like. To remedy this, we replace the simple auto-encoder of

Eq. 5 by a variational auto-encoder based on the formalism

described in Section 2.3, which ensures the smoothness of

the learned space by enforcing a prior on the posterior q.

Namely, we parameterize the distribution over latent

variables q(z|M;θe) and the generative model p(M|z;θd)
in terms of a deep net encoder E(·) and decoder D(·) re-

spectively. This yields a variational reformulation of Eq. 5:
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(a) Global model (b) Local model (c) Convolutional VAE (d) Compositional VAE

Figure 2. Autoencoding architectures for face geometry.

ν = E(M;θe) , z ∼ q(z|ν) , M̂ = D(z;θd) , (6)

where ν are the parameters of the approximate posterior,

which is assumed to be a diagonal Gaussian. In practice,

evaluating M̂ now requires sampling from q(z|ν), which is

not a differentiable operation. This was addressed in [21] by

representing z as a deterministic variable that depends on ν

and auxiliary noise, which makes it possible to minimize the

lower bound L of Eq. 2 and Eq. 3 using stochastic gradient

descent.

3.4. Compositional Mesh VAE

The non-linear parameterization of Eq. 6 is more flexi-

ble than the linear one of Eq. 4 while still providing a latent

space that is smooth and easy to optimize over. However,

both formulations still depend on a single low-dimensional

vector, namely h in Eq. 4 and z ∼ q(·|ν) in Eq. 6, to rep-

resent the shape, which makes it difficult to capture high-

frequency deformations.

In this section, we propose a solution to this difficulty by

introducing multiple layers of hidden variables z1:L, where

each individual layer models a separate level of detail. In-

tuitively, the goal of the encoder is then to gradually de-

compose the input mesh M into those variables, such that

the decoder can then compose those individual representa-

tions back into a final reconstruction M̂. The higher-level

layers, that is, those corresponding to lower l-s, have more

degrees of freedom and more local control with smaller re-

ceptive field, are therefore well suited to represent the high-

frequency geometric components, whereas the lower-level

layers have more control over the global shape. This will be

demonstrated at the end of the evaluation section.

Formally, the joint distribution for the observed meshes

M and latent variables z1:L can now be written as

p(M, z1:L) = p(M|M̂(z1:L)) ·

L∏

l=1

p(zl|ξl) , (7)

where ξl are the parameters of the prior, and the approxi-

mate posterior q is factorized over layers l as

q(z1:L|M;θe) =
L∏

l=1

q(zl|νl) . (8)

Figure 3. Compositional VAE layers. Encoder (left): given activa-

tions hl−1
e we output the lower-dimensional activations hl

e along

with the posterior parameters νl. Decoder (right): given activa-

tions h
l+1

d and a sample z
l+1 we output the higher-dimensional

activation h
l
d along with the prior parameters ξl.

To account for the new factorized structure of our latent

space, we expand the formulation of Eq. 6 and write

h
l
e,ν

l = El(hl−1
e ;θl

e) ,

z
l ∼ q(zl|νl) ,

h
l
d, ξ

l = Dl(hl+1
d , zl+1;θl

d) ,

(9)

where νl ∈ RHl×W l×Cl

and ξl ∈ RHl×W l×Cl

are pa-

rameters of the approximate posterior q(zl|νl) and prior

p(zl|ξl), respectively, which we take to be diagonal Gaus-

sians as in the original VAE [21]. During training, the KL

term of Eq. 3 ensures that q(zl|νl) stays close to the prior

p(zl|ξl), which encourages the model to learn a more well-

behaved representation for z
l. Note that, for z

L, we do

not have to predict hL
e , and the corresponding prior is set

to zero-mean unit-variance ξL = (0, I). Figure 3 shows

a graphical illustration of Eq. 9, and Figure 2 (d) depicts

the whole architecture. Note that, the overall architecture

is quite similar to the U-Net [30], which is widely used for

semantic segmentation, with an important difference that in

our model the skip connections are probabilistic.

Finally, substituting Eqs. 7 and 8 into the lower bound of

Eq. 3 gives us the training objective that we can optimize

given a training set using SGD. We give additional details

on this procedure in Section 5.2.

