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Abstract

Deep learning methods have become the de-facto stan-

dard for challenging image processing tasks such as im-

age classification. One major hurdle of deep learning ap-

proaches is that large sets of labeled data are necessary,

which can be prohibitively costly to obtain, particularly

in medical image diagnosis applications. Active learning

techniques can alleviate this labeling effort. In this pa-

per we investigate some recently proposed methods for ac-

tive learning with high-dimensional data and convolutional

neural network classifiers. We compare ensemble-based

methods against Monte-Carlo Dropout and geometric ap-

proaches. We find that ensembles perform better and lead to

more calibrated predictive uncertainties, which are the ba-

sis for many active learning algorithms. To investigate why

Monte-Carlo Dropout uncertainties perform worse, we ex-

plore potential differences in isolation in a series of experi-

ments. We show results for MNIST and CIFAR-10, on which

we achieve a test set accuracy of 90% with roughly 12,200

labeled images, and initial results on ImageNet. Addition-

ally, we show results on a large, highly class-imbalanced

diabetic retinopathy dataset. We observe that the ensemble-

based active learning effectively counteracts this imbalance

during acquisition.

1. Introduction

Convolutional neural networks (CNNs) have become

the state-of-the-art method for image classification tasks,

achieving superior performance on well-known benchmark

datasets like MNIST ([41]), CIFAR ([38]) or ImageNet

([51]) where CNNs were shown in [58], [17], and [55] to

outperform human classification accuracy.

One shortcoming of CNNs is that they require large

datasets for training which often come with a high label-

ing effort, resulting in a major hurdle in domains where la-

bels can only be acquired by time-consuming and expen-

sive manual labeling. Particularly for medical images la-
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beling requires well-trained specialists, such that labeling

resources and not computational power or model capacity

become the main bottleneck for the rapid applicability of

CNN models. Under a limited financial budget or if only a

few experts are available, techniques to reduce labeling ef-

fort become important. The goal of such techniques is to

find the minimally required set of labeled images in order

to reach a certain classification accuracy. This problem can

be formally addressed with the framework of active learn-

ing ([6]). Starting with an initial (small) data set to train

a model, new data-points to be labeled (e.g. by a human

expert) are selected with a so-called acquisition function.

This function ranks unlabeled data by “how desirable” la-

bel information is expected to be for each data-point. Com-

monly used acquisition functions are based on criteria such

as uncertainty of prediction ([16], [32], [62]), coverage of

the data space ([52]), unanimity of a committee ([30]), ex-

pected error, or variance reduction ([25], [33]). Typically, a

small number of highest-ranking unlabeled data-points are

selected for labeling and subsequently added to the train-

ing set to train the model afresh. This procedure is repeated

resulting in a step-wise increase of labeled data.

While active learning (AL) has a long history in ma-

chine learning, there is currently little literature on active

learning for CNNs. Most traditional acquisition functions

cannot be straightforwardly used since they do not scale to

high-dimensional image data ([57]), or they rely on good

uncertainty estimates for unlabeled data which are hard to

obtain with standard CNNs. Methods which are applicable

to CNNs have been introduced in ([16], [52], [59], [61]).

In this paper we use an ensemble of CNNs as a scal-

able approach for deriving well-behaved uncertainty esti-

mates for unlabeled data (see also [49] and [40] for a com-

parable approach). These uncertainties are used to eval-

uate different acquisition functions proposed in the litera-

ture. We compare ensemble-based active learning with the

two state-of-the art methods: a Bayesian deep learning ap-

proach (Monte Carlo Dropout [16]), and a density-based

approach ([52]). Our experiments on MNIST, CIFAR-10

and a real-world large-scale medical image dataset for di-

abetic retinopathy (DR) detection ([11]) show that the en-
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semble based approach consistently outperforms the other

two approaches. On CIFAR-10 after acquiring 14, 500 im-

ages we report an accuracy of 91.5% compared to 88.4%
and 88.2% for the methods by [16] and [52]. For the DR

use case we achieve an AUC of 0.983 (a 1.8 units increase

over the random baseline) for training on 21, 000 images.

A recent paper on DR classification ([20]) achieves an AUC

of 0.991 training on over 100, 000 images. The data-set

is highly imbalanced (19.34% unhealthy examples) and the

ensemble-based method selects the more informative, un-

healthy examples for labeling with an increased probability.

