
KIPPI: KInetic Polygonal Partitioning of Images

Jean-Philippe Bauchet Florent Lafarge

Inria – Université Côte d’Azur

Firstname.Lastname@inria.fr

Abstract

Recent works showed that floating polygons can be

an interesting alternative to traditional superpixels, espe-

cially for analyzing scenes with strong geometric signa-

tures, as man-made environments. Existing algorithms pro-

duce homogeneously-sized polygons that fail to capture thin

geometric structures and over-partition large uniform ar-

eas. We propose a kinetic approach that brings more flex-

ibility on polygon shape and size. The key idea consists

in progressively extending pre-detected line-segments until

they meet each other. Our experiments demonstrate that

output partitions both contain less polygons and better cap-

ture geometric structures than those delivered by existing

methods. We also show the applicative potential of the

method when used as preprocessing in object contouring.

1. Introduction

Algorithms for decomposing images into superpixels,

i.e. small groups of connected pixels, are now standard

tools in computer vision. They are typically used as pre-

processing to reduce the algorithmic complexity of subse-

quent tasks while enforcing the spatial consistency between

pixels. Some recent works [2, 9, 14] demonstrated the ben-

efit of handling floating polygons instead of superpixels for

scalability, storage and region connectivity reasons. Such

resolution-independent representations are particularly ap-

pealing for analyzing scenes with strong geometric signa-

tures, as man-made environments. Examples of applica-

tions include image rendering [31], urban reconstruction

[10] or scene illumination [12].

Existing strategies for generating such polygonal par-

titions are based either on the vectorization of super-

pixel boundaries [2], or on the construction of geometric

data-structures that conform to pre-detected line-segments

[9, 14]. The former easily introduces approximation er-

rors when turning superpixels into polygons and requires

a good superpixel connectivity which is difficult to guar-

antee in practice. The latter, which focuses on position-

ing polygons on each side of line-segments, is globally

Figure 1. Kinetic partitioning into polygons. Our algorithm de-

composes an image (left) into a partition of convex polygons

(right). While superpixel-based methods impose homogeneously-

sized regions, our polygons are more meaningful, capturing both

large components and thin lineic structures that compose, for in-

stance, urban scenes.

more robust and comes with some geometric guarantees but

produces less accurate results. In particular, line-segment

based methods poorly deal with potential intersections of

line-segments that might occur in a spatial neighborhood.

They assume that pre-detected line-segments constitute en-

tire or almost entire lineic components of an object. In prac-

tice, we observe a line-segment is often a small part of such

a component, and needs to be extended to properly capture

the underlying structure. We also observe that imposing

homogeneously-sized polygons does not allow the capture

of meaningful polygons as line-segments are not uniformly

distributed on the image domain.

Based on these observations, we propose a kinetic ap-

proach for partitioning an image into polygons. The key

idea consists in progressively extending pre-detected line-

segments until they meet each other. We then decide

whether line-segments must keep extending based on image

gradient considerations and a user-defined number of colli-

sions. This strategy allows us to both recover better junc-

tions in lineic structures and describe objects with polygons

more meaningful than superpixel-based polygons. Figure 1

shows an example of such a partition generated from an im-

age exhibiting man-made objects.

The contributions of this work are (i) a computation-

ally efficient kinetic framework able to process big im-

13146

ages in a few seconds, (ii) a shape regularization algorithm

from line-segments to preserve parallelism, orthogonality

and collinearity relationships, and (iii) an object contouring

model that operates on our polygonal partition.

After presenting the related work in Section 2, we detail

in Section 3 how line-segments are detected and regular-

ized. The kinetic framework is exposed in Section 4 and

evaluated in Section 5. We show the applicative potential of

our method on object contouring in Section 6.

2. Related works

Our review of previous work covers the generation of

superpixels and polygons, as well as the detection of geo-

metric shapes.