4. Model Fitting

The compositional VAE model described above is de-

signed to effectively encode the facial deformations in dif-

ferent layers of its hidden variables. An important prop-

erty that is a result of the factorized structure and the varia-

tional nature of the model is its ability to extrapolate, which
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is especially useful for face model fitting given 3D or 2D

constraints. In what follows, we describe the model fitting

procedure in different application scenarios, ranging from

depth map-based face fitting to shading-based face recon-

struction from just a single image.

Namely, given generic image data X and the pre-trained

decoder D, our goal is to find parameter vectors z1:L such

that decoded mesh whose shape is given by M̂ = D(z1:L)
fits the data as well as possible. Formally, this is equivalent

to solving a MAP problem, that is, maximizing

log p(X|M̂(z1:L)) +

L∑

l=1

log p(zl|ξl(zl+1)) , (10)

wrt z
1:L, where p(X|M̂) is the probability of observing

X if the mesh shape is given by M̂. Note that the prior

probability terms act as regularizers that prevent the model

parameters from straying too far away from values ob-

served in the training data. While this may be advanta-

geous in the presence of noise, it also limits the ability of the

model to extrapolate. In the results section, we will there-

fore compare results with different combinations of these

terms across various types of constraints and noise levels.

In practice, we use gradient descent to iteratively optimize

Eq. 10. Below, we describe the formulation of the data term

p(X|M̂) for different types of input data.

3D to 3D correspondences. The simplest case is when

we know the position Mi of a subset I of vertices up to

some precision, for example obtained from a multi-view

setup. Assuming a Gaussian error distribution with unit

variance and conditional independence of individual obser-

vations, we write
∑

i∈I

log p(Mi|M̂i) ∝ −
∑

i∈I

||Mi − M̂i||
2
2 . (11)

2D to 3D correspondences. In realistic scenarios, 3D to

3D correspondences are rarely available but 2D to 3D ones

can be established by matching sparse facial landmarks in

an image. Therefore, let I now be the set of vertices Mi

for which we have 2D projections Pi ∈ R2. Given camera

intrinsic K ∈ R3×3 and extrinsic R|t ∈ R3×4 parameters,

and making the same Gaussian IID assumptions about the

observations, we can write:
∑

i∈I

log p(Pi|M̂i) ∝ −
∑

i∈I

||Pi −ΠK,R|tM̂i||
2
2 , (12)

where ΠK,R|tM̂i are the 2D projections of the model ver-

tices.

Depth maps. Depth cameras have now become an in-

expensive and widely available means for face capture.

Furthermore, high-quality depth maps can be obtained by

stereo matching of high-resolution RGB images. Let D ∈

RHD×WD be such a depth map. We now need to de-

fine p(D|M̂). Ignoring differentiability for a moment, we

consider the set of vertices visible from the depth camera

point of view IV ⊂ H × W , compute their image coordi-

nates (ûi, v̂i) in the depth map coordinate frame defined by

K,R|t. Then, we evaluate the difference between the depth

value stored at those coordinates Di = Di(ûi, v̂i) and the

one that projected from the 3D vertex position using camera

extrinsics D̂i = (R · M̂i + t)z . Under the same Gaussian

assumptions as before, this allows us to write
∑

i∈IV

log p(Di|M̂i) ∝ −
∑

i∈IV

||Di − D̂i||
2
2 . (13)

Unfortunately, self-occlusions make visibility non-

differentiable. To overcome this difficulty, we compute

IV by rendering the mask of visible vertex indices using

OpenGL during forward passes and keep IV fixed during

the backward passes. Furthermore, in order for us to be

able to propagate gradients not only through the values of

depth, but also through the image coordinates (û, v̂), we

employ a bilinear kernel

Di =
∑

u,v

D(u, v)max(0, 1−|u− û|)max(0, 1−|v− v̂|) ,

(14)
to perform the differentiable sampling, as in [17].

Shape from Shading Constraints. Another compelling

but very challenging application is to fit face model to a sin-

gle RGB image. Whereas the rough expression can be es-

timated using sparse 2D-3D correspondences, they are not

sufficient to capture identity-specific high-frequency detail.

