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Abstract

Attributing the pixels of an input image to a certain cate-

gory is an important and well-studied problem in computer

vision, with applications ranging from weakly supervised

localisation to understanding hidden effects in the data.

In recent years, approaches based on interpreting a pre-

viously trained neural network classifier have become the

de facto state-of-the-art and are commonly used on med-

ical as well as natural image datasets. In this paper, we

discuss a limitation of these approaches which may lead

to only a subset of the category specific features being de-

tected. To address this problem we develop a novel fea-

ture attribution technique based on Wasserstein Generative

Adversarial Networks (WGAN), which does not suffer from

this limitation. We show that our proposed method performs

substantially better than the state-of-the-art for visual attri-

bution on a synthetic dataset and on real 3D neuroimaging

data from patients with mild cognitive impairment (MCI)

and Alzheimer’s disease (AD). For AD patients the method

produces compellingly realistic disease effect maps which

are very close to the observed effects.

1. Introduction

In this paper we address the problem of visual attribu-

tion, which we define as detecting and visualising evidence

of a particular category in an image. Pinpointing all ev-

idence of a class is important for a variety of tasks such

as weakly supervised localisation or segmentation of struc-

tures [41, 43, 65], and better understanding disease effects,

and physiological or pathological processes in medical im-

ages [67, 18, 12, 19, 13, 27, 54, 30, 31, 63].

Currently, the most frequently used approach to address

the visual attribution problem is training a neural network

classifier to predict the categories of a set of images and then

following one of two strategies: analysing the gradients of

∗Data used in preparation of this article were obtained from

the Alzheimers Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu).
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Figure 1. Our proposed method learns a map generating function

M(x) from unlabelled training data. Given a test image, this func-

tion will generate an image-specific visual attribution map which

highlights the features unique to that category. The method is of

particular interest for creating medical disease effect maps. We

show that on neuroimaging data the method predicts effects in very

good agreement with the actual observed effects.

the prediction with respect to an input image [27, 5, 54] or

analysing the activations of the feature maps for the image

[65, 41, 43] to determine which part of the image was re-

sponsible for making the associated prediction.

Visual attribution based directly on neural network clas-

sifiers may, under some circumstances, produce undesired

results. It is known that such classifiers base their decisions

on certain salient regions rather than the whole object of in-

terest. It was recently shown that during training neural net-

works minimise the mutual information between input and

output layers, thereby compressing the input features [50].

These findings suggest that a classifier may ignore features

with low discriminative power if stronger features with re-

dundant information about the target are available. In other

words, neural network training may be working in opposi-

tion to the goal of visual attribution. As a consequence, if

there is evidence for a class at multiple locations in the im-

age (such as multiple lesions in medical images) some lo-

cations may not influence the classification result and may

thus not be detected. We demonstrate this effect on a syn-

thetic dataset in our experiments.
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It would be highly desirable if instead we could visualise

evidence of a particular category in a way that captures all

category-specific effects in an image. Our main contribu-

tion is a novel approach towards solving the visual attribu-

tion problem which takes a first step in this direction. In

contrast to the majority of recent techniques, the method

does not rely on a classifier but rather aims at finding a map

that, when added to an input image of one category, will

make it indistinguishable from images from a baseline cat-

egory. To this end we propose a generative model in which

the additive map is learned as a function of the images. The

method is based on Wasserstein generative adversarial net-

works (WGAN) [2], which have the desirable property that

they minimise an approximation of the Wasserstein distance

between the distributions of the generated images and the

real ones.

We note that our method does not tackle the classifica-

tion problem but rather assumes that the category labels of

the test images have already been determined (e.g. using a

separately trained classifier or by an expert). Furthermore,

the method requires a baseline category, which is not the

case for many benchmark recognition datasets in vision, but

is in fact the case for many practical detection applications,

especially in medical image analysis.

We demonstrate the method on synthetic 2D data and on

large 3D brain MR data, where we aim to predict subject-

specific disease effect maps for Alzheimer’s disease (AD).

1.1. Medical motivation

Identifying disease effects at the subject-specific level is

of great interest for various medical applications. In clini-

cally oriented research, identifying subject-specific disease

effects would be useful for stratification amongst the pa-

tient population and to help disentangling diseases such as

AD [25] and Schizophrenia [48], that are believed to be

composed of multiple sub-types rather than a single disease.

