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Abstract

Image restoration algorithms are typically evaluated by

some distortion measure (e.g. PSNR, SSIM, IFC, VIF) or

by human opinion scores that quantify perceived perceptual

quality. In this paper, we prove mathematically that dis-

tortion and perceptual quality are at odds with each other.

Specifically, we study the optimal probability for correctly

discriminating the outputs of an image restoration algo-

rithm from real images. We show that as the mean dis-

tortion decreases, this probability must increase (indicating

worse perceptual quality). As opposed to the common be-

lief, this result holds true for any distortion measure, and is

not only a problem of the PSNR or SSIM criteria. However,

as we show experimentally, for some measures it is less se-

vere (e.g. distance between VGG features). We also show

that generative-adversarial-nets (GANs) provide a princi-

pled way to approach the perception-distortion bound. This

constitutes theoretical support to their observed success in

low-level vision tasks. Based on our analysis, we propose

a new methodology for evaluating image restoration meth-

ods, and use it to perform an extensive comparison between

recent super-resolution algorithms.

1. Introduction

The last decades have seen continuous progress in image

restoration algorithms (e.g. for denoising, deblurring, super-

resolution) both in visual quality and in distortion measures

like peak signal-to-noise ratio (PSNR) and structural simi-

larity index (SSIM) [45]. However, in recent years, it seems

that the improvement in reconstruction accuracy is not al-

ways accompanied by an improvement in visual quality. In

fact, and perhaps counter-intuitively, algorithms that are su-

perior in terms of perceptual quality, are often inferior in

terms of e.g. PSNR and SSIM [22, 16, 6, 38, 51, 49]. This

phenomenon is commonly interpreted as a shortcoming of

the existing distortion measures [44], which fuels a constant

search for alternative “more perceptual” criteria.

In this paper, we offer a complementary explanation

for the apparent tradeoff between perceptual quality and
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Figure 1. The perception-distortion tradeoff. Image restoration

algorithms can be characterized by their average distortion and by

the perceptual quality of the images they produce. We show that

there exists a region in the perception-distortion plane which can-

not be attained, regardless of the algorithmic scheme. When in

proximity of this unattainable region, an algorithm can be poten-

tially improved only in terms of its distortion or in terms of its

perceptual quality, one at the expense of the other.

distortion measures. Specifically, we prove that there ex-

ists a region in the perception-distortion plane, which can-

not be attained regardless of the algorithmic scheme (see

Fig. 1). Furthermore, the boundary of this region is mono-

tone. Therefore, in its proximity, it is only possible to im-

prove either perceptual quality or distortion, one at the ex-

pense of the other. The perception-distortion tradeoff ex-

ists for all distortion measures, and is not only a problem

of the mean-square error (MSE) or SSIM criteria. How-

ever, for some measures, the tradeoff is weaker than others.

For example, we find empirically that the recently proposed

distance between deep-net features [16, 22] has a weaker

tradeoff with perceptual quality than MSE. This aligns with

the observation that this measure is “more perceptual” than

MSE.

Let us clarify the difference between distortion and per-

ceptual quality. The goal in image restoration is to estimate

an image x from its degraded version y (e.g. noisy, blurry,

etc.). Distortion refers to the dissimilarity between the re-

constructed image x̂ and the original image x. Perceptual
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quality, on the other hand, refers only to the visual qual-

ity of x̂, regardless of its similarity to x. Namely, it is the

extent to which x̂ looks like a valid natural image. An in-

creasingly popular way of measuring perceptual quality is

by using real-vs.-fake user studies, which examine the abil-

ity of human observers to tell whether x̂ is real or the output

of an algorithm [15, 53, 39, 8, 6, 14, 54, 11] (similarly to

the idea underlying generative adversarial nets [10]). There-

fore, perceptual quality can be defined as the best possible

probability of success in such discrimination experiments,

which as we show, is proportional to the distance between

the distribution of x̂ and that of natural images.