One approach to overcome this is using image formation

models. Let I ∈ RHI×WI×3 be an RGB image. Our goal

is now to define p(I|M̂). We assume a simple Lambertian

model, with a single 3-channel light source parameterized

by L ∈ R3×3. Further, we use the mesh M̂ to compute ver-

tex normals N̂, which amounts to computing a cross prod-

uct between two sets of vectors. Then, the model intensity

can be computed as Îi = Ti · L · N̂i, given the texture Ti.

Computing the texture is a highly non-trivial task, and here

we simply set it to be uniform white, assuming that to some

extent the albedo can be captured by L. We now can write
∑

i∈IV

log p(Ii|M̂i) ∝ −
∑

i∈IV

||Ii − Îi||
2
2 (15)

where we used same approach for sampling and computing

IV as for the depth maps. Moreover, we also use a similar

trick for computing L: at every forward pass, we use the

current estimate of N̂ to solve Eq. 15 for L, and then keep

it fixed during the backward pass.

5. Evaluation

We start with a description of our face geometry dataset

and give some implementation details. We then present
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quantitative results on several benchmarks and demonstrate

qualitatively that our model can be used both to fit noisy

depth maps and to perform shape-from-shading. Finally, we

present experiments designed to explore the learned latent

space and showcase its decompositional power.

5.1. Dataset

A face geometry dataset aligned with a reference topol-

ogy is required to train and evaluate our model. However,

none of the publicly available face shape datasets [6, 5] of-

fer truly high-resolution models, which would not allow us

to fully test descriptive power of our compositional model.

We thus built a new one that comprises high-quality face

geometries using a multi-view camera setup similar to [1]

and performing stereo-based 3D face reconstruction. We

captured 20 different people, each performing a set of ex-

pressions similar to those of blendshapes of [18]. This re-

sulted in 2140 high-quality meshes. To create a uniform

face topology, we first defined a generic neutral face tem-

plate mesh with a precomputed UV map. This generic

mesh was then aligned to the mesh for each subject with

their expression being neutral. To this end, we performed

non-rigid mesh deformation [33] with facial landmark con-

straints, which were detected on the corresponding RGB

images from the multi-view setup [38].

Given those topologically aligned neutral meshes for

each individual, we further aligned them to identity-specific

peak expression scans using facial landmarks, geometrical

constraints, and optical flow-based constraints. This pro-

duced fully-aligned meshes, which are all registered to the

same topology represented as a UV map of size H ×W =
256× 256. Finally, we removed from all mesh coordinates

the global rotation and translation of the head. Figure 4 de-

picts some of the fully-registered meshes.

Figure 4. Samples from the dataset.

In all of our numerical experiments, we use a total of

1712 meshes of 16 randomly chosen subjects for training,

and 428 meshes of the remaining 4 subjects for testing.

5.2. Implementation Details

All the models are trained using stochastic gradient de-

scent with ADAM [19] optimizer with step size 1× 10−4

and the hyperparameters β1 = 0.9, β2 = 0.999. For the

convolutional models, we use identical architecture with 5

residual blocks, with down(up)-sampling after each block

of the encoder(decoder). Each block consists of two 4x4

convolutional layers with ELU non-linearities, with weights

initialized from a zero-mean Gaussian distribution with

standard deviation 0.001. The final 8×8 convolutional rep-

resentation is mapped to the bottleneck representation using

a fully connected layer. Both linear and convolutional VAE

models use 128-dimensional bottleneck. For the composi-

tional VAE, we use 64-dimensional bottleneck z
6, all the re-

maining convolutional maps z5, . . . , z1-s have 16 channels

and the size of the corresponding activation layers. When

training variational models, we employ the free-bits tech-

nique of [20] with λ = 4, as we found that it leads to better

convergence.

Given a pre-trained model, the model fitting is done by

optimizing Eq. 10 with one of the data terms from Section 4

using gradient descent with ADAM optimizer. For noisy

depth maps from Section 5.4, we found that using a more

robust L1 loss leads to better results. For the 2D-3D and

3D-3D fitting results presented in the following section, the

optimization takes around 3-4s per image, and for depth fit-

ting it takes around 8s, on a single NVidia P100 GPU.