Furthermore, for clinicians, subject-specific maps could be

helpful in assessing disease status and grading.

In this paper, we chose to study the disease effects of AD

with respect to mild cognitive impairment (MCI), which is

characterised by a slight decline in cognitive abilities. Pa-

tients with MCI are at increased risk of developing AD,

but do not always do. We evaluate our method on one

of the largest publicly available neuroimaging datasets ac-

quired by the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). We used the MCI population as the baseline cat-

egory and the AD population as the category of interest.

Our choice to use MCI as our baseline is motivated by the

fact that the ADNI dataset contains a number of MCI sub-

jects who convert AD with imaging data at both stages of

the disease. This allowed us to evaluate the predicted dis-

ease effects against real observed effects defined as the dif-

ferences between images at the different stages. Note that

even though using normal controls as the baseline is feasi-

ble, it would have been much harder to assess the proposed

method due to the small number of control to AD converters

in the ADNI dataset.

2. Related work

2.1. Visual attribution

A commonly used approach for weakly supervised lo-

calisation or segmentation is to analyse the final feature map

of a neural network classifier [41, 43]. The Class Activation

Mapping (CAM) method [65] builds on those techniques by

reducing the feature maps of the second to last layer using a

global average pooling layer, followed by a dense prediction

layer. This allows to create class-specific activation maps as

a linear combination of the weights in the last layer.

A large amount of works on medical images builds on

the CAM technique. Examples include the work of Feng et

al. [12] on pulmonary nodule localisation in CT, the work of

Ge et al. [18] on skin disease recognition. Other examples

are [67], [19]. It is important to note that CAM is restricted

in the resolution of its visual attributions by the resolution

of the last feature map. Consequently, often post-processing

of the predictions is required [12, 13, 43]. In contrast, our

proposed method can produce visual attributions at the res-

olution of the original input images.

Another class of techniques creates saliency maps by

backpropagating back to the input image. Examples in-

clude Guided Backprop [53], Excitation Backprop [62], In-

tegrated Gradients [54], meaningful perturbations [13].

Similar techniques have been applied in the domain of

medical images. Jamaludin et al. [27] use the backprop-

based saliency technique proposed by [51] to pinpoint lum-

bar degradations, and Baumgartner et al. [5, 6] use a variant

of [53] to localise fetal anatomy. Gao and Noble [15] apply

a similar approach to localise the fetal heart.

2.2. Statistical disease models

Statistical analysis of medical images for identifying

disease effects has been an instrumental tool for various

diseases and disorders [56, 46, 9] as well as other non-

disease related factors [17, 38, 28, 59, 42, 55]. The most

common approach is to use regression analysis or ma-

chine learning tools to generate population average maps,

which highlights features that are salient across the popula-

tion [3, 32, 61, 16, 39, 45, 14].

Recently, constructing subject-specific maps has re-

ceived attention. Maumet et al. took a one-versus-all group

analysis approach [37, 36], while Konukoglu and Glocker

extracted subject-specific maps with predictive models and

Markov Random Field restoration [30, 31].

The common drawback in the previous approaches is the

need for registration. In order to compute disease effect
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maps, images of different subjects need to be non-rigidly

aligned on a common template where statistical analysis can

be performed. The non-rigid registration process brings ad-

ditional uncertainty to the subject-specific maps. Our work,

addresses this shortcoming and generates subject-specific

disease effect maps without requiring registration.

2.3. Image generation using GANs

Generative adversarial images conditioned on an input

image have been used in diverse applications such as video

frame prediction [35], image super-resolution [33], image-

translation across domains using paired [26] and unpaired

[66] images, and pixel level domain adaptation [7, 49].

In the context of medical images, GANs have been

applied to super-resolution in retinal fundus images [34],

for semi-supervised cardiac segmentation [64], synthesis-

ing computed tomography images from MR images[40, 60]

and intraoperative motion modelling [23]. Although some

of the above models use 3D data, the examined volumes are

usually relatively small [23], or the networks operate in a

patch-wise fashion [40]. It is important to note that in the

case of brain MR images of Alzheimers disease patients,

the diagnostic information is only visible at a high resolu-

tion and cannot be determined by considering small local

patches only. In this paper, we therefore tackle the chal-

lenge of processing large 3D volumes directly.