In additional experiments we shed some light on why

the ensemble-based uncertainties lead to better performance

compared to MC Dropout uncertainties ([16]). We find that

the ensemble uncertainties are better calibrated (see sec-

tion 4), and subsequently investigate potential causes (in-

creased model capacity, wider variety of randomness, in-

creased diversity of ensemble members). Recent literature

propose to split the uncertainty over network predictions

into a data-dependent aleatoric and a parameter-dependent

epistemic uncertainty ([36], [9]). Selecting data-points for

labeling based only on epistemic model-uncertainty seems

promising, however, we find that using epistemic uncer-

tainty alone in our acquisition functions does not yield bet-

ter results. One potential shortcoming of ensemble ap-

proaches is that training multiple networks can become

computationally very costly. We investigate how a recently

proposed method to overcome this problem, snapshot en-

sembles ([28]), performs in the active learning setting.

2. Related Work

Active learning The survey [53] gives an overview of

the many AL strategies developed so far, though, it does not

include any work on AL for deep neural networks. Active

learning concepts relevant for this paper include uncertainty

sampling ([42], [32], [35]), query-by-committee ([30], [5])

and density-based approaches ([52], [61], [46]).

Active learning for high-dimensional data Most of the

methods proposed in the literature do not use deep learning

models. [32] use an SVM classifier where uncertainties are

calculated based on probabilistic outputs over the class la-

bel, with entropy and best-vs-second-best approaches as ac-

quisition functions. [42] combine uncertainty and informa-

tion density, the latter being extracted via a Gaussian pro-

cess using precomputed SIFT features. [63] use a Gaussian

random field model to combine active and semi-supervised

learning. [26] use expected information gain as acquisition

function and evaluate on various datasets using a SVM.

Ensembles for (deep) neural networks (to estimate

uncertainty) Combining predictions of an ensemble of

learners for improving task performance in neural networks

goes back many years [21]. Today, ensembles are widely

used in machine learning (see [10] for a review) and deep

learning ([39], [23], [18]). Besides increasing task accu-

racy, [40], [49], and [48] use ensembles to estimate predic-

tion uncertainty of deep neural networks in the context of

outlier detection and reinforcement learning.

Uncertainty estimation in neural networks By taking

the variance over softmax outputs of an ensemble of net-

works, and optionally using bagging to increase the net-

work diversity, [48] show how to obtain uncertainty mea-

sures with neural networks. Another variant is shown in

[40], who add an extra head to the network which is trained

to account for a proportion of the variance ([47]). This al-

lows one to use the combined variance over predictions as

an uncertainty estimate, using a single network.

Bayesian neural networks model parameter-uncertainty

explicitly by learning (Gaussian) posterior probabilities

over weights, inducing uncertainty over network activa-

tions and thus predictions ([44], [45]). Recent approaches

based on stochastic variational inference have been applied

successfully to deep networks ([19]). [1] extend the ap-

proach of [19] by inducing a Gaussian mixture prior over

the weights while minimizing an objective that also regular-

izes the network. A different approach uses additive Gaus-

sian noise on the gradients during back-propagation for ob-

taining uncertainties over the posterior weight distribution

([37]). [24] introduce expectation back-propagation for ap-

proximate variational inference in deep neural networks.

Uncertainty used for AL [15] show how dropout can

be used for obtaining posterior uncertainties over network

predictions, and specifically for CNNs in [14]. The au-

thors also use these uncertainties for AL in [16] on MNIST

and a small medical data set. Uncertainty estimates are ob-

tained by sampling from the average softmax output of mul-

tiple forward passes with random dropout masks—known

as Monte Carlo (MC) Dropout. An interpretation is that

each dropout mask produces one member of an ensemble of

networks and averaging over multiple such forward passes

is similar to having a full ensemble. In the experimental

section, we compare MC Dropout uncertainties for active

learning against uncertainties produced by a full ensemble.

[52] argue that uncertainty-based methods for AL are in-

effective for CNNs and instead propose an acquisition func-

tion that uses geometric arguments in the data-space (essen-

tially trying to cover a diverse set of points by considering

distances between points and clusters of points). In our ex-

periments we also compare against this method.

AL for CNNs Besides [16] there are three other AL

approaches for CNNs to the best of our knowledge: [52]

use a density approach to cover the entire space of unla-

beled data points using a geometric based similarity func-

tion between images. [59] use the entropy of the softmax

output for selecting images to label and additionally auto-

matically label high confidence samples (pseudo-labeling).

