
Analytic Expressions for Probabilistic Moments of PL-DNN with Gaussian Input

Adel Bibi∗, Modar Alfadly∗, and Bernard Ghanem

King Abdullah University of Science and Technology (KAUST), Saudi Arabia

{adel.bibi,modar.alfadly,bernard.ghanem}@kaust.edu.sa

Abstract

The outstanding performance of deep neural networks

(DNNs), for the visual recognition task in particular, has

been demonstrated on several large-scale benchmarks. This

performance has immensely strengthened the line of re-

search that aims to understand and analyze the driving rea-

sons behind the effectiveness of these networks. One impor-

tant aspect of this analysis has recently gained much atten-

tion, namely the reaction of a DNN to noisy input. This has

spawned research on developing adversarial input attacks

as well as training strategies that make DNNs more robust

against these attacks. To this end, we derive in this pa-

per exact analytic expressions for the first and second mo-

ments (mean and variance) of a small piecewise linear (PL)

network (Affine, ReLU, Affine) subject to general Gaussian

input. We experimentally show that these expressions are

tight under simple linearizations of deeper PL-DNNs, es-

pecially popular architectures in the literature (e.g. LeNet

and AlexNet). Extensive experiments on image classifica-

tion show that these expressions can be used to study the

behaviour of the output mean of the logits for each class, the

interclass confusion and the pixel-level spatial noise sensi-

tivity of the network. Moreover, we show how these expres-

sions can be used to systematically construct targeted and

non-targeted adversarial attacks.

1. Introduction

Deep neural networks (DNNs) have demonstrated im-

pressive performance over the years in many fields of

research. The applications include object classification

[14, 16], semantic segmentation [19], activity recogni-

tion/detection [7, 32], speech recognition [15] and bioin-

formatics [4] to name a few. Despite this success, DNNs

still exhibit uncouth behaviour under certain circumstances.

Some of these nuisances in performance became apparent

when adversarial perturbations were first introduced [31].

For instance, despite their excellent visual recognition per-

formance, there are various simple routines that can tailor

∗Both authors contributed equally to this work.

Figure 1. Any PL-DNN can be linearized before and after a given

ReLU through a two-stage linearization truncating it into a (Affine,

ReLU, Affine) network, whose 1st and 2nd moments can be de-

rived analytically when it is exposed to Gaussian input noise. We

show that these moments are helpful in predicting how PL-DNNs

react to noise and constructing adversarial Gaussian input attacks.

small imperceptible perturbations to the input that result

in a drastic negative effect on classification performance

[12, 24, 31]. More interestingly, some of these perturbations

can be both image and network agnostic [23]. In light of

these revelations, only little progress has been made to sys-

tematically understand the reasons behind such behaviour.

However, there are some recent approaches that do try to

deal with these nuisances. For instance and as a direct ap-

proach, it has been shown that augmenting the training data

with these perturbations can in fact enhance the robustness

of networks [12, 24]. Unfortunately, this brute force solu-

tion does not provide much insight on the reasons behind

such behaviour. In addition to increasing the training set

size and training time, such a strategy might still not be suf-

ficient, since the space of all possible adversarial perturba-

tions is possibly too large for augmentation to help.

Thus, in this paper, we derive expressions of the first and

second moments (mean and consequently the variance) of a

small piecewise linear (PL) network in the form of (Affine,

ReLU, Affine) under Gaussian input. These two expres-

sions provide a powerful tool for analyzing other larger PL-

DNNs, which are by far the most popularly used networks

in recent literature, through means of two-stage lineariza-

tion (as shown in Figure 1). We show that these expres-

sions provide much insight in understanding the behaviour

9099

of DNNs under adversarial attacks and in generating Gaus-

sian adversarial attacks.

2. Related Work

Understanding and analyzing DNNs has a long rich his-

tory. In this section, we gather the most related work to ours,

which generally touches upon the following four concepts.

Visual Representation. A natural means of analyzing

DNNs is by examining their visual representations. There

has been several works that have carried this out through

visualization tools [6, 21, 33]. Moreover, there has been

extensive empirical studies that attempt to explain DNN be-

haviour by investigating the effect of transferring features

among different vision tasks [2]. Interestingly, Soatto et al.