Based on these definitions of perception and distortion,

we follow the logic of rate-distortion theory [4]. That is,

we seek to characterize the behavior of the best attainable

perceptual quality (minimal deviation from natural image

statistics) as a function of the maximal allowable average

distortion, for any estimator. This perception-distortion

function (wide curve in Fig. 1) separates between the attain-

able and unattainable regions in the perception-distortion

plane and thus describes the fundamental tradeoff between

perception and distortion. Our analysis shows that algo-

rithms cannot be simultaneously very accurate and produce

images that fool observers to believe they are real, no mat-

ter what measure is used to quantify accuracy. This trade-

off implies that optimizing distortion measures can be not

only ineffective, but also potentially damaging in terms of

visual quality. This has been empirically observed e.g. in

[22, 16, 38, 51, 6], but was never established theoretically.

From the standpoint of algorithm design, we show that

generative adversarial nets (GANs) provide a principled

way to approach the perception-distortion bound. This

gives theoretical support to the growing empirical evi-

dence of the advantages of GANs in image restoration

[22, 38, 35, 51, 36, 15, 55].

The perception-distortion tradeoff has major implica-

tions on low-level vision. In certain applications, recon-

struction accuracy is of key importance (e.g. medical imag-

ing). In others, perceptual quality may be preferred. The

impossibility of simultaneously achieving both goals calls

for a new way for evaluating algorithms: By placing them

on the perception-distortion plane. We use this new method-

ology to conduct an extensive comparison between recent

super-resolution (SR) methods, revealing which SR meth-

ods lie closest to the perception-distortion bound.

2. Distortion and perceptual quality

Distortion and perceptual quality have been studied in

many different contexts, and are sometimes referred to by

different names. Let us briefly put past works in our context.

2.1. Distortion (full­reference) measures

Given a distorted image x̂ and a ground-truth reference

image x, full-reference distortion measures quantify the

quality of x̂ by its discrepancy to x. These measures are

often called full reference image quality criteria because of

the reasoning that if x̂ is similar to x and x is of high qual-

ity, then x̂ is also of high quality. However, as we show in

this paper, this logic is not always correct. We thus prefer

to call these measures distortion or dissimilarity criteria.

The most common distortion measure is the MSE, which

is quite poorly correlated with semantic similarity between

images [44]. Many alternative, more perceptual, distor-

tion measures have been proposed over the years, including

SSIM [45], MS-SSIM [47], IFC [41], VIF [40], VSNR [3]

and FSIM [52]. Recently, measures based on the ℓ2-

distance between deep feature maps of a neural-net have

been shown to capture more semantic similarities. These

measures were used as loss functions in super-resolution

and style transfer applications, leading to reconstructions

with high visual quality [16, 22, 38].

2.2. Perceptual quality

The perceptual quality of an image x̂ is the degree to

which it looks like a natural image, and has nothing to do

with its similarity to any reference image. In many image

processing domains, perceptual quality has been associated

with deviations from natural image statistics.

Human opinion based quality assessment Perceptual

quality is commonly evaluated empirically by the mean

opinion score of human subjects [31, 29]. Recently, it

has become increasingly popular to perform such studies

through real vs. fake questionnaires [15, 53, 39, 8, 6, 14,

54, 11]. These test the ability of a human observer to dis-

tinguish whether an image is real or the output of some al-

gorithm. The probability of success psuccess of the optimal

decision rule in this hypothesis testing task is known to be

psuccess =
1

2
dTV(pX , p

X̂
) + 1

2
, (1)

where dTV(pX , p
X̂
) is the total-variation (TV) distance be-

tween the distribution p
X̂

of images produced by the algo-

rithm in question, and the distribution pX of natural im-

ages [32]. Note that psuccess decreases as the deviation be-

tween p
X̂

and pX decreases, becoming 1

2
(no better than a

coin toss) when p
X̂

= pX .