2.4. Contributions

1. We demonstrate a limitation in current neural network

based visual attribution methods using synthetic data.

2. We propose a novel visual attribution technique that

can detect class specific regions more completely and

at a high resolution.

3. To our knowledge, this is the first application of gener-

ative adversarial networks on large structural 3D data.

An implementation of the proposed method is publicly

available here: https://github.com/baumgach/

vagan-code.

3. Visual attribution using WGANs

3.1. Problem Formulation

Our goal is to estimate a map that highlights the areas in

an image which are specific to the class the image belongs

to. We formulate the problem for two classes c ∈ {0, 1},

a baseline class and a class of interest. The formulation

however, easily extends to the case of multiple classes of

interest. We denote an image with x and the distribution

of images coming from class c = 0 with pd(x|c = 0) and

images from class c = 1 with pd(x|c = 1). In the case of

medical application, c = 1 could for example denote the

set of images from a population with a certain disease and

c = 0 images of control subjects.

We formulate a problem as estimating a map function

M(x) that, when added to an image xi from category c = 1,

creates an image

yi = xi +M(xi), (1)

which is indistinguishable from the images sampled from

pd(x|c = 0). Thereby, the map M(xi) contains all the fea-

tures which distinguish the input image xi from the other

category. In the case of medical images, M will by defini-

tion contain the effects of a disease visible in the images,

i.e. a disease effect map.

We model the function M using a convolutional neural

network, whose parameters we find using a WGAN.

3.2. Wasserstein GANs

In the GAN paradigm a generator function and a discrim-

inator function (both neural networks) compete with each

other in a zero-sum game [20]. Given random noise as in-

put, the generator tries to produce realistic images that fool

the discriminator, while the discriminator tries to learn the

difference between generated and real images.

Arjovski and Bottou pointed out a limitation in this

paradigm which precludes a guarantee that the generated

images will necessarily converge to the target distribution

[1] (although in practice, with appropriate training meth-

ods, many impressive results were achieved [44]). Wasser-

stein GANs are a modification to the classic GAN paradigm

where the discriminator is replaced by a critic which does

not have an activation function in its final layer and which

is constrained to be a K-Lipschitz function. WGANs have

better optimisation properties and it can be shown that they

minimise a meaningful distance between the generated and

real distributions.

3.3. Constrained effect maps using WGANs

In this work we build on WGANs to find the optimal

map generation function. In contrast to regular WGANs,

we have a map generator function M(xi), which, during

training, takes as input randomly sampled images xi from

category c = 1 rather than noise. M tries to generate maps

that, when added to xi, create images yi appearing to be

from category c = 0. By trying to distinguish generated im-

ages yi from real images from category c = 0, the critic D

ensures that the generated maps are constrained to realistic

modifications (see Fig. 2 for an overview). In the context of

medical images, this means enforcing anatomically realistic

modifications to the images.

Building on [2] this leads to the following cost function:

LGAN (M,D) = Ex∼pd(x|c=0)[D(x)]

− Ex∼pd(x|c=1)[D(x+M(x))].
(2)
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Figure 2. Overview of VA-GAN. During training images are sampled from the categories c ∈ {0, 1}. Images from c = 1 are passed to

the map generating function M(x). The map generator aims to create additive maps which produce generated images that the critic D(x)
cannot distinguish from images sampled from pd(x|c = 0). The critic, D(x) tries to assign different values to generated and real images.

During testing, M(x) can be used directly to predict a map in a single forward pass.

Optimising Eq. 2 directly could lead to changes in the

input image xi that change the image identity. For instance,

the brain anatomy of a subject could be changed to a de-

gree where it does not only capture disease related changes

but changes the subject identity. We want to encourage the

smallest required map M that still leads to a realistic yi.

Thus add the following data regularisation term to the cost

function:

Lreg(M) = ||M(x)||1, (3)

where || · ||1 is the L1 norm [13].