[29] has nicely linked the visual representation of a DNN

with the underlying task (e.g. classification).

Robustness. There has been a wide range of studies ana-

lyzing the robustness of classifiers in general and DNNs in

specific to the presence of noise [10, 11]. Different types

of noise have been examined from additive to geometric

transformations. For instance, Fawzi et al. [9] propose a

generic probabilistic framework for analyzing classifier ro-

bustness to different nuisance factors. Moreover, the work

of [8] proposes a method to assess classifier robustness to

input undergoing geometric transformations.

Moreover, and most related to our work, analyzing and

understanding DNNs undergoing additive input noise has

been well studied in the literature [1, 3, 13, 31]. The litera-

ture here can in general be divided into two parts.

Noise Injection During Training. Another approach to

analyzing DNNs is by injecting noise into various layers

during backpropagation, which has been shown to improve

performance significantly [13]. This phenomenon has been

well founded since the work of [3], which shows that adding

noise is equivalent to regularizing the loss with a term in-

volving only first order derivatives of the DNN. Other ex-

perimental studies [20] show the effect on backgpropaga-

tion and performance of adding Gaussian, Binomial and

Gamma noise to both the input and hidden layers.

Adversarial Perturbations. On the other hand of the spec-

trum and most recently, it has been demonstrated that one

can tailor noise (perturbations) to the DNN input leading to

severe reduction in classification performance [12, 24, 31].

For instance, Szegedy et al. [31] show that such perturba-

tions can be constructed by maximizing the network’s pre-

diction error through a penalized optimization. The work of

[23] proposes a much simpler approach by solving a pro-

jection problem with simple constraints and a closed form

solution. These adversarial perturbations have been empiri-

cally shown to be doubly-universal, i.e. agnostic of both the

input and DNN architecture [23]. Even more surprisingly,

Su et al. [30] recently demonstrate that perturbing a single

input pixel of some well-known DNNs can result in a mis-

classification rate as high as 70% on popular benchmarks.

Furthermore, Nguyen et al. [25] propose a method to gener-

ate completely random images that fool a DNN into believ-

ing (with high certainty) that they belong to object classes

seen in training. These phenomena are quite serious and can

be menacing especially in real-world DNN deployments

(e.g. self-driving cars). To mitigate their effects, it has been

shown that augmenting training data with adversarial per-

turbations [12, 24] leads to a more robust network.

In this paper, we focus our analysis on PL-DNNs that

employ ReLU activations. Unlike previous approaches, we

study how the probabilistic moments of the output of a PL-

DNN with a Gaussian input can be computed analytically.

We do this by first deriving exact expressions for the first

and second moments (the mean and consequently variance)

of a simple (Affine, ReLU, Affine) network. Then, we ex-

trapolate these expressions to deeper PL-DNNs by employ-

ing a simple two-stage linearization step that locally ap-

proximates it with a (Affine, ReLU, Affine) network. Since

these expressions are a function of the noise parameters,

they are particularly useful in analyzing and inferring the

behaviour of the original PL-DNN without the need to probe

the network with inputs sampled from the noise distribution,

as done in previous work for data augmentation [12, 24].

Contributions. (i) We provide a new perspective to ana-

lyzing PL-DNNs by deriving closed form expressions for

the output mean and variance of a network in the form

(Affine, ReLU, Affine) in the presence of Gaussian input

noise. Since all PL-DNN networks can be locally linearized

to have this form, we show with extensive experiments that

the original network can also be analyzed using the derived

expressions, so long as the linearization is reasonable (i.e.

our expressions are tight). (ii) Applying these expressions

on popular network architectures lead to interesting insights

for the task of image classification. For example, they can

reliably predict the fooling rate of well-known adversar-

ial perturbations [23] to AlexNet [16]. (iii) By optimizing

for the input noise parameters, we show how these expres-

sions can be proactively used to construct targeted and non-

targeted Gaussian adversarial attacks, as well as, α%-noise

attacks where only α% of the input pixels are corrupted.