No-reference quality measures Perceptual quality can

also be measured by an algorithm. In particular, no-

reference measures quantify the perceptual quality of an im-

age x̂ without depending on a reference image. These mea-

sures are commonly based on estimating deviations from

natural image statistics. For example, [46, 48, 23] proposed
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Figure 2. Problem setting. Given an original image x ∼ pX , a

degraded image y is observed according to some conditional dis-

tribution pY |X . Given the degraded image y, an estimate x̂ is con-

structed according to some conditional distribution pX̂|Y . Distor-

tion is quantified by the mean of some distortion measure between

X̂ and X . The perceptual quality index corresponds to the devia-

tion between pX̂ and pX .

a perceptual quality index based on the Kullback-Leibler

(KL) divergence between the distribution of the wavelet co-

efficients of x̂ and that of natural scenes. This idea was

further extended by the popular methods DIIVINE [31],

BRISQUE [29], BLIINDS-II [37] and NIQE [30], which

quantify perceptual quality by various measures of devia-

tion from natural image statistics in the spatial, wavelet and

DCT domains.

GAN-based image restoration Most recently, GAN-

based methods have demonstrated unprecedented percep-

tual quality in super-resolution [22, 38], inpainting [35, 51],

compression [36] and image-to-image translation [15, 55].

This was accomplished by utilizing an adversarial loss,

which minimizes some distance d(pX , p
X̂GAN

) between the

distribution p
X̂GAN

of images produced by the generator and

the distribution pX of images in the training dataset. A large

variety of GAN schemes have been proposed, which min-

imize different distances between distributions. These in-

clude the Jenson-Shannon divergence [10], the Wasserstein

distance [1], and any f -divergence [34].

3. Problem formulation

In statistical terms, a natural image x can be thought of as

a realization from the distribution of natural images pX . In

image restoration, we observe a degraded version y relating

to x via some conditional distribution pY |X (corresponding

to noise, blur, down-sampling, etc.). Given y, we produce

an estimate x̂ according to some distribution p
X̂|Y . This

description is quite general in that it does not restrict the es-

timator x̂ to be a deterministic function of y. This problem

setting is illustrated in Fig. 2.

Given a full-reference dissimilarity criterion ∆(x, x̂), the

average distortion of an estimator X̂ is given by

E[∆(X, X̂)], (2)

where the expectation is over the joint distribution p
X,X̂

.

This definition aligns with the common practice of evaluat-

ing average performance over a database of degraded natu-

ral images. Note that some distortion measures, e.g. SSIM,

are actually similarity measures (higher is better), yet can

always be inverted to become dissimilarity measures.

As discussed in Sec. 2.2, the perceptual quality of an es-

timator X̂ (as quantified e.g. by real vs. fake human opinion

studies) is directly related to the distance between the distri-

bution of its reconstructed images p
X̂

, and the distribution

of natural images pX . We thus define the perceptual quality

index (lower is better) of an estimator X̂ as

d(pX , p
X̂
), (3)

where d(·, ·) is some divergence between distributions, e.g.

the KL divergence, TV distance, Wasserstein distance, etc.

Notice that the best possible perceptual quality is ob-

tained when the outputs of the algorithm follow the distri-

bution of natural images (i.e. p
X̂

= pX ). In this situation,

by looking at the reconstructed images, it is impossible to

tell that they were generated by an algorithm. However, not

every estimator with this property is necessarily accurate.

Indeed, we could achieve perfect perceptual quality by ran-

domly drawing natural images that have nothing to do with

the original “ground-truth” images. In this case the distor-

tion would be quite large.

Our goal is to characterize the tradeoff between (2)

and (3). But let us first exemplify why minimizing the av-

erage distortion (2), does not necessarily lead to a low per-

ceptual quality index (3). We illustrate this with the square-

error distortion ∆(x, x̂) = ‖x− x̂‖2 and the 0−1 distortion

∆(x, x̂) = 1− δx,x̂ (where δ is Kronecker’s delta).

3.1. The square­error distortion

The minimum mean square-error (MMSE) estimator is

given by the posterior-mean x̂(y) = E[X|Y = y]. Consider

the case Y = X+N , where X is a discrete random variable

with probability mass function

pX(x) =

{

p1 x = ±1,

p0 x = 0,
(4)

and N ∼ N (0, 1) is independent of X (see Fig. 3). In this

setting, the MMSE estimate is given by

x̂MMSE(y) =
∑

n∈{−1,0,1}

n p(X = n|y), (5)

where

p(X = n|y) =
pn exp{−

1

2
(y − n)2}

∑

m∈{−1,0,1}

pm exp{− 1

2
(y −m)2}

. (6)
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Figure 3. The distribution of the MMSE and MAP estimates.