This approach is outperformed by [52]. Finally, [34] ex-
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tend a method based on the expected model output change

principle to deep neural networks. This method is compu-

tationally expensive and its performance is similar to [59].

3. Methodology

3.1. Pool­Based Active Learning

In pool-based AL, there exists a large unlabeled pool of

data U , and an initial, small labeled set of data L. In each

step of the process, a model M is trained on L, and an ac-

quisition function a(U,M) chooses s points to be labeled

by an external oracle and added to L. This process is re-

peated, training M from scratch with the newly incorpo-

rated labeled data, until a certain budget of labeled data is

exhausted or until a certain model performance is reached.

We explore different acquisition functions used for re-

gression and image classification. For the former, a(U,M)
in this study is always based on the predictive variance of

the model output. For the latter, either the softmax output

vector of a neural network is used as an input to an un-

certainty based acquisition function, or the outputs of the

last fully-connected layer in the network are used as feature

vectors to calculate image similarities for a density-based

approach.

3.2. Uncertainty estimation and approaches

This study uses two recent methods to obtain well-

behaved uncertainty estimates from deep neural networks:

Monte-Carlo dropout (MC-dropout) ([15]) and deep ensem-

bles ([40], [48]). The former approaches the problem from

a Bayesian perspective, and interprets dropout regulariza-

tion as a variational Bayesian approximation. In practice

this entails training the neural network with the data Dtrain

as usual with dropout, and during inference performing T

forward passes through the network, each time sampling a

new dropout mask, which results in the weights wt. The T

softmax vectors are then averaged to obtain the output for a

given class c and input x.

p(y = c|x,Dtrain) =
1

T

T
∑

t=1

p(y = c|x,wt) (1)

The latter approach trains an ensemble of N classifiers, and

uses the averaged softmax vectors of each ensemble mem-

ber as the output (same as equation 1, replacing T with N ).

In the experiments all ensembles are trained with the same

Dtrain and same network architecture, but different random

weight initializations winit. One could also take additional

measures to de-correlate the ensembles, such as bootstrap-

ping or using different network architectures ([48]).

3.3. Acquisition functions

Uncertainty based Three different uncertainty based ac-

quisition functions, used in this study, can be applied to out-

puts obtained from either deep ensembles or MC-dropout.

These functions and their approximations (when necessary)

were introduced and used in [16] for active learning in cer-

tain settings. In the following equations, T always refers to

either the number of forward passes in MC-dropout, or the

number of classifiers in an ensemble.

The most ubiquitous measure in the literature is to

choose points whose predicted classification probability

distributions have the highest entropy ([54]).

H[y|x,Dtrain] :=−
∑

c

( 1

T

∑

t

p(y = c|x,wt)
)

· log
( 1

T

∑

t

p(y = c|x,wt)
)

(2)

Another measure (also known as (BALD, [27]) is the mu-

tual information between data-points and weights. The idea

is that data-points with a large mutual information between

the (predicted) label and network weights would have a

large impact on the trained network if the correct labels

were provided. The measure consists of the entropy over

predictions minus the conditional entropy over predictions

given the weights, approximated for the CNN case ([16]).

I[y;w|x,Dtrain] := H[y|x,Dtrain]

−
1

T

∑

t

∑

c

−p(y = c|x,wt) log p(y = c|x,wt)
(3)

The variation ratio is a measure of dispersion of a nomi-

nal variable, and is calculated as the proportion of predicted

class labels that are not the modal class prediction (fm is the

number of predictions falling into the modal class category)

([13]). Larger values thus indicate a greater dispersion.

v := 1−
fm

T
(4)

Although shown to be less effective than the previous ac-

quisition functions in some settings [16], the variance of

the softmax output vectors within the ensemble or within T

forward passes can also be used as an acquisition function.

