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Abstract

Traditional methods of motion segmentation use pow-

erful geometric constraints to understand motion, but fail

to leverage the semantics of high-level image understand-

ing. Modern CNN methods of motion analysis, on the

other hand, excel at identifying well-known structures, but

may not precisely characterize well-known geometric con-

straints. In this work, we build a new statistical model

of rigid motion flow based on classical perspective projec-

tion constraints. We then combine piecewise rigid motions

into complex deformable and articulated objects, guided by

semantic segmentation from CNNs and a second “object-

level” statistical model. This combination of classical ge-

ometric knowledge combined with the pattern recognition

abilities of CNNs yields excellent performance on a wide

range of motion segmentation benchmarks, from complex

geometric scenes to camouflaged animals.

1. Introduction

Understanding motion is fundamental to our understand-

ing of the world, from predicting the immediate future to

understanding actions and interactions, and even in defining

objectness itself. In this work we revisit the classic problem

of motion segmentation in moving camera videos, a first

step in understanding and interpreting motion.

Motion segmentation is an intriguing problem in that it

combines subareas of vision in which geometry is a power-

ful constraint–the understanding of how images will change

under camera motion–with “messy” problems like segmen-

tation and the deformation of flexible moving objects, in

which there are virtually no hard geometric constraints.

This has given rise to a range of methods–some that use

mostly geometric techniques while largely ignoring appear-

ance [16, 3, 48], and others that try to learn the entire

pipeline using CNN architectures [43, 44, 18] attempting to

learn both the image patterns and the flow patterns in CNNs.

Figure 1: A hierarchical model for motion segmentation.

The first level of our method estimates rigid motion compo-

nents from optical flow. The second level groups these com-

ponents based upon object proposals from SharpMask [35]

to form object motion models.

Methods that use motion cues alone, without appearance

models of moving objects, are likely to fail in cases where

flow is noisy, ambiguous, or hard to determine. Such purely

“geometric” approaches are often not sufficient to under-

stand motion well. The appearance of what is moving must

also be considered. This suggests using deep learning meth-

ods to solve the problem.

Of course, CNNs are excellent at modeling the appear-

ance of objects [23, 40, 14]. They excel at finding objects

in static images and videos [12, 25, 37]. They are also very

good at segmenting objects [8, 49, 24, 13, 26, 38], exceed-

ing performance of pre-CNN methods. However, there are

cases where appearance alone is simply not enough to seg-

ment well. Such cases are highlighted by the Camouflaged

Animal motion segmentation data set [3], in which moving

objects are virtually invisible in many of the static frames.
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In this paper, we combine careful motion modeling using

classical ideas with a modern CNN for appearance model-

ing, yielding excellent results. Towards this end, we de-

sign a hierarchical motion segmentation system in which

the first phase identifies simple rigid motion components,

and the second phase assembles these rigid motion compo-

nents into full objects, guided by a semantic segmentation

of each frame [35] (see Figure 1). This new hierarchical

system allows the first low-level phase to focus on the ge-

ometry of perspective projection, segmenting the frame into

its rigid motions. Then, in the second phase, deformable

and articulated objects, like pedestrians and animals, are

modeled as a combination of a number of rigid motion com-

ponents, as suggested by the semantic segmentation results.

While neither the motion analysis nor the semantic segmen-

tations are error free, their combination results in a signifi-

cant improvement in performance on the multi-label motion

segmentation problem. Our contributions include:

• A new hierarchical model for motion segmentation

with two steps:

1. segmenting a frame into rigid motions;

2. using objectness knowledge from Sharp-

Mask [35] to combine these rigid parts into

object models that describe the motions of artic-

ulated and deformable objects such as people or

animals.

• A new statistical model for optical flow as a noisy mea-

surement of the underlying motion field. We set noise

distribution parameters using statistics of the Sintel

database [6].

• A Bayesian approach to computing the likelihood of

a 3D motion direction associated with an optical flow

vector, in which we integrate over the unobservable

motion field magnitude. This allows us to assign pix-

els to rigid motion models in a fashion consistent with

perspective projection and our statistical model.