3. Network Moments

In this section, we first analyze networks of the form

(Affine, ReLU, Affine) in the presence of Gaussian input

noise. The functional form of this particularly shaped net-

work is: g(x) = Bmax (Ax+ c1,0p)+c2, where max(.)
is an element wise operator. For example, the output of g

can be the output logits of d classes of a shallow network,

whereby g : Rn → R
d. The affine mappings can be of any

size, and throughout the paper we assume that A ∈ R
p×n

and B ∈ R
d×p. Also, note that g can also include con-

voltuional layers, since they are also linear mappings with

9100

particular structure (circulant or Toeplitz).

Let us now consider x to be a random Gaussian vector.

In this case, the problem is cast as a nonlinear random vari-

able mapping, where we ideally seek the probability density

function (PDF) of g(x) when x ∼ N (µx,Σx). Computing

this PDF is possible when B = I; however, the problem is

much more difficult for arbitrary B in general. Thus, we

focus instead on deriving probabilistic moments of this un-

known distribution. This section is divided into two theo-

rems: one theorem that derives the first moment (mean) of

the output g(.), i.e. E[g(x)], and another that derives its sec-

ond moment, i.e. E[g2(x)]. We provide more details on the

derivation of the second moment as it involves an extension

to Price’s Theorem [22, 27], which provides many insights

on analyzing general nonlinear/non-smooth functions act-

ing on multi-variate Gaussian inputs. For simplicity, and

throughout the paper, we denote gi(.) as the ith function in

g(.), i.e. gi(x) = B(i, :)max(Ax+ c1,0p) + c2(i).

3.1. Deriving the 1st Output Moment: E[g(x)]

To derive the first moment of g(x), we first consider the

scalar function q(x) = ReLU(x) = max(x, 0) acting on a

single Gaussian random variable x.

Remark 1. The PDF of q(x) = max(x, 0) : R → R where

x ∼ N
(

µx, σ
2
x

)

is:

fq(x) = Q

(

µx

σx

)

δ(x) + fx(x)u(x)

where Q(.) is the Gaussian Q-function, δ(x) is the dirac

function, fx(x) is the Gaussian PDF and u(.) is the unit

step function. It follows directly that E[q(x)] = σx√
2π

.

Now, we derive the first moment of g(x).

Theorem 1. For any function in the form of g(x) where

x ∼ N (µx,Σx), we have:

E[gi(x)] =

p
∑

v=1

B(i, v)

(

1

2
µ̄v −

1

2
µ̄verf

(−µ̄v√
2σ̄v

)

+
1√
2π

σ̄vexp

(

− µ̄2
v

2σ̄2
v

))

+ c2(i)

where µ̄v = (Aµx + c1) (v), Σ̄ = AΣxA
⊤, σ̄2

v = Σ̄(v, v)

and erf (x) = 2√
π

∫ x

0
e−t2dt is the error function.

Proof. Based on Remark (1) and noting that (Ax+ c1) ∼
N
(

µ̄, Σ̄
)

, we have:

µ̃(i) =

∫ ∞

0

z
1√
2πσ̄i

exp

(

− (z − µ̄i)
2

2σ̄2
i

)

dz

=
1

2
µ̄i −

1

2
µ̄ierf

(−µ̄i√
2σ̄i

)

+
1√
2π

σ̄iexp

(

− µ̄2
i

2σ̄2
i

)

Thus, E[gi(x)] =
∑p

v=1 B(i, v)µ̃(v) + c2(i).

3.2. Deriving the 2nd Output Moment: E[g2(x)]

Here, we need three pre-requisite lemmas: one character-

izes the PDF of a squared ReLU (Lemma 1), one extends

Price’s Theorem (Lemma 2), and one derives the first mo-

ment of the product of two ReLU functions. Details of all

the derivations are in the supplementary material.

Lemma 1. The PDF of q2(x) = max2(x, 0) : R → R

where x ∼ N
(

0, σ2
x

)

is :

fq2(x) =
1

2
δ(x) +

1

2
√
x
fx(

√
x)u(

√
x)

and its first moment is E[q2(x)] =
σ2
x

2 .

Proof. The proof is straightforward by using the cumulative

distribution function (CDF):

Fq2(c) = P(max2(x, 0) ≤ c) =
1

2
δ(c) + Fx(

√
c)u
(√

c
)

(1)

Fq2 and Fx are the CDFs of q2 and x, respectively. The

proof is complete by differentiating the smooth part of (1)

with respect to c.