Superpixel decomposition. Region boundary adherence,

uniformity of region shapes, computational efficiency, re-

gion compactness or simplicity of use constitute the main

evaluation criteria to measure the quality of a superpixel

decomposition. Algorithms proposed in the literature rarely

score high on each of these criteria. Iterative refinement

methods as [1, 22, 30] are time and memory efficient and

easy to use. More global approaches that exploit energy

minimization on graphs as [20, 28] might produce results

with better region boundary adherence but are computation-

ally less efficient. By operating at the scale of the pixel, the

output of these methods is however resolution-dependent

and heavy to store, and also often comes with few guaran-

tees on the region connectivity.

Polygon decomposition. A natural way to decompose an

image into polygons is to vectorize the chains of boundary

pixels of superpixels. Achanta et al. [2] position vertices

when at least three superpixels meet, and vectorize the chain

of pixels in between these vertices using a Douglas-Peucker

based-algorithm [8]. It produces an image partitioning into

non-convex polygons that approximate the initial super-

pixels. The alternative way consists in fitting geometric

data-structures on the image. Duan et al. [9] decompose

images into uniformly-sized convex polygons by building

a Voronoi tessellation that conforms to pre-detected line-

segments. Gevers et al. [16] and Forsythe et al. [14] build a

Delaunay triangulation, before regrouping triangles to form

polygons. The former operates by iteratively splitting trian-

gles with heterogeneous radiometry whereas the latter uses

a constraint Delaunay triangulation that conforms to pre-

detected line-segments. Although exploiting line-segments

to guide the polygonal partitioning is computationally effi-

cient, existing methods [9, 14] fail to properly recover the

junctions of lineic structures, leading in best situations to

the generation of many thin polygons around a junction.

Shape detection and regularization. Fitting geometric

shapes in images is an efficient way to synthesize a huge

number of pixels into a few parametric functions. Line-

segments constitute the most common geometric shapes for

analyzing images, especially when the observed structures

are lineic [18]. If the Hough detector has been widely used

in the literature for decades, more recent algorithms im-

proved the quality of line-segment detection while guar-

anteeing fast running times [11], and even false detection

control [29]. However line-segments returned by such al-

gorithms do not preserve geometric regularities of observed

structures, as for instance line alignments in a regular lay-

out of windows on a facade image. Global regularization is

often a valuable processing to both (i) correct imprecisions

and (ii) reduce output complexity by removing redundant

shapes. Existing regularization methods typically operate

from 3D shapes either by iterative refinements [24] or by

energy minimization [25].

3. Shape detection and regularization

We now expose the first step of our algorithm that con-

sists in detecting and regularizing line-segments.

Detection of Line-segments. We use the Line-Segment

Detector (LSD) [29] to extract line-segments from images.

Based on a region-growing approach operated on image

gradients, this algorithm has several interesting properties

including a linear algorithmic complexity in the number

of pixels in the image and a mostly parameterless control

scheme with respect to other existing algorithms.

Global regularization. We optionally operate a global

regularization of line-segments in order to (i) correct impre-

cisions and (ii) reduce the occurrence of skinny cells in the

subsequent image partitioning detailed in Section 4. This

process is mainly designed for images with man-made ob-

jects without strong perspective effects. We propose two

quadratic formulations performed sequentially for compu-

tational efficiency that first re-orient and then re-align LSD

line-segments with respect to the three principal geometric

regularities used for characterizing shapes of man-made ob-

jects, i.e. parallelism, orthogonality and collinearity.

By denoting by xi ∈ [−θmax, θmax] the quantity to

be added to the initial orientation of the line-segment i
with respect to its center, we formulate the line-segment re-

orientation problem by minimizing the energy

U(x) = (1− λ)D(x) + λV (x) (1)

where x = (x1, .., xn) is a configuration of perturbations

operated on the n line-segments, D(x) and V (x) represent

a data term and pairwise potential respectively, and λ ∈
[0, 1] is a parameter weighting these two terms, typically

0.8 in our experiments.

3147

Data term D(x) discourages strong angle deviations

with respect to their initial orientation. It is expressed by

D(x) =
1

n

n∑

i=1

(
xi

θmax

)2

(2)

Pairwise potential V (x) encourages pairs of spatially-

close line-segments which are nearly-parallel or nearly-

orthogonal to be exactly parallel or orthogonal:

V (x) =
1∑n

i=1

∑
j>i µij

n∑

i=1

∑

j>i

µij

|θij − xi + xj |

4θmax

(3)

where θij measures how far the relative angle αij between

line-segments i and j is from a straight or right angle. For-

mally, θij = αij (mod π) if αij ∈ [−π
4
, π
4
[∪[3π

4
, 5π

4
[and

θij = αij −
π
2

(mod π) otherwise.