On the definition of motion segmentation. In this work,

we focus on the classical definition of motion segmenta-

tion [45], which is essentially about segmenting all objects

which are moving (in 3D) relative to the background. Even

so, there are subtleties that need to be addressed to make it

clear what the ground truth should be. For example, should

a bush that is barely moving in the wind be segmented as a

moving object? These questions are discussed extensively

in [2], and this work adopts their definitions of ground truth

for motion segmentation.

We report results on three motion segmentation bench-

marks that are consistent with the classical definition of mo-

tion segmentation: Freiburg-Berkeley Motion [4], Complex

Background [27], and Camouflaged Animals [3]. The Davis

data set [34, 36] is a popular video segmentation benchmark

which focuses on segmenting prominent objects rather than

all moving objects. While our method is not designed for

such benchmarks, we discuss the relationship between ob-

ject segmentation and motion segmentation and discuss our

results on that benchmark in the supplementary material.

2. Related work

Many motion segmentation papers focus on the problem

of binary motion segmentation, where pixels are classified

as either moving or part of the background, but no distinc-

tion is made between separate moving objects [3, 27, 32,

10]. Others [42, 20, 11], like this paper, address multi-label

motion segmentation, where a separate label is given to each

independently moving object. In the remainder of this sec-

tion, we do not distinguish between binary and multi-label

motion segmentation.

Information about motion is mostly derived from

matched pixels across consecutive frames. This could be in

the form of either sparse point trajectories or optical flow.

Methods based on point trajectories [20, 4, 11, 28, 19] have

shown good results for motion segmentation. Given the op-

tical flow, pixels showing similar displacements are grouped

into objects. These objects are then tracked so that they

are segmented consistently over time. However, trajectory-

based methods often segment non-moving objects. Pixel

displacement from one frame to the next is a function of

depth and motion (see Eq. 1). Thus motion-trajectory based

clustering methods form clusters not only for independently

moving objects, but also for objects at different depths.

Methods based on occlusions [31, 42] are subject to sim-

ilar depth-related problems.

Other methods rely on optical flow and seek to find co-

herent motion patterns. These methods can be grouped into

those that use projective geometry approximations [48, 45],

those that use perspective projection [27, 3, 31, 16], and

methods that learn motion patterns using CNNs [43, 44, 47,

33, 18, 21].

Approaches based on perspective projection are in gen-

eral more accurate than those based on projective geom-

etry, since the latter omits certain constraints (such as

orthogonality constraints) in modeling image transforma-

tions [15, 3]. Bideau et al. [3] developed a fully automatic

motion segmentation method based on optical flow. Fol-

lowing the geometry of perspective projection, a frame is

segmented based on the optical flow’s direction. Assuming

that the underlying motion field magnitude is equal to the

optical flow magnitude, they use the motion field magni-

tude to model the informativeness of the direction of each

flow vector. Unlike Bideau et al., we integrate over the un-

known motion field magnitude in a Bayesian fashion, rather

than assuming its value is equal to the flow magnitude.

Some concurrent works have leveraged both object mo-

tion and semantic information in video object segmenta-

tion [9, 46] and optical flow estimation [39, 1]. Distinct
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from these approaches, our work combines object-level se-

mantic knowledge with ideas from classical perspective ge-

ometry for accurate segmentation of moving objects.

3. Approach

Our motion segmentation system is (automatically) ini-

tialized with an estimate of the background region and a set

of rigid objects. We adopt the publicly available initializa-

tion code of [3] for this purpose.

Throughout our system, we consider two separate no-

tions of movement:

• Rigid motions: motions that can be described by

translating rigid 3D regions.1

• Object motions: motions of real objects (e.g., pedes-

trians or cars) that are modeled as compositions of one

or more rigid motions.

Throughout the video, we maintain a set of rigid motions.

This set may be expanded, to contain newly discovered mo-

tions, or contracted, if we find there is no more evidence

of a previously seen rigid motion. Multiple rigid motions

together can describe highly complex object motions. We

maintain a set of such object motions, which typically cor-

respond to real world objects such as cars, pedestrians, or

animals. The “background”, which is typically the static

environment, can be modeled with a single rigid motion.