Lemma 2. Let x ∈ R
n ∼ N (µx,Σx) for any even p, where

σij = Σx(i, j) ∀i 6= j. Then, under mild assumptions on

the nonlinear map Ψ : R
n → R, we have

∂
p
2 E[Ψ(x)]∏

∀oddi
∂σii+1

= E[∂pΨ(x)
∂x1...∂xp

].

Proof. The proof is very similar to the one found in [26]

but with n variables and by taking gradients with respect to

consecutive covariances Σ(i, j). Details of all derivations

are in the supplementary material.

Lemma (2) relates the mean of the gradients/subgradients

of any nonlinear function to the gradients/subgradients of

the mean of that function. This lemma has Price’s theorem

[27] as a special case when function Ψ(x) =
∏n

i Ψi(xn)
and Σ(i, i) = 1 ∀i. It is worthwhile to note that there is an

extension to Price’s theorem [22], where the assumptions

σ2
ii = 1 ∀i and Ψ(x) =

∏n
i Ψi(xi) are dropped; however,

it only holds for the bivariate case (i.e. n = 2) and thus is a

special case of Lemma (2).

Lemma 3. For any bivariate Gaussian x ∼ N (02,Σx), the

following holds for T (x1, x2) = max(x1, 0)max(x2, 0):

E[T (x1, x2)] =

1

2π

(

σ12 sin
−1

(

σ12

σ1σ2

)

+ σ1σ2

√

1− σ2
12

σ2
1σ

2
2

)

+
σ12

4

where σij = Σx(i, j) ∀i 6= j and σ2
i = Σx(i, i).

9101

Proof. Using Lemma (2) with p = 4 and choosing σ12 to be

the covariances at which differentiation happens, we have:

∂2
E[T (x1, x2)]

∂σ12∂σ12
= E

[

∂4
E[T (x1, x2)]

∂x1∂x2∂x1∂x2

]

= E

[

∂4
E[T (x1, x2)]

∂x2
1∂x

2
2

]

=
1

2πσ1σ2

√

1− σ2
12

σ1σ2

(2)

To solve the partial differential equation in Eq (2), two

boundary conditions are needed. Similar to [27], they can

be computed when σ12 = 0, which occurs when x1 and x2

are independent random variables. It is easy to show from

Remark (1) that E[T (x1, x2)]|σ12=0 = σ1σ2

2π and that,

∂E[T (x1, x2)]

∂σ12

∣

∣

∣

∣

σ12=0

lemma (2)
= E[u(x1)u(x2)]

σ12=0
= E[u(x1)]E[u(x2)] =

1

4

With these boundary conditions, we compute the integral to

complete the proof.

E[T (x1, x2)] =

∫ σ12

0

1

4
+

∫ y

0

dc

2π
√

1− c2

σ2
1
σ2
2

 dy +
σ1σ2

2π

Theorem 2. For any function in the form of g(x) where

x ∼ N (0n,Σx) and that c1 = 0p then:

E[g2
i (x)] =

2

k
∑

v1

v1−1
∑

v2

B(i, v1)B(i, v2)

(

σ̄v1v2

2π
sin−1

(

σ̄v1v2

σ̄v1 σ̄v2

)

+

σ̄v1
σ̄v2

2π

√

1− σ̄2
v1v2

σ̄2
v1
σ̄2
v2

+
σ̄v1v2

4

)

+
1

2

k
∑

r

B(i, r)2σ̄2
r + c2(i)

Proof. The proof follows naturally after considering the

much simpler scalar function that is in the form g̃(z) =
∑d

t αtmax(zt, 0) where z ∈ R
d ∼ N (0d,Σz). There-

fore, we have E[g̃2(z)] =
∑d

r α
2
rE[max2 (zr, 0)] +

2
∑

v2≤v1
αv1

αv2E[max (zv1
, 0)max (zv2 , 0)]. Note that

g̃(z) is only a special case of gi(x), where z = Ax and

αt = B(i, t). It is also clear from E[g̃ (z)] that it is sufficient

to analyze E[g̃ (z)] in the bivariate case. Thus, the function

we are interested in is E[g̃2 (z1, z2)] = α2
1E[max2 (z1, 0)]+

α2
2E[max2 (z2, 0)] + 2α1α2E[max (z1, 0)max (z2, 0)]. Us-

ing Lemmas (1) and (3), the proof is complete.