The dummy variable µij returns 1 if line-segments i and

j are (i) spatially close and (ii) |θij | < 2θmax, and 0 oth-

erwise. We consider that two line-segments are spatially

close if, after building a Delaunay triangulation of points

regularly sampled on all the line-segments, at least one De-

launay edge connects their respective sampled points. In

practice, sampled points are distant by 10 pixels. Note that

time for building a Delaunay triangulation is rather negligi-

ble with respect to other operations. Such a neighborhood

strongly reduces the number of irrelevant interactions with

respect to a standard Euclidean distance by imposing a di-

rect visibility in between line-segments.

π

3π

4

π

2

π

4

0 π

3π

4

π

2

π

4

0

Figure 2. Line-segment re-orientation on a 9 Mpixels satellite im-

age of Seoul city. The quite-uniform orientation histogram of ini-

tial line-segments (left) makes a few dominant orientations appear

after the regularization (right).

Assuming there are m non-zero µij , we introduce a new

set of variables y = (y1, .., ym) so that our formulation can

be turned to a quadratic optimization problem with (n+m)
variables and 2(n+m) linear constraints:

minimize
x,y

(1− λ)
n∑

i=1

(
xi

θmax

)2

+ λ
m∑

k=1

yk

subject to xi ≤ θmax, i = 1, . . . , n

−xi ≤ θmax, i = 1, . . . , n

yk ≤
1

4θmax

(θij − xi + xj), k = 1, . . . ,m

−yk ≤
1

4θmax

(θij − xi + xj), k = 1, . . . ,m

(4)

This minimization problem is solved using a standard opti-

mization library [15].

Figure 3. Global regularization of line-segments. Floating line-

segments detecting by LSD (top left) yields a complex polygonal

partition with many meaningless polygons (top right). By regular-

izing them (bottom left), we both simplify the partition with typ-

ically around 20% less polygons, and improve the polygon align-

ments with typical building layouts.

We then use an analogous formulation to re-align line-

segments. By now denoting by xi ∈ [−dmax, dmax]
the translation to be operated on the line-segment i along

its orthogonal vector, we minimize the energy U(x) of

Equation 1 with D(x) =
∑n

i=1
(xi/dmax)

2
and V (x) =∑n

i=1

∑
j>i µ

′
ij(|dij − xi + xj |/4dmax). Here, dij corre-

sponds to the distance between the support lines of parallel

line-segments i and j, whereas µ′
ij returns 1 if (i) µij = 1,

(ii) line-segments i and j are parallel, and (iii) dij < 2dmax,

and 0 otherwise. In our experiments, we typically fixed

θmax and dmax to 5◦ and 1 pixel. Figures 2 and 3 show

the impact of regularization on urban scenes.

4. Kinetic partitioning

We now present our partitioning algorithm, after a brief

introduction to Kinetic Data Structures.

4.1. Background

A kinetic data-structure consists in a set of geometric

primitives, whose coordinates are continuous functions of

time. The purpose of kinetic frameworks [4, 17] is to main-

tain the validity of a set of statements that apply to such

a data-structure. These statements, called certificates, are

built upon predicates, which are functions of the geometric

primitives that return a discrete set of values. Most often,

predicates evaluate the sign of an algebraic expression bind-

ing two primitives or more, and therefore convey an idea of

interaction between them.

3148

(a) Detected line-segments (b) Initialization (c) First event (d) Last event (e) Finalization

Figure 4. Illustration of the kinetic partitioning mechanism. Line-segments (a) are converted into an initial planar graph (b). As extremities

of primitives extend (blue dots), they meet each other, which enriches the planar graph with new nodes and edges (c,d). After the last

collision, the planar graph is simplified by removing unnecessary nodes (e).