σ2 =
1

C

∑

c

1

T

∑

t

(p(y = c|x,wt)− p̂(y = c))
2

(5)

Geometric approaches Density-based acquisition func-

tions have recently also been applied to CNNs. For com-

parison, this study implements the approaches presented in

[52] (in the following called Core-Set) and [61] (in the fol-

lowing called REPR). The former method is a core-set ap-

proach that seeks to choose p points (the acquisition size)

that minimize the maximum distance between point xi in

the overall distribution (with [n] being all points there) and

its closest neighbor xj in the selected subset s. This study
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uses the simpler of the two implementations in [52], as it

was shown to perform only marginally worse. In practice,

the value u is selected greedily one point at a time, initial-

ized with the training data images.

u = argmax
i∈[n]\s

min
j∈s

dist(xi, xj) (6)

The REPR method chooses points that best “represent” the

rest of the distribution. The algorithm greedily tries to max-

imize the representativeness R of a set of selected points Sa.

Each point in Su has a representativeness score r, defined as

the similarity between it and its most similar point in the se-

lected subset; R is the sum of all individual r scores. REPR

encourages diverse points to be added to Sa, as adding a

point Ij to Sa similar to one already in Sa would result in

high r scores for points in Su that already had high r scores.

For the similarity measure sim we use the Euclidean norm.

R(Sa, Su) =
∑

Ij∈Su

r(Sa, Ij)

r(Sa, Ij) = max
Ii∈Sa

sim(Ii, Ij)
(7)

4. Experimental results

The models presented in the following are evaluated on

MNIST ([41]), CIFAR-10 ([38]), and a diabetic retinopathy

dataset ([11]). Referred figures and tables starting with an

“A” are placed in the supplementary material. Shaded areas

in the plots denote ± one standard deviation.

4.1. Implementation details

The settings for the experiments are described in Ta-

ble 1. The network architecture for MNIST, referred to as

“S-CNN” is the same as in the example Keras MNIST CNN

implementation ([12]), also used in [16] (two convolutional

layers and one dense layer). For CIFAR-10 we use the

Keras CIFAR CNN implementation ([12]) with four con-

volutional layers and one dense layer, which we refer to as

“K-CNN”. Additionally we also evaluate with DenseNet-

121 (k = 12, with bottleneck) on CIFAR-10, using the

learning rate schedule as proposed in [29]. Details for the

inceptionV3 architecture used for the diabetic retinopathy

use case are described in section 4.5. For all models we

use Glorot initialization, the Adam optimizer for S-CNN,

RMSprop for K-CNN, standard SGD for DenseNet and a

combiantion of RMSprop (20 epochs) and SGD (rest of

the training) for InceptionV3. After each acquisition step,

models are trained for a fixed number of epochs. Subse-

quently, a fixed number of samples are selected from a pool

of fixed size (a random subsample of the remaining “un-

labeled” training data), added to the labeled data set, and

models are re-rained from scratch with this set. Initial la-

beled sets are randomly sampled from the whole training

set. For MNIST and CIFAR-10 initial sets are balanced

over all classes. All experiments are run for a fixed amount

of acquisition steps, or equivalently, until a certain amount

of training data is labeled. We report test errors on the final

model, after training the full number of epochs, except for

DenseNet where we use the model with the best validation

loss among all epochs. Results are averaged over five rep-

etitions. For MC dropout we use 25 forward passes. Each

ensemble consists of five networks of identical architecture

but different random initializations. The dropout rate is 0.25

for the two conv-layers and 0.5 for the dense layers for S-

CNN and K-CNN, respectively. For DenseNet it is 0.2 after

every convolutional layer. For the geometric approaches the

Euclidean norm is used as a similarity-measure and is calcu-

lated using image features from the outputs of the last fully

connected layer in the network.

4.2. Results for active learning on image data

We evaluate the AL performance under different meth-

ods for uncertainty estimation: an ensemble of five net-

works, MC Dropout, and a single, standard network. Se-

lected results are shown in figure 1. All results (including

Variation Ratio, BALD, predictive variance, predictive en-

tropy and additional the geometric approaches Core-Set and

REPR) are shown in Figure A1. On MNIST and CIFAR the

ensemble-based approach outperforms all others by a clear

margin, whereas the MC-VarR performs similarly to the

Single-Entropy approach. Note that for the initial labeled

set data-points were selected randomly, thus, comparing ac-

quisition based versions against their random counter-parts

for each method should lead to the same accuracy on aver-

age. Corresponding results are shown in the inlets.