Lastly, the variance of g(x) can be directly derived:

var(gi(x)) = E[g2
i (x)] − E[gi(x)]

2|µx=0̄k
. Refer to the

supplementary material for the compact analytic form.

3.3. Comments

It is important to note that (i) the 2nd moment is derived

under the assumptions µx = 0n and c1 = 0p as the analy-

sis gets intractable otherwise. Motivated with the fact that

the variance of a random variable is translation invariant,

we later show experimentally that these assumptions are not

very strict resulting in a linear relation between the true vari-

ance and our analytically derived one. (ii) Lemma (2) is

particularly useful when the function Ψ(x) is PL. Since the

choice of p is arbitrary, one can choose p to be big enough

so that all the subgradients ∂p

∂x1...∂xp
reduce to dirac func-

tions, thus, simplifying the evaluation of an integral such

that E [∂p/∂x1 . . . ∂xp] is a direct evaluation of the Gaus-

sian PDF [27]. As such, the ReLU activations in PL-DNNs

reduce to dirac functions by taking two gradients.

3.4. Extending to Deeper PLDNNs

To extend the previous results to deeper DNNs that are

not in the form (Affine, ReLU, Affine), we first denote

the larger DNN as R(x) : Rn → R
d (e.g. a mapping of

the input to the logits of d classes). By choosing the lth

ReLU layer, any R(.) can be decomposed into: R(x) =
Rl+1 (ReLUl (Rl−1 (x))). In this paper, we employ a sim-

ple two-stage (bottom and top) linearization based on Tay-

lor series approximation to cast R(.) into the form (Affine,

ReLU, Affine). For example, we can linearize it around

points x and y = ReLUl (Rl−1(x)), such that Rl−1(x) ≈
Ax+ c1 and Rl+1(y) ≈ By + c2. The resulting function

after linearization is R(x) ≈ Bmax (Ax+ c1,0k) + c2.

Figure 1 illustrates this two-stage linearization. The strat-

egy of choosing the points of linearization (x and y) and

layer l is left to Section 4.

4. Experiments

In this section, we discuss a variety of experiments to show-

case: (i) the tightness of our derived network moment ex-

pressions across network architectures and input variance

levels on both synthetic and real networks; (ii) their tight-

ness across different choices of linearization; and (iii) how

we can use our expressions to construct an adversarial

Gaussian input attack that confuses a PL-DNN in various

ways (e.g. a targeted, non-targeted, or sparse pixel attack).

4.1. Tightness of Network Moments

Although our derived expressions for the output mean and

variance in Theorems (1) and (2) are tight for a (Affine,

ReLU, Affine) network, it is conceivable that the two-stage

linearization might impact the tightness of these expres-

sions when applied to deeper PL-DNNs. Here, we em-

pirically study their tightness by comparing them against

Monte Carlo estimates for both synthetic and real networks.

9102

Figure 2. Shows the tightness between the analytic expressions against the Monte Carlo estimates with random Gaussian inputs. The

experiment is conducted across different types of networks, different depths and different input variance level. To compare the tightness,

we report the slope of the fitted line in the legend. The closer the slope to 1.0 the tighter the expressions to the Monte Carlo estimates.

Synthetic Networks on Synthetic Data. We consider

two types of synthetic networks each with a varying num-

ber of hidden layers and subject them to various levels of

input zero-mean Gaussian noise. The first type only con-

sists of fully connected layers separated by ReLU activa-

tions with input size R
100. We construct three networks of

this type with 2, 3 and 4 layers, denoted as FC-A, FC-B and

FC-C, respectively. The other network type consists of con-

volutional layers separated by ReLU activations with input

size R
20×20. Networks of this type have depths of 2, 3 and

4, denoted as Conv-A, Conv-B and Conv-C, respectively.