As primitives move, events may occur when certificates

become invalid. Kinetic frameworks show a strong algorith-

mic interest to dynamically order the times of occurrences

of the events within a priority queue. When an event ac-

tually happens on top of the priority queue, the geometric

objects responsible for a certificate failure and the priority

queue itself are updated, so that the kinetic data structure

remains valid at any time of the simulation.

Examples of kinetic data structures include dynamic De-

launay triangulations of a set of moving vertices [3], or

polyhedral surface reconstruction from point clouds [6].

4.2. Algorithm

We propose a kinetic framework in which the line-

segments are progressively lengthening in the image do-

main. The underlying data-structure is a dynamic planar

graph Gt = (Vt, Et) that partitions the image domain,

with Vt and Et the set of vertices and edges respectively at

time t. When line-segments intersect, the complexity of the

graph evolves with typically the insertion of new vertices

and edges so that it remains planar. We define below the

primitives, certificates and update operations of our kinetic

formulation.

Primitives. Because the two extremities of a line-segment

M B

A

Pk’(t)

Pk(t)

vk’

vk

should be able to expand

independently, our prim-

itives correspond to half

line-segments. Formally, a

detected line-segment between

points A and B generates two

primitives sk(t) = [MPk(t)] and sk′(t) = [MPk′(t)]
where fixed point M is the mid-point of A and B, and

moving points Pk(t) and Pk′(t) evolve with time such that

Pk(t) = A+−→vk × t (5)

Pk′(t) = B +−→vk′ × t (6)

where −→vk (respectively −→vk′) is the speed vector of primitive

sk(t) (resp. sk′(t)) of direction
−−→
MA (resp.

−−→
MB) and inten-

sity vk (resp. vk′). In our experiments, vk is set to 1.

Certificates. For each primitive si, we define the certifi-

cate function Ci(t) as

Ci(t) =

N∏

j=1

j 6=i

Pr i,j(t) (7)

where N is the number of primitives of the kinetic sys-

tem, and Pr i,j(t) the predicate function that returns 0 when

primitive si enters in collision with primitive sj , i.e. when

the distance from point to line-segment d(Pi(t), sj(t)) = 0,

and 1 otherwise. Primitive si is called the source primitive,

and sj , the target primitive. We also call collision point, the

point located at the intersection of two primitives.

Initialization. We construct the planar graph at t = 0
by inserting as vertices (i) the mid-point of each segment,

(ii) the four corner points of the image domain, and (iii)

points located at the intersection of two line-segments, if

any. We set edges between the four successive corner points

as well as in between possible intersection points and the

mid-points of their corresponding line-segments, as illus-

trated in Figure 4-(b). We also create the priority queue by

computing and sorting all the times for which certificates

Ci(t) = 0 for i = 1..N . Instead of considering all possible

pairs of line-segments at once, we compute several priority

queues in successive time intervals [kT, (k+1)T [to reduce

the algorithmic complexity. In practice, when k is incre-

mented, a new priority queue is built from events occurring

within this temporal range. By defining the bounding box

of a primitive as the smallest image-aligned square that con-

tain the primitive at time (k+ 1)T , and by assuming primi-

tives extend at constant speed, we easily find these events as

the pairs of primitives whose bounding boxes overlap. T is

fixed to 50 in our experiments, which is a good compromise

between running time and memory consumption.

Updating operations. The planarity property of our

graph is broken when an event happens, i.e. when one of

the N certificates become null. We repair it by first insert-

ing the collision point in the graph. When three primitives

3149

or more are concurrent, we do not insert this point if it al-

ready exists. We then update the edge set of the graph by

(i) inserting a new edge between the collision point and the

last collision point of the source primitive, and (ii) splitting

the edge supporting the target primitive with respect to the

collision point, as illustrated in Figure 4-(c).

In addition to graph updates, we also decide whether

the source primitive should keep propagating. We stop the

propagation of the source primitive if it has entered into col-

lision more than a user-defined number of times K, or else if

its potential prolongation aligns well with high gradients in

the input image. This second condition allows us to not stop

the primitive when an obvious image discontinuity along its

supporting line exists. Note that our kinetic data-structure

is a motorcycle graph [13] when K = 1 and the gradient-

based condition is deactivated. Figure 5 shows the impact

of the stopping conditions on the output partition.