Algorithm 1 gives the overview of our main loop. Sev-

eral types of information from the previous time step are

used as prior information for the current time step. This in-

cludes the (soft probabilistic) masks of each rigid motion

component, the (soft probabilistic) masks of each object,

and the history of how rigid components have so far been

assigned to objects. In addition, we incorporate new infor-

mation from the current optical flow (Sun et al. [41]), and

region proposals from SharpMask [35].

The main steps of our method are (1) removing rotational

flow (Sec. 3.1), (2) estimating rigid motion components and

assigning pixels in each frame to rigid motion components

(Sec. 3.2), (3) grouping rigid motion components into sets

to form object models (Sec. 3.3) and (4) assigning the pixels

in each frame to objects for a final segmentation (Sec. 3.4).

3.1. Removing rotational flow

We seek a camera rotation such that, after subtracting off

this rotation from the optical flow, the remaining flow corre-

sponds to purely translational motion. This will be true for

a static background region, since here the pixel displace-

ment is only influenced by the camera’s motion and not by

independently moving objects. For the first frame we do

not possess an estimate of background regions, so this rota-

tion is found via RANSAC (details in [3]). For subsequent

frames, we can get an estimate of the background regions

1Object rotations are not modeled.

from the previous time step, and estimate camera rotation

only from those background pixels. Unless specified oth-

erwise, all remaining optical flows discussed in the paper

refer to the translational component of optical flow, i.e. the

optical flow after camera rotation has been removed.

Algorithm 1: Estimate motion models and segment

frame into objects

Input:

Optical flow.

Rigid components of previous frame.

Moving objects of previous frame.

Assignment history of rigid motions to objs.

SharpMask object proposals for current frame.

Output:

Current rigid components.

Current moving objects.

1 // Estimate rotational flow and remove it 3.1.

2 // Estimate rigid motion components 3.2.

3 for each rigid component region from prev. frame do

4 Est. current rigid motion model for that region.

5 end

6 for each pixel in current image do

7 Assign it to a rigid motion model.

8 end

9 // Grouping rigid motion components 3.3.

10 for moving object mask in object proposals do

11 Assign rigid motion models to object mask.

12 Check consistency with assignment history.

13 end

14 Create object motion models

15 //Assign pixels to moving objects 3.4.

16 for each pixel in current image do

17 Assign it to an object motion model.

18 end

3.2. Estimating rigid motion components

The next step of our system is to estimate a set of J rigid

motion models M j , j = 1 . . . J , and to assign each pixel in

the current image to one of the motion models. Intuitively,

we want to discover the “set of motions” of rigid structures

in the image, and then to determine which pixels belong to

each motion, as shown in Figure 1(a).

The rigid motion model. Our rigid motion model de-

scribes the direction of the 3D motion of a rigid object (or

scene), but not the magnitude of this motion. Let (U, V,W )
be the translational motion of the camera relative to an ob-

ject. Let (X,Y, Z) be the real world coordinates in 3D of

a point that projects to (x, y) in the image. Let f be the

camera’s focal length. The motion field vector (u, v) at the
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image location (x, y) due to a translational motion is given

by

u =
−fU + xW

Z
; v =

−fV + yW

Z
. (1)

The 2D translational motion direction at each point in the

image is then given by the angle of the motion field vector

(u, v) at image location (x, y):

Mxy(f, U, V,W ) = atan(−fV + yW,−fU +xW ). (2)

This leads us to our rigid motion model M , which is an

h × w matrix (h and w are the image height and width),

defined by a 3D translational motion (U, V,W ). The ele-

ments of this matrix are the motion directions at each pixel

location (x, y) in the image.

Note that the rigid motion model M is dependent upon

the focal length. However we show in the supplementary

material that the set of all rigid motion models M is inde-

pendent of focal length, and that for each focal length, there

is a unique mapping from 3D translational motions to rigid

motion models. By establishing that the set of rigid motion

models does not depend upon focal length, we develop a

method that can separate different motions without identi-

fying their exact form (which requires focal length).