The final optimisation is then given by

M∗ = argmin
M

max
D∈D

LGAN (M,D) + λLreg(M), (4)

where D is the set of 1-Lipschitz functions.

In order to enforce the Lipschitz constraint we use the

optimisation method proposed in [22]. As recommended

by [22], we weigh the gradient penalty with a factor of 10

throughout all experiments.

3.4. Network architecture

As we will discuss in more detail in Section 4.3, we de-

sign our proposed method with large 3D medical imaging

data in mind, which often need to be processed at high res-

olutions in order to retain diagnostic information. Specif-

ically, in our experiments on neuroimaging data, an input

volume size of 128x160x112 voxels is used.

With such large images the limiting factor becomes stor-

ing the activations of the networks on GPU memory. With

this in mind we design the map generator and the critic net-

works as follows.

3.4.1 Map generator network

The map generator function should be able to form an in-

ternal representation of the visual attributes that charac-

terise the categories. In the case of brain images affected

by dementia, it should be able to “understand” the system-

atic changes involved in the disease. Therefore, a relatively

powerful network is required to adequately model the func-

tion M . To this end, we use the 3D U-Net [10] (originally

proposed for segmentation), as a starting point. The 3D

U-Net has an encoder-decoder structure with a bottle-neck

layer in the middle, but additionally introduces skip con-

nections at each resolution level bypassing the bottle-neck.

This allows the network to combine high-level semantic in-

formation (such as the presence of a structure) with low-

level information (such as edges).

In order to reduce GPU memory consumption we reduce

the number of feature maps by a factor of 4 in most layers.

As in the original 3D U-Net [10] we use batch normalisation

for all layers except the final one. The exact architecture is

shown in Fig. 2 in the supplementary material.

3.4.2 Critic function

In line with related literature on image generation using

GANs [26, 66, 49], we model our critic as a fully convo-

lution network with no dense layers. We loosely base our

architecture on the C3D network which achieved impres-

sive results on action recognition tasks in video data by pro-

cessing them directly in the spatio-temporal 3D space [57].

However, in contrast to that work we only perform 4 pool-

ing steps. After the fourth pooling layer we add another

3x3x3 convolution layer, followed by a 1x1x1 convolution

layer which reduces the number of feature maps to one. The

final critic prediction is given by a global average pooling

operation of that feature map.

It proved important not to use batch normalisation for the

critic network. Towards the beginning of training generat-

ing statistics of a batch with generated and the real images

may not produce reasonable estimates, because the images

vary considerably from each other. We surmise that this

effect prevents the critic from learning when batch normali-

sation is used. A similar observation was made in [22]. We

also experimented with layer normalisation [4], but did not

observe improvements.

The exact architecture we used is shown in Fig. 1 in the

supplementary material.
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3.5. Training

To optimise our networks, we follow [2, 22] and update

the parameters of the critic and map generator networks in

an alternating fashion. In contrast to the regular GANs [20],

WGANs require a critic which is kept close to optimality

through-out training. We therefore perform 5 critic updates

for every map generator update. Additionally, for the first

25 iterations and every hundredth iteration, we perform 100

critic updates per generator update.

With the above architectures, the maximum batch size

that can be used for a single gradient computation on a

Nvidia Titan Xp GPU with 12 GB of memory is 2+2

(real+generated). In order to obtain more reliable gradient

estimates we aggregate the gradients for a total of 6 mini-

batches before performing a training step.

We used the ADAM optimiser [29] to perform the update

steps for all experiments. The optimiser parameters were set

to β1 = 0, β2 = 0.9, and we used a learning rate of 10−3.

Lastly, we used a weight of λ = 102 for the map regulari-

sation term (see Eq. 4) throughout the paper. Training took

approximately 24 hours on an Nvidia Titan Xp.

4. Experiments

We evaluated the proposed method using a synthetically

generated dataset and a large number of 3D brain MRI im-

ages from the publicly available ADNI dataset.

We compared our proposed visual attribution GAN (VA-

GAN) to methods from the literature which have been used

for visual attribution both on natural and on medical images.

Specifically, we compared against Guided Backpropagation

[53], Integrated Gradients [54] and Class Activation Map-

ping (CAM) [65]. Furthermore, to verify that the WGAN

framework is necessary, we also investigated an alternative

way of estimating the additive map not based on GANs,

which is described in detail in the next section.