(a) (b) (c)

Figure 5. Stopping conditions. Setting K to 1 is sufficient to cap-

ture the different parts of buildings (a). Deactivating the gradient-

based condition leads to omit a few structural components (b)

whereas fixing K to a too high value, here 20, gives a too com-

plex partition in which polygons are not meaningful anymore (c).

Finally we update the priority queue by removing the

processed event from it, and also, in case the propagation is

stopped, all the events created from the certificate function

of the source primitive.

Finalization. Once the priority queue is empty, we sim-

plify the planar graph by removing the unnecessary vertices,

i.e. vertices adjacent to two colinear edges which are thus

merged, as illustrated in Figure 4-(e). Optionally, we also

remove skinny polygons when the width of their oriented

bounding rectangles is lower than 2 pixels. Such polygons,

that can hardly be exploited by subsequent tasks, are merged

to the biggest adjacent polygon under the condition the new

polygon is convex.

The global mechanism of our algorithm is summarized

in Algorithm 1. In all our experiments, we set the max-

imal number of collisions K to 1, except for Figure 5.

Note that the returned polygons are convex by construction.

As concavities inside polygons only appear when two non-

colinear primitives intersect at exactly the same time during

Algorithm 1 Pseudo-code of the Kinetic partitioning

1: Initialize the planar graph G
2: Initialize the priority queue Q
3: while Q 6= ∅ do

4: Pop the source and target primitives from Q
5: Update G
6: Test the stopping condition of the source primitive

7: Update Q
8: end while

9: Finalize the planar graph

the propagation phase, we simply force one of the two prim-

itives to keep propagating. Convexity is an interesting prop-

erty that makes some geometric computations simpler as

polygon intersection, point sampling or Constructive Solid

Geometry operations. This is for instance useful in 3D re-

construction [5]. To have non-convex polygons, a possible

postprocessing could be to group adjacent convex polygons

following a color metric.

5. Experiments

We tested our algorithm from large-scale satellite images

as well as from the Berkeley dataset [21]. We deactivated

the line-segment regularization for Berkeley images which

is mainly composed of organic shapes. Our main parameter

is the LSD scale which allows us to control the sensitivity

to image noise, and thus the amount of input line-segments.

Despite our algorithm does not offer an exact control on the

output number of polygons, this parameter directly impacts

on it, as illustrated in Figure 6.

Figure 6. Partition complexity. We can produce partitions with

varying numbers of polygons by tuning the sensitivity of the line-

segment detector. Left partition with 113 polygons is sufficient for

capturing the indoor structure and the main furnitures. Right parti-

tion (365 polygons) also captures smaller details as some patterns

of the background painting.

We compared our algorithm with state-of-the-art su-

perpixel methods SNIC [2] and ERS [20] and polygo-

nal partitioning methods VORONOI [9] and SNICPOLY

[2]. Because these methods are designed to produce

homogeneously-sized regions, our output partitions are vi-

sually different, combining both large polygons on homo-

geneous image areas and thin polygons on lineic structures

as illustrated in Figure 7. Among the tested methods, only

3150

Input ERS [20] SNICPOLY [2] VORONOI [9] Ours

Figure 7. Visual comparisons with superpixel and polygonal partitioning methods. Contrary to existing methods designed to deliver

homogeneously-sized regions, our partitions combine large polygons capturing homogeneous areas, as the shadow under the airplane, and

thin polygons describing lineic structures as the legs of the dragonfly. For an identical number of output regions, our algorithm produces

more meaningful polygons, as those capturing the windows of the facade image.

ERS offers enough flexibility on region shapes to capture

lineic structures like us. However, converting ERS super-

pixels into polygons is a delicate task because of boundary

irregularities and region connectivity ambiguities. Our al-

gorithm performs best on man-made scenes in which ob-

jects or object parts can be well captured by polygons.