On average ENS-VarR increases the accuracy over its

random baseline by a larger margin compared to the other

approaches on more complex data. On MNIST not consid-

ering the initial training and the first four acquisition steps,

as there is larger variance in the accuracy, ENS-VarR / MC-

VarR / Single-Entr. achieve on average 3.96 / 3.98 / 2.87
percentage points (pp) higher accuracy than the random

baseline. On CIFAR (omitting the initial training and first

acquisition step) this is 3.19 / 2.23 / 2.30 pp.

Table 2 provides the mean and standard deviation over

five runs of labeled images needed to achieve a top-1 accu-

racy of 80%, 85%, and 87.5% (DenseNet on CIFAR-10).

The ENS-VarR needs on average 2, 906 (29.2%) less la-

beled images to reach an acccuracy of 85% compared to

an entropy-based single network approach. Generally, vari-

ance for ENS-VarR is lowest and variance for random ac-

quisitions is higher compared to AL acquisitions.

The geometric approach by [52] (Single-Core-Set) per-

forms similar to random acquistion on MNIST ( 1a, sig-

nificantly worse than random on CIFAR-10 using the K-

CNN ( A1f, and better than random on CIFAR-10 using
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(a) MNIST on S-CNN (b) CIFAR-10 on DenseNet

Figure 1: Test accuracy over acquired images. We compare Variation Ratio for MC dropout and the ensemble (ENS) and

softmax-entropy based acquisition for a single network. For all methods we also show performance under random acquisition.

Shaded areas denote ± one standard deviation. (see text for details about the architectures used).

the DenseNet ( 1b. However the original paper uses a dif-

ferent network (VGG-16), and achieves a relatively worse

accuracy than our setup: with 10, 000 training images [52]

achieve a mean accuracy of 74%, whereas we report 85%
on the DenseNet for 10, 500 images. The differences could

be due to the different feature representations provided by

the various network architectures, or perhaps the prevalence

of outliers hindering the greedy core-set approach (i.e. per-

haps there are more outliers with a negative effect using

the K-CNN feature representation on CIFAR-10). Results

on CIFAR-10 with K-CNN (instead of DenseNet) show lit-

tle difference in the performance of the different methods

(see Fig. A2), with the exception of the geometric methods.

Variations of hyperparameters such as acquisition step size,

subset pool size, dropout rates do not qualitatively affect the

results (Fig. A3).

4.3. Comparing ensemble­based against Monte­
Carlo Dropout performance

Multiple MC Dropout forward passes with different

dropout masks can also be interpreted as an approximation

to a full ensemble (consisting of separate networks). In our

experiments we find that using uncertainties obtained from

MC Dropout with 25 forward passes performs worse for

AL compared to uncertainties obtained by an ensemble of

five networks. To investigate the difference we performed a

number of experiments. One difference is that the weights,

initialization, and (to some degree) the gradient updates are

shared among all MC Dropout “ensemble” members, which

is not true for an ensemble of five separate networks. An-

other difference is that the effective model-capacity of MC

Dropout might be reduced, since at every forward pass a

certain proportion of neurons or convolutional filters are in-

active. Our experiments show that it is a combination of

several factors that lead to an increased AL performance us-

ing an ensemble. In particular, we investigate the following

aspects in isolation: Number of networks in the ensemble

or forward passes in MC dropout, Model capacity by re-

ducing the number of neurons for the ensemble networks,

Fixed initialization to have the same initialization for all

ensemble members, and Fixed order within a mini-batch

to have the same order of images within a mini-batch for all

Model Training epochs Data size Acquisition size

train / val / test

MNIST S-CNN 50 58,000 / 2,000 / 10,000 20 + 20 (2K) → 1,000

CIFAR-10 K-CNN 150 48,000 / 2,000 / 10,000 200 + 400 (4K) → 9,800

CIFAR-10 DenseNet 100 48,000 / 2,000 / 10,000 500 + 2000 (20K) → 14,500

Diabetic R. InceptionV3 150 67,961 / 3,000 / 17,741 1,000 + 5,000 (30K) → 21,000

ImageNet ResNet-50 100 1,281,167 / 10,000 / 50,000 40,000 + 40,000 (400K) → 280,000

Table 1: Settings used for the active learning experiments on the MNIST, CIFAR-10 and Diabetic Retinopathy data sets:

Training epochs: Maximum number of training epochs.

Data size: Size of data set for training / validation / test.