An advantage of using our rigid motion models M as

central building blocks is that they are independent of the

scene depth Z (in Eq. 2 Mxy is not a function of Z). Meth-

ods that depend upon motion field magnitudes implicitly de-

pend upon the scene depth, and thus can result in depth de-

pendent segmentations by confusing image motion due to

camera motion and image motion due to object motion.

Estimating a rigid motion model for each rigid motion

segment. The next step in our method is to examine the

regions from the rigid motion segmentation of the previous

frame and estimate a rigid motion model that describes the

current optical flow in each rigid motion region. First, we

“flow forward” the previous frame’s rigid motion regions

to obtain the approximate positions of the same rigid struc-

tures in the current frame. We then use the optical flow

vectors in each region to estimate the motion model by

using Horn’s method [5], which gives a closed form solu-

tion for the best fit to the current translational flow of each

region using a least-squares estimation procedure. Eq. 3

describes the squared difference between observed optical

flow (ut, vt) (after removing camera rotation from Sun et

al. [41]’s optical flow) and a pure-translational motion vec-

tor (u, v) from Eq. 1. The parameters (U, V,W ) are esti-

mated such that Eq. 3 is minimized:

[Û , V̂ , Ŵ ] = argmin
U,V,W

N
∑

i=1

(

(

ui
t − ui

)2
+
(

vit − vi
)2
)

.

(3)

Given the estimates [Û , V̂ , Ŵ ] for each region, we can sub-

stitute them into Eq. 2 to obtain a set of rigid motion models

for the current frame. Note that i = 1 . . . N indexes over the

pixels in a region.

Assigning pixels to rigid motion models. Given the set

of rigid motion models M j , j = 1 . . . J , we re-assign each

pixel to one of the estimated rigid motion models. Let

~vt = (ut, vt) be an observed translational flow vector at a

particular pixel position (x, y), containing only motion due

to camera translation and object motion. The current goal

is to choose from among J motion models at each pixel lo-

cation the one with highest probability given the observed

flow vector:

Lrigid = argmax
j

p(M j
xy | ~vt). (4)

Each pixel in the image will be assigned to this maximum

a posteriori motion model, resulting in the segmentation of

a frame into its J rigid motion components. We compute

these posteriors using Bayes’ rule as

p(M j
xy | ~vt) ∝ p(~vt | M

j
xy) · p(M

j
xy). (5)

To compute this posterior, we introduce a new model for the

flow likelihood p(~vt|M
j
xy) and the prior p(M j

xy), details of

which are described in Section 4.

3.3. From rigid motions to object motions

The segmentation Lrigid (Eq. 4) segments a frame into

its rigid motion components. Non-rigid moving objects are

often composed of multiple rigid motions. To be able to

model the motion of an object accurately we use a CNN to

produce object proposal masks leveraging the semantics of

high level image understanding. According to the gener-

ated object proposals we join rigid motion models into sets

that belong to a specific object. Thus a set of rigid motion

models is used to model an object’s motion.

Given the segmentation Lrigid (Eq.4) of a frame into J

rigid motions and a set of object proposal masks, we form

mutually exclusive subsets Mk of the rigid motion models

M j . Each Mk, k = 1 . . .K comprises a set of rigid motion

models belonging to a specific object’s motion. The steps

are as follows:

1. Generate object proposals using the SharpMask seg-

mentation method [35] to create candidate masks of

objects and select masks corresponding to moving ob-

jects only.

2. Join rigid motion models into sets that belong to a spe-

cific object motion guided by semantic segmentations

of [35].
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Figure 2: Grouping rigid motion models with temporal

consistency. Top row: tracking objects over time: (i) Two

rigid motion components, dark blue and violet assigned to

Object C previously, become isolated in frame 4; (ii) The

yellow component suddenly shifts from Object B to C in

frame 3. Bottom row: time consistent assignment of rigid

motions to object motions addresses both of these issues.

Generating moving object proposals. We first generate

a large set of object proposals and objectness scores us-

ing the SharpMask segmentation method [35], and keep the

top 100 proposals (based on objectness score). We analyze

these object proposal masks and select a subset that best

covers the non-background portions of the image, the latter

being estimated from the rigid motion models.