In this example, Y = X +N , where X ∼ pX and N ∼ N (0, 1).
The distributions of both the MMSE and the MAP estimates devi-

ate significantly from the distribution pX .

Notice that x̂MMSE can take any value in the range (−1, 1),
whereas x can only take the discrete values {−1, 0, 1}.

Thus, clearly, p
X̂MMSE

is very different from pX , as illus-

trated in Fig. 3. This demonstrates that minimizing the MSE

distortion does not generally lead to p
X̂

≈ pX .

The same intuition holds for images. The MMSE es-

timate is an average over all possible explanations to the

measured data, weighted by their likelihoods. However the

average of valid images is not necessarily a valid image, so

that the MMSE estimate frequently “falls off” the natural

image manifold [22]. This leads to unnatural blurry recon-

structions, as illustrated in Fig. 4. In this experiment, x is

a 280 × 280 image comprising 100 smaller 28 × 28 digit

images. Each digit is chosen uniformly at random from a

dataset comprising 54K images from the MNIST dataset

[21] and an additional 5.4K blank images. The degraded

image y is a noisy version of x. As can be seen, the MMSE

estimator produces blurry reconstructions, which do not fol-

low the statistics of the (binary) images in the dataset.

3.2. The 0− 1 distortion

The discussion above may give the impression that un-

natural estimates are mainly a problem of the square-error

distortion, which causes averaging. One way to avoid aver-

aging, is to minimize the binary 0 − 1 loss, which restricts

the estimator to choose x̂ only from the set of values that

x can take. In fact, the minimum mean 0 − 1 distortion is

attained by the maximum-a-posteriori (MAP) rule, which is

very popular in image restoration. However, as we exem-

plify next, the distribution of the MAP estimator also devi-

ates from pX . This behavior has also be studied in [33].

Consider again the setting of (4). In this case, the MAP

estimate is given by

x̂MAP(y) = argmax
n∈{−1,0,1}

p(X = n|y), (7)

M
M

SE

Original Noisy (ߪ ൌ 1)

M
A

P

ߪ ൌ 1 ߪ ൌ 3 ߪ ൌ 5Denoised

Figure 4. MMSE and MAP denoising. Here, the original im-

age consists of 100 smaller images, chosen uniformly at random

from the MNIST dataset enriched with blank images. After adding

Gaussian noise (σ = 1, 3, 5), the image is denoised using the

MMSE and MAP estimators. In both cases, the estimates signifi-

cantly deviate from the distribution of images in the dataset.

where p(X = n|y) is as in (6). Now, it can be easily verified

that when log(p1/p0) > 1/2, we have x̂MAP(y) = sign(y).
Namely, the MAP estimator never predicts the value 0.

Therefore, in this case, the distribution of the estimate is

p
X̂MAP

(x̂) =

{

0.5 x̂ = +1,

0.5 x̂ = −1,
(8)

which is obviously different from pX of (4) (see Fig. 3).

This effect can also be seen in the experiment of Fig. 4.

Here, the MAP estimator is increasingly dominated by

blank images as the noise level rises, and thus clearly de-

viates from the underlying prior distribution.

4. The perception-distortion tradeoff

We saw that low distortion does not generally imply

good perceptual-quality. An interesting question, then, is:

What is the best perceptual quality that can be attained by

an estimator with a prescribed distortion level?

Definition 1. The perception-distortion function of a signal

restoration task is given by

P (D) = min
p
X̂|Y

d(pX , p
X̂
) s.t. E[∆(X, X̂)] ≤ D, (9)

where ∆(·, ·) is a distortion measure and d(·, ·) is a diver-

gence between distributions.
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Figure 5. Plot of Eq. (9) for the setting of Example 1. The min-

imal attainable KL distance between pX and pX̂ subject to a con-

straint on the maximal allowable MSE between X and X̂ . Here,

Y = X + N , where X ∼ N (0, 1) and N ∼ N (0, σN ), and

the estimator is linear, X̂ = aY . Notice the clear trade-off: The

perceptual index (dKL) drops as the allowable distortion (MSE) in-

creases. The graphs cut-off at the MMSE (marked by a square).