For details about these networks’ configurations, refer to

the supplementary material. The weights of all networks

are randomly generated as i.i.d. Gaussian. Note that all

networks have a fully connected layer at the end to map

the output to a single scalar. To study the effect of input

noise level, we use three input noise regimes (low, medium

and high) corresponding to three base random covariance

matrices (Σ1,Σ2,Σ3), whose maximum variance levels are

10−4, 1 and 200, respectively.

In each experiment, the noise covariances in the three

regimes are generated randomly from each of the base co-

variances Σ1, Σ2 and Σ3. For each Monte Carlo simula-

tion, we randomly generate a set of 7.5 × 104 noisy input

samples from each of the three noise regimes, perform for-

ward passes through the networks, and compute the empiri-

cal mean and variance of the output. For our proposed ana-

lytic mean and variance, the two-stage linearization is done

such that x = 0, y = Rl−1(x), and l = 2. The experiment

is repeated such that we sample 200 random covariances

similar to each of the base covariances Σ1,Σ2 and Σ3.

To compare the tightness of our analytic results to the

Monte Carlo estimates, we plot the results of the 200 exper-

iments in Figure 2. Due to space constraints, we only con-

sider the medium noise regime for FC-A, FC-B and FC-C,

and the high noise regime for Conv-A, Conv-B and Conv-C.

In each setup, we fit a line through the analytic and Monte

Carlo results of the output mean and variance. The closer

the slope of the fitted line is to 1.0, the tighter the ana-

lytic expressions. The expressions for the mean are tight

across all networks, different network depths, and all input

variance levels. Moreover, the analytic variances seem to

be very accurate in general, but tend to be less tight with

deeper networks (e.g. Conv-C). This is probably due to the

assumption that c1 = 0p in our derivation, which does not

exactly hold after the linearization. However, the analytic

variance is unaffected by various input noise levels. A com-

plete comparative study on each network for all three noise

regimes can be found in the supplementary material.

LeNet on MNIST. In this section, we validate the tight-

ness of the expressions in Theorems (1) and (2) on the well-

known LeNet architecture [18] pretrained on the MNIST

digit dataset [17]. Note that LeNet has a total of four lay-

ers, two of which are convolutional with max pooling and

the other two are fully connected. The input to the network

is R
28×28 with 10 output logits (i.e. d = 10). Similar to

the synthetic experiments, the number of Monte Carlo sam-

ples is 7.5× 104 and the experiment is repeated 200 times.

In this case, the two-stage linearization is done such that

x = M, y = Rl−1(x) and, for memory efficiency, l = 3.

Here, M is an image randomly selected from the MNIST

validation set, and for space constraints, we report the re-

sults for the medium noise regime only. As for the other

noise regimes, refer to the supplementary material. Thus,

the input is x ∼ N (M,Σ2). Since the LeNet architecture

has d = 10, we will be reporting the tightness of the an-

alytic mean and variance for gi(x) ∀i. As for the metric,

9103

Table 1. Reports the average and standard deviation of the ratio

between the Monte Carlo estimates of the mean and variance and

their counterparts from the analytic expressions across all labels

on MNIST. Refer to text for details.

Logits E[Eratio] σ(Eratio) E[varratio] σ(varratio)
g0(x) 1.007 0 0.5431 0.021

g1(x) 1.043 0.001 0.6192 0.021

g2(x) 0.916 0.001 0.3681 0.014

g3(x) 1.061 0.001 0.517 0.019

g4(x) 0.581 0.006 0.4878 0.016

g5(x) 0.699 0.004 0.4267 0.015

g6(x) 0.999 0 0.4795 0.017

g7(x) 0.990 0 0.446 0.014

g8(x) 1.001 0 0.4476 0.014

g9(x) 1.164 0.002 0.5931 0.020

we report the average ratio of the Monte Carlo estimates for

the mean and variance to their counterparts from the ana-

lytic expressions such that: E[Eratio] = E [EMC/E[gi(x)]]
and E[varratio] = E [varMC/var(gi(x))], respectively over

the 200 runs. We also report the standard deviation of both

quantities, which we denote as σ(Eratio) and σ(varratio).