Acquisition size: number of images for the initial model + number of images acquired in each step (from the number of

images in the pool subsample) → Maximum number of images acquired during training.
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Figure 2: Manipulating differences between Monte-Carlo Dropout and ensemble-based active learning in isolation. Plots

show test accuracy on CIFAR-10 with K-CNN, using Variation Ratio as an acquisition function. (a) ENS-fix.order: ensemble

with fixed order of images per mini-batch. ENS-fix.init: ensemble with same initialization for all members. ENS-red.cap.:

ensemble with reduced number of neurons (25% less for conv-layers, 50% less for dense layers). ENS-red.cap+fix.init:

ensemble with reduced capacity and same initialization for all members. (b) Acq.by.ENS-on MC: Images acquired by

ensemble-based approach (during the run of ENS) used to train MC dropout network. ENS-Random: ensembles with random

acquisition. Acq.by.MC-on ENS: Images acquired by MC Dropout (during the run of MC) used to train ensemble. MC-

Random: MC Dropout with random acquisition.

ensemble members.

Number of networks Fig. A3 shows the effect of using

different numbers of MC forward passes (2, 5, 10, 25, 50,

100) and of ensemble members (3, 5, and 7). The perfor-

mance of the ensemble-based approach is only slightly im-

pacted by the number of members and even with three net-

works, the method still outperforms the MC Dropout based

approach with a much larger number of forward-passes.

Fixed initialization and order Another potential cause

for the lack of diversity ([4], [31]) in the MC Dropout case

is the single initialization; the ”networks” from random for-

ward passes could be in similar local optima, whereas mem-

bers of the ensemble may converge to different local optima

due to different initializations. A second source of random-

ness that may have the same effect is the order of the train-

ing images presented in the mini-batches: for the ensemble

this order is randomly shuffled for each member. As Fig-

ure 2a shows, fixing the order of training examples has a

test ENS-VarR MC-VarR Single-Entr.

accuracy Active learning acquisition (Random)

80% mean 4718 (6032) 6255 (7470) 6711 (7661)

std. 206.2 (57.8) 276.0 (442.9) 216.2 (565.6)

85% mean 7053 (9613) 9888 (13248) 9959 (13300)

std. 205.3 (451.8) 186.6 (481.6) 301.6 (496.3)

87.5% mean 9187 (12830) 13388 (-) 12453 (-)

std. 184.8 (333.8) 280.9 (-) 582.2 (-)

Table 2: Mean and standard deviation over five runs of ac-

quired images to achieve a top-1 accuracy (DenseNet on

CIFAR-10) for the ensemble, MC dropout and a single net

with Variation Ratio and Entropy as acquisition functions

compared to random acquisition. The ensemble approach

needs less images to achieve a certain accuracy.

negligible effect, whereas sharing the same weight initial-

ization across all members of the ensemble leads to a sig-

nificant decrease in performance. However, the latter factor

alone can not fully explain the difference in performance.

Capacity In each MC forward pass a significant fraction

of neurons or convolutional filters is inactive, such that on

average the total model capacity may be reduced compared

to an ensemble of multiple networks of the same architec-

ture. By using smaller networks for the ensemble (i.e. their

layer-size matches the average number of active neurons in

MC Dropout) we find that the reduced model capacity does

indeed play an important role (see Figure 2). The perfor-

mance of such a capacity-limited ensemble drops roughly

to the performance of MC Dropout (note however that MC

Dropout uses 25 forward passed compared to 5 ensemble

members). In figure A4 we increase the capacity of the MC

network so the same number of activations are present after

dropout. Though, there is only a negligible benefit.

Separating acquisition quality from inherent accuracy

In Figure 2b we investigate the effect of training the en-

semble with the images that MC Dropout would have se-

lected. To do so, we simply perform all acquisition steps

with MC Dropout and record the images selected in each

step, and subsequently train an ensemble with these acqui-

sitions. We also perform the reciprocal experiment of train-

ing MC Dropout with images acquired using ensembles.

The results show that an MC-Dropout network using the

ENS selected images performs only marginally worse than

the ENS acquisition function, and using ENS to evaluate on

the MC-Dropout selected images performs only marginally

better than the MC acquisition function. Essentially, this

means that the “acquisition quality” of ENS is superior to

MC Dropout, and that the difference can not simply be ex-

plained by the fact that evaluating with an ensemble is more
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accurate than evaluating with MC Dropout.