We evaluated our algorithm on the Berkeley300 dataset

[21] using standard quality criteria of superpixel methods,

in particular the boundary recall as defined in [23] as well

as the boundary precision. The former indicates the ratio

of Ground Truth contours correctly recovered by the output

region boundaries, whereas the latter measures the ratio of

output region boundaries that correctly recovers the Ground

Truth contours. We measured the boundary precision on

the entire image, contrary to some works [2] that compute

it on an ǫ-domain around the Ground Truth contours. For

measuring the quality criteria from polygonal partitions, the

edges of floating polygons have been discretized into pixel

boundaries. We measured these criteria for partitions re-

turning between 50 and 1, 000 regions. Figure 8 shows

our algorithm outperforms polygonal partitioning methods

VORONOI and SNICPOLY on boundary recall by quite a

big margin as their scores at a given number of polygons

remain lower than ours with twice less polygons. Our al-

gorithm performs best for a number of regions between 400

and 800, with a boundary recall even higher than superpixel

method SNIC. Because our partitions contain large-sized

polygons, our algorithm even outperforms superpixel meth-

ods on the precision to recall curve when recall is higher

than 0.85. To get homogeneously-sized polygons, we can

apply a Poisson-disk sampling as postprocessing, similarly

to [9]. Its effects on the boundary recall are shown through

3151

the curve KIPPI-HOMO: the recall decreases but remains

higher than SNICPOLY and VORONOI. When deactivat-

ing Poisson disk sampling on VORONOI, the boundary re-

call improves by a few hundredths but remains lower than

SNICPOLY as shown with the curve VORONOI-HETERO.

0.5 0.6 0.7 0.8 0.9 1.0

Boundary Recall

0.09

0.13

0.17

0.21

0.25

B
o

u
n

d
ar

y
P

re
ci

si
o

n

0 200 400 600 800 1000

Number of superpixels

0.4

0.6

0.8

1.0

B
o

u
n

d
ar

y
R

ec
al

l

Figure 8. Quantitative evaluation. Our algorithm outperforms

polygonal partitiong methods VORONOI and SNICPOLY on

boundary recall while approaching the scores of the best super-

pixel methods. Because we allow polygons to be large for captur-

ing big homogeneous areas, our algorithm offers a better compro-

mise between boundary precision and boundary recall than other

methods when recall is high, i.e. higher than 0.85.

By reasoning at the scale of geometric shapes instead of

pixels, and by exploiting an efficient framework based on

Computational Geometry, our algorithm is computationally

efficient and scalable. As shown in Table 1, a few minutes

are necessary to process a massive satellite image of sev-

eral hundred millions pixels on a single standard computer.

In terms of storage, polygons and their connectivity can be

saved in a very compact way with a planar graph.

Our algorithm has a few shortcomings. First, it does not

offer to the user an exact control on the number of out-

put polygons. Also, regularization of line-segments is not

effective on organic images: it reduces the complexity of

the partition at the expense of accuracy. Finally, missing

line-segments on small structural parts can lead to under-

segmentation situations that are currently not handled by

our algorithm. One solution would be to split polygons with

heterogeneous radiometry within the kinetic data-structure.

Facade Aerial Satellite

154Kpix 2.46Mpix 106Mpix

Line-segments 847 3178 171.1K

Output polygons 530 2488 124.5K

Line-segment detection 52.4 ms 0.59 s 70.7 s

Regularization 72.8 ms 0.35 s 654.5 s

Kinetic partitioning 51.2 ms 0.23 s 45.1 s

Total time 0.195 s 1.41 s 795.6 s

Table 1. Performances on three different image sizes (Facade from

Figure 7 -bottom, Aerial from Figure 10-right, and Satellite whose

a cropped part is illustrated on Figure 1) in terms of running time.

6. Application to object contouring

Object contouring by polygonal shapes provides a com-

pact and structure-aware representation of object silhou-

ettes, in particular in man-made environments [7, 27]. To

achieve polygonal object contouring from our partition, we

associate each polygon with a binary activation variable in-

dicating if it belongs to the objects of interest or not, sim-

ilarly to [19] with superpixels. The output polygonal con-

tours correspond to the set of edges separating active poly-

gons from inactive ones, which ensures that the contours

are closed by construction. The problem is formulated as

a standard energy minimization with a data term measuring

the agreement between the binary variable of each polygon

and an underlying probability map H , and a smoothness

term based on Potts model to favor compact contours.