In words, P (D) is the minimal deviation between the

distributions pX and p
X̂

that can be attained by an estimator

with distortion D. To gain intuition into the typical behavior

of this function, consider the following example.

Example 1. Suppose that Y = X+N , where X ∼ N (0, 1)
and N ∼ N (0, σN ) are independent. Take ∆(·, ·) to be the

square-error distortion and d(·, ·) to be the KL divergence.

For simplicity, let us restrict attention to estimators of the

form X̂ = aY . In this case, we can derive a closed form

solution to Eq. (9) (see Supplementary), which is plotted for

several noise levels σN in Fig. 5. As can be seen, the min-

imal attainable dKL(pX , p
X̂
) drops as the maximal allow-

able distortion (MSE) increases. Furthermore, the tradeoff

is convex and becomes more severe at higher noise levels

σN .

In general settings, it is impossible to solve (9) analyti-

cally. However, it turns out that the behavior seen in Fig. 5 is

typical, as we show next (see proof in the Supplementary).

Theorem 1 (The perception-distortion tradeoff). Assume

the problem setting of Section 3. If d(p, q) of (3) is con-

vex in its second argument1, then the perception-distortion

function P (D) of (9) is

1. monotonically non-increasing;

2. convex.

Note that Theorem 1 requires no assumptions on the dis-

tortion measure ∆(·, ·). This implies that a tradeoff between

perceptual quality and distortion exists for any distortion

measure, including e.g. MSE, SSIM, square error between

VGG features [16, 22], etc. Yet, this does not imply that

all distortion measures have the same perception-distortion

function. Indeed, as we demonstrate in Sec. 6, the tradeoff

tends to be less severe for distortion measures that capture

semantic similarities between images.

1d(p, λq1 +(1−λ)q2) ≤ λd(p, q1)+ (1−λ)d(p, q2), ∀λ ∈ [0, 1]

The convexity of P (D) implies that the tradeoff is more

severe at the low-distortion and at the high-perceptual-

quality extremes. This is particularly important when con-

sidering the TV divergence which is associated with the

ability to distinguish between real vs. fake images (see

Sec. 2.2). Since P (D) is steeper at the low-distortion

regime, any small improvement in distortion for an algo-

rithm whose distortion is already low, must be accompanied

by a large degradation in the ability to fool a discriminator.

Similarly, any small improvement in the perceptual qual-

ity of an algorithm whose perceptual index is already low,

must be accompanied by a large increase in distortion. Let

us comment that the assumption that d(p, q) is convex, is

not very limiting. For instance, any f -divergence (e.g. KL,

TV, Hellinger, X 2) as well as the Renyi divergence, satisfy

this assumption [5, 43]. In any case, the function P (D)
is monotonically non-increasing even without this assump-

tion.

4.1. Connection to rate­distortion theory

The perception-distortion tradeoff is closely related to

the well-established rate-distortion theory [4]. This theory

characterizes the tradeoff between the bit-rate required to

communicate a signal, and the distortion incurred in the

signal’s reconstruction at the receiver. More formally, the

rate-distortion function of a signal X is defined by

R(D) = min
p
X̂|X

I(X; X̂) s.t. E[∆(X, X̂)] ≤ D, (10)

where I(X; X̂) is the mutual information between X and X̂ .

There are, however, several key differences between the

two tradeoffs. First, in rate-distortion the optimization is

over all conditional distributions p
X̂|X , i.e. given the orig-

inal signal. In the perception-distortion case, the estimator

has access only to the degraded signal Y , so that the opti-

mization is over the conditional distributions p
X̂|Y , which

is more restrictive. In other words, the perception-distortion

tradeoff depends on the degradation pY |X , and not only on

the signal’s distribution pX (see Example 1). Second, in

rate-distortion the rate is quantified by the mutual informa-

tion I(X; X̂), which depends on the joint distribution p
X,X̂

.