5.3. Quantitative Evaluation

In this section, we evaluate quantitatively the behavior of

our model and compare it to that of baselines on syntheti-

cally generated 3D to 3D correspondences, 2D to 3D corre-

spondences, and depth maps. In all three cases, we perform

the fitting as described in Section 4 and will demonstrate in

the following section that our approach works equally well

on real stereo and shape-from-shading data.

Our baselines include the traditional linear model, intro-

duced in Section 3.2, as well as a the deep convolutional

VAE from Section 3.3. We will refer to them as VAE and

LINEAR in the result tables below.

We also compare multiple variants of our ap-

proach depending on how we handle the prior terms

log p(zl|ξl(zl+1)) of Eq. 10. We denote them as zl for sim-

plicity and can either use them or ignore them. More specif-

ically, we report our results that range from using only z
1

(less priors) to z
1:4 (more priors). Recall from Section 3.4

that the lower values of l denote layers that influence most

the overall shape and the higher values the fine details. This

means that we progressively make constraints more and

more global.

Method 0.2% 0.5% 2% 10%

LINEAR 2.795 1.309 1.016 0.980

VAE 1.678 1.317 1.176 1.139

OURS z
1 1.470 1.079 0.596 0.247

OURS z
1:2 1.468 1.121 0.609 0.336

OURS z
1:3 1.396 1.020 0.616 0.467

OURS z
1:4 1.320 0.986 0.775 0.717

Table 1. Model fitting with 3D-3D correspondences. RMSE in mm

for different proportions of constrained vertices.

3D to 3D correspondences. In Table 1, we report the av-

erage RMSE in mm when constraining the 3D position of a
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subset of mesh vertices, as a function of the proportion of

vertices being fixed. While these are chosen randomly for

each subsampling level, the error is measured for all mesh

vertices. All variants of our full compositional model out-

perform LINEAR and VAE, even when constraining as few

as 0.2% of the vertices, which amounts to about 60 3D to

3D correspondences. This suggests that the performance

boost is not only attributable to the increased flexibility of

our representation but also to the fact it captures the right

priors about face geometry. Unsurprisingly, the fewer cor-

respondences we have, the more important the global shape

constraints become, as evidenced by the fact that we get the

best results when using the priors for all the layers in the

0.2% case but only the ones on the fine details in the 2%

and 10% cases.

Method 0.2% 0.5% 2% 10%

LINEAR 4.381 3.691 3.394 3.302

VAE 3.606 3.183 3.114 3.077

OURS z
1 2.690 2.521 2.390 2.330

OURS z
1:2 2.660 2.521 2.396 2.343

OURS z
1:3 2.606 2.512 2.431 2.396

OURS z
1:4 2.586 2.545 2.472 2.453

Table 2. Model fitting with 2D-3D correspondences. RMSE in mm

for different proportions of constrained vertices.

2D to 3D correspondences. In Table 2, we present fit-

ting results obtained by constraining some mesh vertices to

project at the right location in one of the camera views. As

before, we report results obtained by constraining in this

fashion from 0.2% to 10% of the vertices. Due to 2D-3D

ambiguities, this is a more difficult that exploiting 3D to

3D correspondences and the accuracies for all methods are

worse than those reported in Table 2. Nevertheless all vari-

ants of our approach still outperform the baselines and we

observe again that, the sparser the data is, the more impor-

tant it is to account for the priors at all four levels of our

architecture.

Method σ2 = 1 σ2 = 2 σ2 = 3

LINEAR 3.908 3.924 3.953

VAE 3.167 3.199 3.249

OURS z
1 3.032 3.142 3.252

OURS z
1:2 3.020 3.114 3.215

OURS z
1:3 3.079 3.127 3.191

OURS z
1:4 3.110 3.150 3.226

Table 3. Model fitting with depth data. RMSE in mm for different

noise levels.

Depth maps. We generate synthetic depth maps from the

ground truth data and corrupt them by adding different lev-

els of IID Gaussian noise. We report our results in Table 3.

Since the correspondences must be established and comput-

ing visibility is a non-differentiable operation as discussed

in Section 4, fitting is more difficult than before. As a result,

our method still outperforms the baselines but by a smaller

margin. In this case, the best variants of our model are those

that enforce priors up to z
3. In other words, in the presence

of noisy but dense data, over-constraining the model can be

less beneficial.