Uncertainty calibration To assess calibration ([7]) qual-

ity we determine whether the expected fraction of correct

classifications (as predicted by the model confidence, i.e.

the uncertainty over predictions) matches the observed frac-

tion of correct classifications. When plotting both values

against each other, a well-calibrated model lies close to the

diagonal. The mean-squared-error (MSE) between the di-

agonal and the calibration plot is used to quantify calibra-

tion quality. Results are shown in Figure 3 after 3 acqui-

sition steps and throughout the whole acquisition proce-

dure in Figure 3a. Additionally we show calibration plots

for different acquisition steps in Figure A6. We observe

that ensemble-models are better calibrated in the low-data

regime compared to MC Dropout and a single network. In

the regime of sufficient data we find little difference be-

tween MC Dropout and ensembles.
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Figure 3: a) Calibration plot after 3 acquisition steps (6, 500
images) for CIFAR-10 and the DenseNet. Ideal calibration

is on the dashed diagonal. b) Mean squared error for the

calibration lines for different number of acquired images.

As additional measures to assess uncertainty quality, we

report the negative log likelihood (NLL) and the Brier score

([3]) (as used in [40]) in Table 3 for four acquisition steps,

and in Figure A7 across the whole acquisition procedure.

Similar to the calibration analysis, we find that under both

measures ensembles have an increased uncertainty qual-

ity in the low data regime, and perform similarly to MC

Dropout ensembles with sufficient labeled data. Both meth-

ods consistently outperform softmax-entropy based uncer-

tainties of a single network.

Acqu. Brier Score NLL

step Single / MC / ENS Single / MC / ENS

0 0.3773 / 0.2685 / 0.0903 0.3173 / 0.2261 / 0.0763

1 0.2287 / 0.1346 / 0.0682 0.1952 / 0.1170 / 0.0664

2 0.1604 / 0.0923 / 0.0242 0.1371 / 0.0836 / 0.0241

3 0.1315 / 0.0495 / 0.0248 0.1143 / 0.0442 / 0.0287

Table 3: NLL and Brier score, averaged over five runs, for

different acquisition steps for a single network, MC and an

ensemble (DenseNet on CIFAR-10).

Decomposing uncertainty [36] and [9] describe a de-

composition of predictive uncertainty into an aleatoric

(noise in the data) and an epistemic component (uncertainty

in the model parameters). Importantly, epistemic uncer-

tainty can be reduced with more data whereas the aleatoric

uncertainty is theoretically unaffected by an increase of

training data. Acquisition functions based on epistemic un-

certainty thus hold the promise of improving acquisition

quality. Unfortunately we could not find an improvement

in our experiments by using the uncertainty decomposition

in the MC Dropout setting, see Figure A8. To investigate

potential reasons for this we conduct a one-dimensional re-

gression toy-example as described in [47], see Figure A9.

Implicit ensembling The drawback of using ensembles

is that it is computationally expensive to train multiple net-

works. Some techniques to overcome this issue have been

proposed in recent literature. We evaluate some of these

methods on our active learning experiments. The results

and implementation details are described in the appendix

(Fig. A5).

4.4. ImageNet

We further test the best performing method (ENS-VarR)

on the large-scale image classification dataset ImageNet [8],

using the ResNet-50 network architecture [22] (achieves

top-1 accuracy of 75.3% with full dataset). The network

is trained for 100 epochs without data augmentation using

stochastic gradient descent. The initial learning rate of 0.1

is changed to 0.01 at epoch 50, and 0.001 at epoch 75. The

initial 40,000 images are class-balanced. Active learning

hyperparameters can be found in Table 2.

The results are displayed in Fig. 4 and Table 4. While

there initially is no difference between the random base-

line and the uncertainty-based acquisition function, after the

third acquisition (160k training images) a small improve-

ment can be seen, which continues to widen over the next

few iterations. As training an ensemble of networks on Im-

ageNet is computationally costly, a large acquisition size of

40,000 images is used. It is likely that using a smaller ac-

quisition size will result in a faster improvement over the

random baseline.

40k 80k 120k 160k 200k 240k 280k

Random 0.159
(0.004)

0.257
(0.003)

0.321
(0.006)

0.372
(0.003)

0.407
(0.007)

0.439
(0.001)

0.470

VarR 0.152
(0.003)

0.257
(0.004)

0.324
(0.002)

0.383
(0.002)

0.427
(0.004)

0.458
(0.004)

0.494

Table 4: Top-1 accuracies using ENS-based acquisition

functions for active learning on ImageNet (the values plot-

ted in Fig. 4). Numbers in parentheses are standard devia-

tion over three repetitions (except for final point, which is a

single run).
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Figure 4: Test top-1 accuracy over acquired images. Shaded

areas denote ± one standard deviation.