All the methods except VA-GAN use classification net-

works. For simplicity, we used a very similar architecture

for these networks as for the critic in VA-GAN, except for

two differences: (1) we replaced the last convolution and the

global average pooling layer by two dense layers followed

by a softmax and (2) we used batch normalisation for all

layers, which produced better classification results for the

experiments on the ADNI dataset. In addition, for the CAM

method we designed the last layer as described by [65] and

omitted the last two max pooling layers, which allowed sig-

nificantly more accurate visual attribution maps due to the

higher resolution of the last feature maps.

Lastly, for the experiments on the 2D synthetic data we

simply replaced all 3D operations by 2D operations, but left

the architectures otherwise unchanged.

4.1. Classifier­based map estimation

In the VA-GAN approach, we generate an additive map

which is constrained by the critic to generate a realistic

image from the opposite class. To demonstrate that this

approach is necessary we also investigated an alternative

method of estimating the additive map without a term en-

forcing realistic maps.

The alternative approach requires training a classifier

p(c = 1) = f(·) and then optimising an additive map image

m that lowers the prediction p(c = 1) as much as possible.

That is to say, the image yi = xi + m should minimise

fi(yi). This formulation is almost exactly the same as for

the WGAN-based approach (see Eq. 1) except that m is not

a function of xi.

We need to use a regularisation in determining m to

avoid trivial solutions, such as imperceptible changes that

can fool classifiers [21]. A “well behaved” map can be

found by the following minimisation problem:

m∗ = argmin
m

f(xi +m) + ω1||m||1

+ ω2

∑

u

||∇m(u)||ββ .
(5)

Here u indexes the pixels or voxels of m. The L1 term

weighted by ω1 encourages small maps, while the total vari-

ation term weighted by ω2 encourages smoothness.

We optimise this cost function using the ADAM opti-

miser using the default internal parameters given in [29]

with a learning rate of 10−2 and early stopping at 1500 it-

erations. Furthermore, we set β = 2.0, ω1 = 10−2 and

ω2 = 10−5 in all experiments.

This approach is strongly related to the meaningful per-

turbation masks technique proposed by [13] in which parts

of an image are locally deleted by a mask m such that the

prediction f(x) is minimised. In preliminary experiments

we found that on the medical image problem we studied,

visual attribution using destructive masks did not lead to

the desired results. Deleting the diagnostic part of an image

will not produce an image of the opposite class but rather

an image with an undetermined diagnosis. This means such

a mask may contain information about the location of di-

agnostic regions but not about specific disease effects, e.g.

enlargement or shrinkage. In contrast, by optimising Eq. 5

we attempt to morph the image into the opposite class, such

that diagnostic regions can be changed to have the charac-

teristics of another class. Because of the similarity to [13],

we refer to this method as additive perturbation maps.

4.2. Synthetic experiments

Data: In order to quantitatively evaluate the performance

of the examined visual attribution methods, we generated

a synthetic dataset of 10000 112x112 images with two

classes, which model a healthy control group (label 0) and a
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Figure 3. Description of synthetic data. We generated noisy obser-

vations from ground-truth effect maps. The dataset contained two

categories: A baseline category 0 (e.g. healthy images) and cate-

gory with an effect (e.g. patient images). The images in category

1 contained one of two subtypes, A or B, which is unknown to the

algorithms. A: box in the lower right, B: box in the upper left.

patient group (label 1). The images were split evenly across

the two categories. We closely followed the synthetic data

generation process described in [31] where disease effects

were studied in smaller cohorts of registered images.

The control group (label 0) contained images with ran-

dom iid Gaussian noise convolved with a Gaussian blurring

filter. Examples are shown in Fig. 3. The patient images

(label 1) also contained the noise, but additionally exhib-

ited one of two disease effects which was generated from a

ground-truth effect map: a square in the centre and a square

in the lower right (subtype A), or a square in the centre and a

square in the upper left (subtype B). Importantly, both dis-

ease subtypes shared the same label. The location of the

off-centre squares was randomly offset in each direction by

a maximum of 5 pixels. This effect was added to make the

problem harder, but had no notable effect on the outcome.