#edges: 130 #edges: 308 #edges: 476

Figure 9. Trade-off between fidelity and simplicity. Polygonal par-

titions with low complexity give compact polygonal contours that

roughly approximate the object silhouette (left). More refined par-

titions allow us to better capture shape details (right).

For each input image, we compute the probability map

H from a few user-provided scribbles, which roughly char-

acterize the radiometric distribution of the foreground ob-

jects of interest and the image background. We express the

probability H(i|l) of a pixel i to belong to class l = {0, 1}
as its normalized RGB distance to the closest color in the

set of scribbled pixels belonging to that class

H(i|l) =
min
j∈Sl

‖I(i)− Î(j)‖2
2

min
j∈S0

‖I(i)− Î(j)‖2
2
+ min

j∈S1

‖I(i)− Î(j)‖2
2

(8)

3152

In
p

u
t

sc
ri

b
b

le
s

[2
6
]

+
[8

]
[9

]
O

u
rs

Figure 10. Object contouring. Using our partition as input, we are able to capture details in the image missed by other algorithms while

producing polygons with lower complexity. Note in particular how thin structures as the legs of the dragonfly or the propeller of the

airplane are recovered. Our method performs best on man-made objects composed of piecewise-linear contours, as roofs (right).

where S0 (respectively S1) is the set of pixels scribbled as

foreground (resp. background), and Î is the input image

convolved by a 11 × 11 mean filter to remove noise. Note

that more advanced methods could be used to predict fore-

ground and background pixels. This would surely lead to

better results, but this is beyond the scope of this paper.

Despite the simplicity of our color model H , Figure 10

shows our method achieves good results with both organic

and man-made shapes. Output polygons capture well the

object silhouettes while having a low complexity. In par-

ticular, it outperforms results returned by Grabcut [26] fol-

lowed by a Douglas-Peucker vectorization of the border

pixels [8]. Replacing our partitions by VORONOI [9] re-

duces accuracy. In particular, VORONOI partitions cannot

handle thin structures and tend to produce complex polygo-

nal contours zigzagging around the true silhouettes.

7. Conclusion

We proposed a kinetic approach to partition images

into floating polygons. Whereas existing methods impose

homogeneously-sized polygons in the style of superpixels,

our line-segment extension mechanism offers more flexibil-

ity on polygon shapes. This allows us to better recover geo-

metric patterns contained in man-made and organic images,

and capture thin structures without over-partitioning large

homogeneous areas. By reasoning at the scale of geometric

shapes instead of pixels within a computational geometry

framework, our algorithm is scalable and computationally

efficient. We demonstrated the strong applicative potential

of our algorithm when used as preprocessing in object con-

touring. In particular, a simple polygon selection model al-

lows us to accurately capture the silhouette of complex ob-

jects by a polygon with fews edges.

A natural extension of this work would be to enrich

the geometric shapes by more complex parametric func-

tions than line-segments. Quadrics and Bezier curves would

bring more versatility to output partitions. We also would

like to investigate on the exploitation of such a kinetic

framework in 3D where geometric shapes are planes. This

would allow the partition of 3D data by polyhedra in a very

efficient way.

Acknowledgments

This work was supported by Luxcarta. The authors

thank Radhakrishna Achanta and Jean-Dominique Favreau

for provinding materials for experimental comparisons.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. Slic superpixels compared to state-of-the-art

3153

http://luxcarta.com/

superpixel methods. PAMI, 34(11), 2012. 2

[2] R. Achanta and S. Susstrunk. Superpixels and polygons us-

ing simple non-iterative clustering. In CVPR, 2017. 1, 2, 5,

6

[3] P. K. Agarwal, J. Gao, L. Guibas, H. Kaplan, V. Koltun,

N. Rubin, and M. Sharir. Kinetic stable delaunay graphs.

In Symposium on Computational Geometry, 2010. 4

[4] J. Basch, L. J. Guibas, and J. Hershberger. Data structures

for mobile data. Journal of Algorithms, 31(1), 1999. 3

[5] A. Bodis-Szomoru, H. Riemenschneider, and L. Van Gool.