Joining rigid motion models into sets that describe a spe-

cific object motion. Given moving object proposal masks

and the segmentation Lrigid, we can simply assign each

motion model M j to the object proposal mask that has

the highest intersection with the rigid motion region cor-

responding to M j . However the object proposal masks are

not necessarily time consistent – they might arise, disappear

or cover part of other objects in single frames. Thus we

require a more sophisticated approach than simply assign-

ing each motion model M j to its object proposal mask. To

achieve a temporally consistent segmentation, we address

the following two consistency requirements: (1) tracking

objects over time and (2) time consistent assignment of mo-

tion components M j to objects.

We track objects over time by evaluating shared rigid

motion components among objects detected by SharpMask

in the current frame and objects detected in the past. Let Q

be the number of object proposal masks (i.e., the output of

SharpMask at the current frame) and q = 1, .., Q its index.

Let K be the number of all moving objects detected till the

current video frame T , indexed by k = 1, ...,K. Given the

Q object proposal masks, segmentation of all frames into

rigid motion components {Lt
rigid}t=1,..,T , and object seg-

mentations from all previous frames {Lt
object}t=1,...,T−1,2

the problem is to find the lowest-cost way to assign each ob-

ject proposal mask at the current frame to its corresponding

object segmentation. This problem can be represented in a

2We do not have LT
object

, the object segmentation of the current frame,

at this point.

matrix of the component similarity - the number of common

rigid motion components between the object k and a motion

mask q. This leads to a Q × K matrix. Then the Hungar-

ian algorithm is used to find the best matching such that the

component similarity is maximized.

The second consistency requirement we address is time

consistent assignment of rigid motion models M j of the

current frame to the K objects detected in the video se-

quence so far. We assign a rigid motion component M j

to an object according to its conditional probability,

p(M j | Mk
T ) =

∑T

t=1 ✶[M
j
t ∈ Mk

t ]

T
. (6)

In words, the probability that a rigid motion M j is part

of the set Mk
T (set of rigid motions that define a specific

object’s motion of the current frame T ) is the number of

frames t, with t = 1, ..., T , where M j was assigned to Mk
t ,

out of the total number of frames seen so far, T .

In summary we first assign rigid motions to Q motion

masks of the current frame based on its component similar-

ity (top row of Figure 2). We then re-assign rigid motions

to the K moving objects that have been seen so far (bottom

row of Figure 2).

The object motion model. Mk
T is a set of rigid motion

models belonging to a specific object’s motion. Each rigid

motion model describes part of that object’s motion at the

current frame T . Let r be the index over elements (rigid

motions) in the set Mk
T . We now explain how a new high

level object motion model Ok is generated from a set of

rigid motion models Mr ∈ Mk
T .

Similar to a rigid motion model M j , an object motion

model Ok determines a motion direction at each pixel loca-

tion. M j often models just a part of an object’s motion due

to its rigidity constraint, whereas the high level object mo-

tion model overcomes this limitation by modeling the entire

object’s direction of motion as a whole.

The object motion model Ok is a MAP-estimate at each

pixel over the set of rigid motion models in Mk
T . We com-

pute the probability of each rigid motion Mr ∈ Mk
T given

the observed flow ~vt at a particular pixel position (x, y)
(Eq. 7) and assign the most likely motion model to that pixel

(Eq. 8). An example of this is shown in Figure 3.

p(Mr
xy|~vt) =

p(~vt|M
r
xy) · p(M

r
xy)

p(~vt)
(7)

Ok
xy = argmax

Mr
xy

(p(Mr
xy|~vt)) (8)

3.4. Assigning pixels to moving objects

Given the object motion models Ok we segment a frame

into its independently moving objects. Similar to how we
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Figure 3: The object motion model. In this figure, the k-th

object’s motion (walking person) is described by three rigid

motion models forming the set Mk = {M2,M3,M4}.