Evaluation: We split the data into a 80-20 training and

testing set. Moreover, we used 20% of the training set for

monitoring the training. Next, we estimated the disease ef-

fect maps for all cases from the synthetic patient class using

the examined methods.

In order to assess the visual attribution accuracy quan-

titatively, we calculated the normalised cross correlation

(NCC) between the ground-truth label maps and the pre-

dicted disease effect maps. The NCC has the advantage

that it is not sensitive to the magnitude of the signals. For

CAM we used only the positive values to calculate the NCC,

while for the backprop-based techniques we used the abso-

lute value, since those techniques do not necessarily predict

the correct sign of the changes.

Results: A number of examples of the estimated disease

effect maps are shown in Fig. 4. Guided Backpropagation

produced similar results to Integrated Gradients. We there-

fore omitted it in the visual results due to space considera-

Observed Int. Grad. CAMAdd. Pert. VA-GAN

Figure 4. Examples of visual attribution on synthetic data obtained

using the compared methods.

tions but provide quantitative results.

For the backprop-based methods we consistently ob-

served two behaviours: 1) They tended to focus exclusively

on the central square which was always present and was

thus the most predictive set of features. This behaviour is

consistent with the network compressing away less predic-

tive features discussed earlier [50]. 2) They tended to focus

mostly on the edges of the boxes rather than on the whole

object. This may have to do with the fact that edges are

more salient than other points and, again, are sufficient to

predict the presence or absence of the box.

The CAM method managed to capture both squares most

of the times, but by design had limited spatial resolution.

Note that due to the lower number of max-pooling layers

used for the CAM classifier each pixel in the last feature

map had a receptive field of only 39x39 pixels. This could

mean that many pixels in that feature map could not simul-

taneously see both of the squares, which may have con-

tributed to the squares being better discerned. However, we

did not investigate this further.

Lastly, our proposed VA-GAN method produced the

most localised disease effect maps, finding the entire boxes

and following the edges closely. It also managed to consis-

tently identify both disease effects.

Table 1. NCC scores for experiments on synthetic data.

Method mean std.

Guided Backprop [53] 0.14 0.04

Integrated Gradients [54] 0.36 0.11

CAM [65] 0.48 0.04

Additive Perturbation 0.06 0.03

VA-GAN 0.94 0.07

The quantitative NCC results shown in Table 1 are

mostly consistent with our qualitative observations, with

VA-GAN obtaining significantly higher NCC than the other

methods. The additive perturbation technique achieved a
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low score due to its exclusive focus on edges.

4.3. Experiments on real neuroimaging data

In this section, we investigate the methods’ ability to de-

tect the areas of the brain which are involved in the progres-

sion from MCI to AD at a subject-specific level. We trained

on images from both categories and then generated disease

effect maps only for the AD images.

Data: We selected 5778 3D T1-weighted MR images from

1288 subjects with either an MCI (label 0) or AD (label

1) diagnosis from the ADNI cohort. 2839 of the images

were acquired using a 1.5T magnet, the remainder using a

3T magnet. The subjects are scanned at regular intervals as

part of the ADNI study and a number of subjects converted

from MCI to AD over the years. We did not use these cor-

respondences for training, however, we took advantage of it

for evaluation as will be described later. An overview of the

data is given in the supplemental materials in Section C.

All images were processed using standard operations

available in the FSL toolbox [52] in order to reorient and

rigidly register the images to MNI space, crop them and

correct for field inhomogeneities. We then skull-stripped

the images using the ROBEX algorithm [24]. Lastly, we

resampled all images to a resolution of 1.3mm3 and nor-

malised them to a range from -1 to 1. The final volumes

had a size of 128x160x112 voxels.

Evaluation: We split the data on a subject level into a

training, testing and validation set containing 825, 256 and

207 subjects, respectively. We then trained all of the algo-

rithms with both AD and MCI data as described earlier, and

generated disease effect maps for the AD subjects from the

test set. The validation set was used to monitor the training.