In Table 1, we report the tightness results across all logit

functions gi(x)∀i. These results verify the tightness of the

analytic mean expression of Theorem (1), since the average

ratios E[Eratio] ≈ 1 with a small σ (Eratio). On the other

hand, and similar to the synthetic results, the variance esti-

mate is slightly less accurate, since its analytic expression

assumes that c1 = 0p and µx = 0n. However, despite this

assumption, the ratio between the Monte Carlo estimates

and the analytic expression holds to a nearly constant factor

across all labels E[varratio] ≈ 1
2 . We will show later that

E[varratio] ≥ 0.2. As compared to the mean estimates, an

accurate estimate of the variance is not as important since,

in many use cases, the variance expression can be used to

design noise for adversarial attacks or to build DNNs that

are robust and this can be achieved by either maximizing or

minimizing the output variance, respectively. Thus, a scaled

version of the output variance might be sufficient.

4.2. Studying Adversarial Noise on AlexNet

We now demonstrate the tightness of the analytic expression

of the output mean using AlexNet [16] on the 1000 classes

of ImageNet [5] (i.e. the 1000 logit functions before the fi-

nal softmax layer). As shown earlier, the estimates of the

analytic mean may exhibit minor errors due to linearization;

however, we show here that this error marginally affects the

score ordering of the output logits.

First, we show that the analytic expression for the mean

can predict the fooling rate of a given input once a univer-

sal perturbation noise is added to it. More formally, we

compute the average fooling rate [24] for all input images

Xi+N ∀i (or XN for short), where Xi is an image from the

ImageNet validation set (50K images) and N is VGG16’s

[28] universal adversarial noise [23]. Note that AlexNet

Table 2. Shows ordering accuracy of the top-k classes of the ana-

lytic expression compared to the real predictions.

top-1 acc top-2 acc top-3 acc top 4-acc top-5 acc

98.3% 95.308% 91.156% 86.088% 80.514%

is considered fooled by N at image Xi, if the class of the

maximum output score is different when N is not present.

To use our expressions, we replace the above deterministic

setup with an equivalent probabilistic one by assuming the

presence of small zero-mean Gaussian noise. Formally, we

compute the average fooling rate of Xi + N + n (or XNn

for short), where n ∼ N (0,Σ1) using our analytic expres-

sion for the mean of the d=1000 dimensional output. The

number of Monte Carlo samples is left as before 7.5× 104.

The two-stage linearization of AlexNet is done such that

x = Xi + N, y = Rl−1(x) and, for memory efficiency,

l = 7. The fooling rate of XN is computed to be 38.70%,

while that of XNn is 38.62%. This demonstrates that our

moment expressions can very accurately predict the fooling

rate of this universal adversarial attack.

To analyze this further, we conduct a second experiment,

where we strictly compare the ordering accuracy of the top-

k logit scores between the reference XN and the analytic

expressions estimates of XNn with k ∈ {1, 2, 3, 4, 5}. The

result is averaged over the complete ImageNet validation

set (refer to Table 2). Here, an ordering score of 100% at

a particular value of k concludes that the top-k elements of

the 1000 logit scores generated by XN and XNn are exactly

identical across all the validation set. These results show

that the ordering score up to k = 5 is very high, indicat-

ing that our analytic expression for the mean (despite the

linearization) is to a certain extent order preserving.

4.3. Sensitivity to Linearization

In all previous experiments, we validated the tightness of

our derived network moments using different network ar-

chitectures, input variance levels, and different datasets.

However, in those experiments, the point at which two-stage

linearization is done was restricted to be the input image.

Obviously, this strategy is not scalable. So, we choose a set

of representative input images, at which the two-stage lin-

earization parameters A,B, c1 and c2 are computed once.

Now, to evaluate the network moments for a new input,

we simply use the two-stage linearization parameters of the

closest linearization point to this input.

In this experiment, we want to study the tightness of our

expressions under this more relaxed linearization strategy

using LeNet [18] on the MNIST validation set (5K images)

[17]. We cluster the images in the validation dataset us-

ing k-means on the image intensity space with different

values of k. We use the cluster centers as the lineariza-

tion points. Table 3 summarizes the tightness of the expres-

sions for k ∈ {250, 500, 5000} and compares them against

a weak baseline, where the linearization point is set to be the

farthest image in each cluster from the cluster center with

9104