The object motion model Ok is a MAP-estimate at each

pixel (x, y) over rigid motion models in Mk.

assign pixels to rigid motion models (Eq. 4), the goal is now

to choose among K high level object motion models at each

pixel location (x, y), the one with highest probability given

the optical flow vector ~vt:

p(Ok
xy|~vt) =

p(~vt|O
k
xy) · p(O

k
xy)

p(vt)
. (9)

This leads to a moving object segmentation,

Lobject = argmax
k

(p(Ok
xy|~vt)). (10)

Likelihoods and priors are computed similarly to the seg-

mentation procedure of a frame into rigid motion compo-

nents 3.2 and are derived in the following section.

4. Flow likelihood and prior

Let ~q = (r, θ) be the true translational motion field vec-

tor (with magnitude r and angle θ), representing the total

motion field less the component due to camera rotation. Let

~vt be the translational component of the observed3 optical

flow vector ~v. We model ~vt as a noisy observation of ~q:

~vt = ~q + ~n. (11)

Inspired by [17], we model flow noise ~n = (nu, nv) as a

product of Laplacian distributions (for the u and v compo-

nents), where the parameters depend upon the motion field

magnitude r:

~n ∼ Laplace(bnu
(r)) · Laplace(bnv

(r)). (12)

With these assumptions we derive our new flow likeli-

hood, the probability of ~vt given a rigid motion model M j

(or given an object motion model Ok, respectively):4

3We refer to the flow vector as “observed”, but it is the output of an

optical flow algorithm which has access to a pair of frames.
4We define the likelihood of a “new motion” that was not observed

before to be p(~vt | Mnew) = 1

2π

∫
2π

0
p(~vt | M) dM . The likelihood of

a new motion direction is the average likelihood over all possible motion

directions.

p(~vt | M
j
xy) =

∫

∞

0

p(~vt, r | M j
xy) dr (13)

=

∫

∞

0

p(~vt | r,M
j
xy) p(r | M j

xy) dr (14)

(a)
=

∫

∞

0

p(~vt | ~q) p(r | M j
xy) dr (15)

(b)
=

∫

∞

0

p(~n; r) p(r | M j
xy) dr. (16)

The equality (a) follows since the motion field vector ~q is

just a combination of the motion field magnitude r and the

motion direction M j
xy . The final equality (b) expresses the

fact that the only uncertainty in ~vt is due to the flow noise ~n.

The noise variance depends upon r. Parameters of the flow

noise distribution are estimated from the Sintel database [6],

details of which can be found in the supplementary material.

p(r | M j
xy) is the probability of flow magnitude r given

a particular motion direction M j
xy . We assume that p(r) is

independent of the flow direction θ and approximate it as an

exponential distribution with parameter br:

p(r | M j
xy) ≈ Exp(r; br). (17)

The scale parameter br is learned using the FBMS-59 train-

ing data set [4, 3]. We discuss the relationship between

the variance of the flow noise and the magnitude r of the

motion field in the supplementary material.

Prior. The prior p(M j
xy) on a particular rigid motion

model at each pixel includes information about the poste-

rior probability of each motion from the previous frame (the

motion prior) and another factor that restricts the position of

that component in the next frame to a position close to its

expected position (the location prior).

Motion prior. To get a rough estimate about the mo-

tion modeled by M j we proceed as follows: (1) We prop-

agate the posterior of p(M j
xy|~vt) from the previous frame

along the previous frame’s optical flow. (2) We interpolate

regions of disocclusion by iteratively smoothing from adja-

cent unoccluded regions. (3) Then we spatially distribute

the probability that each motion component is present by

smoothing the prior with a 7x7 Gaussian.

Location prior. The location prior restricts the location

of a motion component to being near its former location.

If there are multiple objects with similar motion, it is im-

portant that each object motion be described by its own set

of rigid motion components. A rigid motion model cannot

be shared among multiple objects. Therefore we propagate

the hard segmentation from the previous frame spatially in

a manner similar to the motion prior.
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ground truth ours ours - basic MM ours - objProp Keuper Taylor Bideau Papazoglou Faktor

Multi-label Video Segmentation Binary Video Segmentation

our - rMM

Figure 4: Sample results. Top to bottom: The first three rows show the video cars5 from the FBMS-59 test set. Rows four

to six show results on the video forest of the complex background data set. For both videos we show frames 1, 10 and 20. We

show results on our final version of our algorithm (“ours”) as well as for intermediate results of our final algorithm (“ours -

rMM” and “ours - objProp”). Comparisons to state of the art methods on multi-label segmentation and binary segmentation

are shown in rows 6-10 [20, 42, 3, 32, 10].