In order to better understand the quality of the gener-

ated disease maps we estimated the actual deformations for

a number of subjects as follows. We identified all subjects

from the test set who were diagnosed with MCI during the

baseline examination but progressed to AD in one of the

follow-up scans. We then aligned those images rigidly and

subtracted them from each other to obtain an observed dis-

ease effect map. We excluded all subjects which were not

acquired with the same field strength, since a large amount

of the observed effects could be due to differences in im-

age quality. This left 50 subjects which we evaluated more

closely. We note that even for the same field strength there

are a number of artefacts due to intensity variations and reg-

istration. Furthermore, there are likely to be effects not

caused by the disease, such as ageing (which will also be

captured by our method), such that the observed disease ef-

fect maps could be considered a ground-truth.

Nevertheless, we also evaluated NCC between the ob-

served and the predicted disease effect maps in the same

manner as for the synthetic data.

MCI AD Generated "MCI"

Figure 6. Close-up of the hippocampus region of a subject before

(left) and after developing AD (middle). The right panel shows the

generated image. The red (hippocampus) and green (ventricles)

contours are in the same location in all three images. It can be

observed that the map “reverses” some of the atrophy.

Table 2. NCC scores for experiments on neuroimaging data.

Method mean std.

Guided Backprop [53] 0.05 0.03

CAM [65] 0.09 0.07

Integrated Gradients [54] 0.13 0.05

Additive Perturbation 0.11 0.05

VA-GAN 0.27 0.15

Results: Fig. 5 shows disease effect maps obtained for a

selection of AD subjects (we again omitted Guided Back-

prop in the figure). The subjects are ordered by increas-

ing progression of the disease as measured by the ADAS13

cognition exam [47]. It can be seen that VA-GAN’s predic-

tions were in very good agreement with the observed effect

maps. As is known from the literature [8, 11] the method

indicates atrophy in the hippocampi, and general brain at-

rophy around the ventricles. Furthermore, it is known that

in later stages of the disease other brain areas such as the

temporal lobe get affected as well [58]. Those effects were

also identified by VA-GAN in the last subject in Fig. 5.

The backprop-based methods and additive perturbations

were observed to be very noisy and tended to identify only

the hippocampal areas. We believe that this is in agreement

with the findings on the synthetic data. The hippocampus

is known to be the most predictive region for AD, however,

it is also known that many other regions are involved in the

disease. It is likely, that classifiers learned to focus only

on the most discriminative set of features ignoring the rest.

Lastly, it is hard to interpret the results produced by CAM

due to the low resolution. However, the images suggest that

this method focuses on similar areas as the other methods.

Quantitative results are given in Table 2. VA-GAN ob-

tained the highest correlation scores, however, it is hard to

draw conclusions from these figures due to the noisy nature

of the observed effect maps as well as the possible non-

disease related effects on the observed effect maps, which

are taken to be “ground-truth” in the experiments.

We observed that VA-GAN generally produced very re-

alistic deformations. In Fig. 6 a close-up of the MCI, AD,

and generated image is shown for a sample subject. It can
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Figure 5. Coronal and sagittal views of generated AD effect maps for three subjects and actual observed effects. Maps are shown as

coloured overlay over the input image. The ventricular (arrow A) and hippocampal (arrow B) regions are particularly affected by the

disease and are reliably captured by VA-GAN. In later stages also other brain regions such as the temporal lobe (arrow C) are affected. We

also report the ADAS13 cognitive exam scores (larger means AD is further progressed) and the ADNI identifier (rid) for each subject.

be seen that our method succeeded in making the generated

image more similar to the corresponding MCI image and

that the changes were realistic.

5. Limitations and discussion

We have proposed a method for visual feature attribu-

tion using Wasserstein GANs. It was shown that, in con-

trast to backprop-based methods, our technique can capture

multiple regions affected by disease, and produces state-of-

the-art results for the prediction of disease effect maps in

neuroimaging data and on a synthetic dataset.

Currently, the method assumes that the category labels

of the test data are known during test-time. In case they are

unknown, the method could be easily combined with classi-

fier which produces this information. We only evaluated the

method for the case of two labels. More categories could be

addressed by training multiple map generators each map-

ping to a background class (assuming there is one).

In the future, we plan to model other effects such as age-

ing or the presence or absence of certain genes on the ADNI

data, investigate the method on other datasets and apply it

to other problems such as weakly-supervised localisation.
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