Fast, approximate piecewise-planar modeling based on

sparse structure-from-motion and superpixels. In CVPR,

2014. 5

[6] M. Brédif, D. Boldo, M. Pierrot-Deseilligny, and H. Maı̂tre.

3d building model fitting using a new kinetic framework.

arXiv:0805.0648, 2008. 4

[7] L. Castrejon, K. Kundu, R. Urtasun, and S. Fidler. Anno-

tating object instances with a polygon-rnn. In CVPR, 2017.

7

[8] D. Douglas and T. Peucker. Algorithms for the reduction of

the number of points required to represent a digitizedline or

its caricature. Cartographica: The International Journal for

Geographic Information, 10(2), 1973. 2, 8

[9] L. Duan and F. Lafarge. Image partitioning into convex poly-

gons. In CVPR, 2015. 1, 2, 5, 6, 8

[10] L. Duan and F. Lafarge. Towards large-scale city reconstruc-

tion from satellites. In ECCV, 2016. 1

[11] M. Dubska, A. Herout, and J. Havel. Pclines line detection

using parallel coordinates. In CVPR, 2011. 2

[12] S. Duchene, C. Aliaga, T. Pouli, and P. Perez. Mixed illumi-

nation analysis in single image for interactive color grading.

In Symposium on Non-Photorealistic Animation and Render-

ing, 2017. 1

[13] D. Eppstein and J. Erickson. Raising roofs, crashing cycles,

and playing pool: Applications of a data structure for finding

pairwise interactions. Discrete and Computational Geome-

try, 22(4), 1999. 5

[14] J. Forsythe, V. Kurlin, and A. Fitzgibbon. Resolution-

independent superpixels based on convex constrained

meshes without small angles. In International Symposium

on Visual Computing, 2016. 1, 2

[15] E. M. Gertz and S. J. Wright. Object-oriented software for

quadratic programming. ACM Trans. on Mathematical Soft-

ware, 29(1), 2003. 3

[16] T. Gevers and A. W. M. Smeulders. Combining region split-

ting and edge detection through guided delaunay image sub-

division. In CVPR, 1997. 2

[17] L. Guibas. Kinetic data structures. In Handbook of Data

Structures and Applications. Citeseer, 2004. 3

[18] D. Lee, M. Hebert, and T. Kanade. Geometric reasoning for

single image structure recovery. In CVPR, 2009. 2

[19] A. Levinshtein, C. Sminchisescu, and S. Dickinson. Optimal

contour closure by superpixel grouping. In ECCV, 2010. 7

[20] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. En-

tropy rate superpixel segmentation. In CVPR, 2011. 2, 5,

6

[21] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, 2001. 5, 6

[22] R. Nagar and S. Raman. Symmslic: Symmetry aware super-

pixel segmentation. In ICCV, 2017. 2

[23] P. Neubert and P. Protzel. Superpixel benchmark and com-

parison. In Proc. Forum Bildverarbeitung, 2012. 6

[24] S. Oesau, F. Lafarge, and P. Alliez. Planar Shape Detection

and Regularization in Tandem. Computer Graphics Forum,

35(1), 2016. 2

[25] T.-T. Pham, T.-J. Chin, K. Schindler, and D. Suter. Interact-

ing geometric priors for robust multimodel fitting. Trans. on

Image Processing, 23(10), 2014. 2

[26] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-

tive foreground extraction using iterated graph cuts. In Trans.

on Graphics, volume 23, 2004. 8

[27] X. Sun, M. Christoudias, and P. Fua. Free-shape polygonal

object localization. In ECCV, 2014. 7

[28] O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and su-

pervoxels in an energy optimization framework. In ECCV,

2010. 2

[29] R. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall.

Lsd: A fast line segment detector with a false detection con-

trol. PAMI, 32(4), 2010. 2

[30] J. Wang and X. Wang. Vcells: Simple and efficient super-

pixels using edge-weighted centroidal voronoi tessellations.

PAMI, 34(6), 2012. 2

[31] K. Yang, Z. Sun, C. Ma, and W. Yang. Paint with stitches:

A random-needle embroidery rendering method. In Proc. of

Computer Graphics International, 2016. 1

3154