5.4. Qualitative Results

Figure 5. Visual results for fitting noisy depth maps. From left-to-

right: input depth map, rendered mesh (LINEAR), rendered mesh

(OURS), rendered mesh (OURS) overlaid with the image.

We now turn to more realistic image data to demonstrate

the power of our model. To this end, we first captured two

additional subjects using a small 3-camera setup, and used

stereo to compute noisy depth maps that are representative

of what can expect in a real world environment. Figure 5

depicts our results alongside those of LINEAR. Our method

correctly captures not only the overall head shape but also

fine details whereas LINEAR introduces numerous artifacts

instead.

Figure 6. Visual results for shape-from-shading for images

from [31]. From left-to-right: rendered mesh (LINEAR), rendered

mesh (OURS). Note: for original images, please refer to [31].

In Figure 6, we demonstrate the ability of our model to
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capture an unusual expression—that of the woman of the

top—or face—that of the man at the bottom—using images

from 300-W dataset [31]. We initialize the process by using

the 2D landmarks provided by [31], to compute the head

pose and general expression, and then solve the MAP of

Eq. 10 with the data term of Eq. 15. For comparison pur-

poses, we also used LINEAR, which again produced un-

wanted artifacts.

5.5. Exploring the Latent Space

Figure 7. Visualizing the receptive field: how changing the value

of a single variable affects the output. Heatmaps represent the

MSE between the deformed mesh and the original in the UV space.

From left-to-right: z6 - z2.

Figure 8. Visualizing the effect of varying the first PCA component

of z1:2 (top) and z
4:5 (bottom) representations.

We start with an experiment that demonstrates the spa-

tial extent the changes in a single hidden variable at differ-

ent levels have on the output. For that, we first fix all the

variables z1:L to the values corresponding to the mean face,

and then vary a single location in z
l from the minimum to

the maximum value for that variable across the dataset. The

results of those variations are shown in Figure 7. Naturally,

the variables from the layers which are closer to the bot-

tleneck have global influence on the mesh, and as we go

closer to the output, their effective receptive field gradually

shrinks.

Further, we explore the learned space by looking at the

kind of details that different subsets of variables z
1:L are

capturing. PCA is a classical approach for this kind of ex-

ploratory analysis. Namely, we first compute the projec-

tions ẑ
1:L for all the meshes in the dataset by optimizing

the posterior of Eq. 10, and then compute the PCA basis

via SVD for a subset of variables of interest. We report

visual results of varying first principal components of z1,2

and z
5,6 in Figure 8. As can be seen from this illustration,

the higher layers z
1,2, which have smaller receptive field

size and more degrees of freedom, capture high-frequency

deformations, such as beards and wrinkles. On the other

hand, the lower layers z5,6 evidently capture global details,

such as the general shape of the head.

Figure 9. Detail transfer. The leftmost and rightmost columns are

the two original meshes. Top: interpolating z
1,2 while keeping

z
5,6 details fixed. Bottom: interpolating z

5,6 while keeping z
1,2

fixed.

An alternative way to explore the latent space, which is

usually employed in deep generative model literature, is to

directly traverse the space between the projections of the

data samples. To do that we select several random pairs of

meshes and find the corresponding values of ẑ1:L by opti-

mizing Eq. 10. Given those, we then can interpolate the val-

ues of a certain subset of variables between two projections,

while keeping all the others fixed. The visual demonstration

of this process for z1,2 and z
5,6 is shown in Figure 9. We

see that higher layers z
1,2 are capturing higher-frequency

details, e.g. beards and small variations in eyelids and lips,

whereas the lower layers z5,6 are capturing the overall shape

of the head and the general expression. This indicates that

the model indeed separates the geometrical details into dif-

ferent semantically meaningful layers of representation.

6. Conclusion

We proposed a novel data-driven parameterization for

face geometry, and demonstrated its versatility on a vari-

ety of model fitting tasks. An exciting direction for future

work is investigating alternative architectures for the de-

coders, such as PixelRNN, and learning to predict hidden

representations directly from the images, without a need for

optimization. We believe that applying modern generative

modeling techniques to geometry data is a very promising

field, especially since, unlike for natural images, there ex-

ist more straightforward ways to evaluate the quality of the

latent space.
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