4.5. AL for diagnosis of diabetic retinopathy

AL is particularly relevant for fields in which labeling of

images is expensive or which require highly trained experts,

such as in medical image diagnosis. We evaluate the AL ap-

proaches presented in this paper on a real-world use case to

detect diabetic retinopathy in eye fundus images . Details

about the data and the AL parameters are described at the

beginning of Section 4. The task is to classify between (“un-

healthy”) referable (rDR) and (“healthy”) non-referable DR

images (examples are shown in figure A10). According to

the WHO, in 2002 almost 5 million people were suffering

from blindness caused by DR, which makes it the fifth most

common cause of moderate to severe visual impairment [2].

Once detected, DR can be treated quite well. However, par-

ticularly in developing countries where access to ophthal-

mologists and medical staff is scarce ([50]), cheap solutions

for automated mass-screenings that can be operated by lay-

men is highly desirable. Automatic diagnosis algorithms

using CNN-based grading and detection algorithms have

been developed ([43]), however these require large amounts

of training data which is currently only available for high-

quality image acquisition setups that need to be operated

by trained professionals. Recently, one such data-set was

released as part of a machine learning competition ([11]).

The original data set contains five classes for varying stages

of retinopathy. We merge the first two classes as healthy

and the rest as rDR to yield a binary classification problem.

19.34% of the images fall in the latter category rDR.

We use the inceptionV3 network ([56]) from Keras Ap-

plications ([12]), which achieved high task accuracy in [20].

We augment / preprocess the data by flipping images hori-

zontally and vertically, and by channel-wise color augmen-

tation ([39]). Pre-trained weights from ImageNet are used

for initialization (excluding the final fully connected layer,

which is initialized randomly). For 20 epochs only the final

fully connected layer is trained with RMSprop. Then, the

whole network is trained with SGD (learning rate of 0.0001,

momentum of 0.9, no weight decay).

Figure 5a shows the area-under-curve (AUC) depending

on the number of acquired images. After selecting 21, 000
images, the ENS-VarR approach achieves an AUC of 0.983,

and the random acquisition an AUC of 0.965. [20] use 80%
of the 128, 175 images for training an ensemble of 10 net-

works with the same inceptionV3 architecture, and achieve

a final AUC of 0.991. Although we cannot directly com-

pare [20] to our work as different amounts of data were

used, the experiment nevertheless underlines that the ENS

approach can be usefully applied to a real-life medical use

case. Even though the data-set is highly imbalanced (about

one fifth rDR images), the ensemble approach selects rDR

images with a significantly increased probability per acqui-

sition step (Figure 5b). We assume that these images are

particularly informative for improving task performance.

Interestingly, after four acquisition steps, the fifth acquisi-

tion step for ENS-VarR would select only 5.7% additional

rDR images (compared to 7.5% for the random acquisition).

We believe this is because after four acquistion steps most

rDR images have been selected, so healthy images might be

more beneficial for improving the AUC.
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Figure 5: Test results for the diabetic retinopathy dataset.

(a) AUC over acquired images. (b) Number of unhealthy

images acquired and the percentage of total rDR images in

the training set for each acquisition step.

5. Conclusion

We compare the performance of acquisition functions

and uncertainty estimation methods for active learning

with CNNs on image classification tasks. We show

that ensemble-based uncertainties consistently outperform

other methods of uncertainty estimation (in particular MC

Dropout) and lead to state-of-the-art active learning perfor-

mance on MNIST and CIFAR-10. Through additional ex-

periments we find that the difference in active learning per-

formance can be explained by a combination of decreased

model capacity and lower diversity of MC Dropout ensem-

bles. Additional evaluations indicate that recently proposed

methods for implicit ensembling, but also methods that sep-

arate aleatoric and epistemic uncertainty, fail to outperform

plain-ensemble active learning. We conclude by showing

results on a real-world application in medical diagnosis, and

a large-scale application in ImageNet classification. We find

that ensemble-based active learning works well in both sce-

narios.
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