Multi-label Video Segmentation

Testset: FBMS-motion (30 sequences) complex background (5 sequences) camouflaged animals (9 sequences) all (44 sequences)

P R F ∆Obj P R F ∆Obj P R F ∆Obj P R F ∆Obj

[20] 74.64 62.03 63.59 7.7 67.62 58.28 60.27 3.4 77.78 68.10 69.97 5.7 74.48 62.84 64.52 6.8

[42] 72.69 54.36 56.32 11.7 60.79 44.74 45.83 3.4 84.71 59.40 61.52 22.2 73.80 54.29 56.19 12.9

ours+CRF 74.23 63.07 64.97 4 64.85 67.28 65.60 3.4 83.84 69.99 72.15 5 75.13 64.96 66.51 4.1

Binary Video Segmentation

Testset: FBMS-motion (30 sequences) complex background (5 sequences) camouflaged animals (9 sequences) all (44 sequences)

P R F ∆Obj P R F ∆Obj P R F ∆Obj P R F ∆Obj

[3] 79.94 80.76 77.33 - 84.31 91.74 86.56 - 81.86 74.55 76.31 - 80.83 80.74 78.17 -

[32] 83.86 79.96 79.56 - 87.57 84.95 80.64 - 73.31 56.65 60.38 - 82.12 75.76 75.76 -

[10] 86.24 76.25 77.33 - 79.91 69.31 73.65 - 82.34 68.45 72.48 - 84.72 73.92 75.91 -

[43] 87.29 72.19 74.79 - 86.78 77.49 78.19 - 77.82 62.03 64.84 - 85.30 70.71 73.14 -

[44] 92.40 85.07 86.96 - 74.58 77.02 70.52 - 77.62 51.08 50.82 - 87.35 77.20 77.67 -

ours+CRF 85.53 83.14 81.85 - 87.69 93.13 90.11 - 80.37 75.21 75.95 - 84.72 82.65 81.49 -

Table 1: Comparison to state-of-the-art. We compare to binary [10, 3, 32, 43] as well as multi-label video segmentation

approaches [20, 42]. The top results are highlighted in green and the second-best results in blue.

5. Experiments

We evaluated our work on three motion segmentation

data sets: FBMS-59 [4], the Complex Background data

set [27], and the Camouflaged Animals data set [3]. As

discussed in [2], FBMS-59 shows a significant number of

annotation errors. We use a corrected version of the dataset

that is linked on the original dataset’s web site. Our main

results are for multi-label segmentation, but we also convert

our results to a binary segmentation form for comparison

with previous work on binary motion segmentation. In ad-

dition, we show segmentation results of each stage of our

moving object segmentation algorithm – segmentation into

rigid motion models (rMM), segmentation of the video us-

ing object proposals mask of SharpMask directly (objP),

segmentation of the video using a constant variance of the

optical flow error for all flow magnitudes (cVar) and results

of our final moving object segmentation algorithm (ours).

Videos are available in the supplementary material.
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Multi-label Video Segmentation Binary Video Segmentation

all (44 sequences) all (44 sequences)

P R F ∆Obj P R F

cVar 76.43 62.19 64.86 3.4 85.78 81.09 81.15

rMM 76.01 50.11 52.69 85.88 81.05 81.81 78.91

objP - - - - 77.15 85.03 78.78

ours 74.75 64.70 66.45 4.3 83.66 82.68 81.27

ours+CRF 75.13 64.96 66.51 4.1 84.72 82.65 81.49

Table 2: Ablation study. We compare five versions of our

algorithm to show how each part of the algorithm affects the

performance of the overall motion segmentation method.

Evaluation scheme. We adopted the multi-label eval-

uation scheme from [30] and add an additional measure

∆Obj that represents the accuracy of the segmented ob-

ject count. ∆Obj is the average absolute difference of the

ground truth object count in each frame and the number of

objects identified by the algorithm. A drawback of the eval-

uation scheme proposed by [30] is that it does not penalize

algorithms much for large numbers of unnecessary (addi-

tional) segmented objects. Thus, the F-score of [30] alone

does not entirely capture whether the algorithm has an accu-

rate count of the number of objects and the additional ∆Obj

measure is necessary for a representative evaluation.

Ablation study. To show the contribution of each part of

our algorithm separately, we evaluate intermediate results of

our method as well as specific adaptations, shown in Tab. 2:

1. Constant variance (cVar): Modeling the variance of

optical flow error as a function of the optical flow mag-

nitude leads to an improvement of about 2% over all

data sets. Regarding precision and ∆Obj, we outper-

form our final motion segmentation approach – cVar

segments fewer objects and, due to less false positives,

the precision increases. However, the overall perfor-

mance is worse due to low recall.

2. Segmentation into rigid motion models (rMM): Simple

rigid motion models are not sufficient to model com-

plex object motion. After the first stage – segmenta-

tion of a frame into its rigid motion models – complex

motion patterns are broken into multiple simple rigid

motion models. Thus, it is not surprising that ∆Obj

increases dramatically to 85.55.

3. Segmentation into moving object proposals (objP):

Moving object proposals are generated from a subset

of the object proposals out of SharpMask[35]. In Fig-

ure 4 (“ours - objProp”), it can be seen that the ob-

tained proposals are covering the object completely

(high recall); however the object boundaries are very

rough. Those inaccurate boundaries – where a large

part of the static background is segmented along with

a moving object – lead to low performance. Therefore

a composed motion model for modeling the motion of

an object accurately is necessary and leads to an im-

proved performance.5

4. Conditional Random Field (ours+CRF): We add a

fully-connected CRF [22] on top of our method to

refine the segmentations [43, 7]. The CRF hyper-

parameters were set by cross-validation on the FBMS

Training set.

Multi-label experiments. We outperform [20, 42] by

significant margins on FBMS-59, Complex Background

and Camouflaged Animals datasets (see Tab. 1). The Com-

plex Background dataset shows videos with high variance in

depth, which is particularly challenging for trajectory based

motion segmentation approaches such as [20], as well as

for occlusion-based object segmentation approaches [42].

Over all the videos in these datasets combined, we gain an

average improvement of 2% in F-score compared to the sec-

ond best performing segmentation method [20]. Our ∆Obj

results are on par or better for Complex Background and

Camouflaged Animals; on FBMS, we are more accurate

than either of the other methods in segmenting the correct

number of objects (Fig.4 for qualitative results).

Binary experiments. In these experiments, we segment

each frame into either static background or moving objects,

but do not distinguish among the moving objects, enabling

us to compare to other methods that address the binary seg-

mentation problem. We outperform other methods based

on overall F-score and recall, and on all three performance

metrics on the Complex Background dataset. On FBMS

we are in second place behind Tokmakov et al. [44] and on

Camouflaged Animals the method from Bideau et al. [3] is

slightly better (0.36%) than ours. On average over all videos

we have a lead of 3.32% over the next best method [3].

6. Discussion

Many previous methods have shown impressive results

in motion segmentation using just low-level or low and mid-

level cues [3, 20, 11, 32, 42, 31, 29, 48, 10]. Like recent

work in optical flow [39] that uses the power of CNNs to

condition optical flow on semantic regions, it seems logi-

cal to incorporate this type of high-level information into

motion segmentation. We presented a hierarchical statis-

tical method that leverages perspective geometry to model

low level parts and semantic segmentation results from a

CNN, and combines these parts in a logical way to form

higher level objects. We demonstrated best average re-

sults across three major motion segmentation datasets and

showed strong performance on a wide variety of challeng-

ing videos.

5Since the object proposal masks of SharpMask might be overlapping

or describe the same object, an evaluation of multi-label segmentation is

not directly possible for objP.
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