In our case, perception is quantified by the similarity be-

tween pX and p
X̂

, which does not depend on their joint

distribution. Lastly, mutual information is inherently con-

vex, while the convexity of the perception-distortion curve

is guaranteed only when d(·, ·) is convex.

5. Traversing the tradeoff with a GAN

There exists a systematic way to design estimators that

approach the perception-distortion curve: Using GANs.

Specifically, motivated by [22, 35, 51, 38, 36, 15], restora-

tion problems can be approached by modifying the loss of
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Figure 6. Image denoising utilizing a GAN. A Wasserstein GAN

was trained to denoise the images of the experiment in Fig. 4. The

generator loss lgen = lMSE + λ ladv consists of a perceptual quality

(adversarial) loss and a distortion (MSE) loss, where λ controls the

trade-off between the two. For each λ ∈ [0, 0.3], the graph depicts

the distortion (MSE) and perceptual quality (Wasserstein distance

between pX and pX̂ ). The curve connecting the estimators is a

good approximation to the theoretical perception-distortion trade-

off (illustrated by a dashed line).

the generator of a GAN to be

ℓgen = ℓdistortion + λ ℓadv, (11)

where ℓdistortion is the distortion between the original and re-

constructed images, and ℓadv is the standard GAN adversar-

ial loss. It is well known that ℓadv is proportional to some

divergence d(pX , p
X̂
) between the generator and data dis-

tributions [10, 1, 34] (the type of divergence depends on the

loss). Thus, (11) in fact approximates the objective

ℓgen ≈ E[∆(x, x̂)] + λ d(pX , p
X̂
). (12)

Viewing λ as a Lagrange multiplier, it is clear that minimiz-

ing ℓgen is equivalent to minimizing (9) for some D. Varying

λ correspond to varying D, thus producing estimators along

the perception-distortion function.

Let us use this approach to explore the perception-

distortion tradeoff for the digit denoising example of Fig. 4

with σ = 3. We train a Wasserstein GAN (WGAN) based

denoiser [1, 12] with an MSE distortion loss ℓdistortion. Here,

ℓadv is proportional to the Wasserstein distance dW (pX , p
X̂
)

between the generator and data distributions. The WGAN

has the valuable property that its discriminator (critic)

loss is an accurate estimate (up to a constant factor) of

dW (pX , p
X̂
) [1]. This allows us to easily compute the per-

ceptual quality index of the trained denoiser. We obtain a

Perceptual 
Index

Distortion

A
B

C

D

Figure 7. Dominance and admissibility. Algorithm A is domi-

nated by Algorithm B, and is thus inadmissible. Algorithms B, C

and D are all admissible, as they are not dominated by any algo-

rithm.

set of estimators with several values of λ ∈ [0, 0.3]. For

each denoiser, we evaluate the perceptual quality by the fi-

nal discriminator loss. As seen in Fig. 6, the curve con-

necting the estimators on the perception-distortion plane is

monotonically decreasing. Moreover, it is associated with

estimates that gradually transition from blurry and accurate

to sharp and inaccurate. This curve obviously does not co-

incide with the analytic bound (9) (illustrated by a dashed

line). However, it seems to be adjacent to it. This is in-

dicated by the fact that the left-most point of the WGAN

curve is very close to the left-most point of the theoretical

bound, which corresponds to the MMSE estimator. See the

Supplementary for the WGAN training details and architec-

ture.

Besides the MMSE estimator, Figure 6 also includes the

MAP estimator and an estimator which randomly draws im-

ages from the dataset (denoted “random draw”). The per-

ceptual quality of those three estimators is evaluated, as

above, by the final loss of the WGAN discriminator [1],

trained (without a generator) to distinguish between the es-

timators’ outputs and images from the dataset. Note that

the denoising WGAN estimator (D) achieves the same dis-

tortion as the MAP estimator, but with far better perceptual

quality. Furthermore, it achieves nearly the same percep-

tual quality as the random draw estimator, but with a signif-

icantly lower distortion.

6. Practical method for evaluating algorithms

Certain applications may require low-distortion (e.g. in

medical imaging), while others may prefer superior percep-

tual quality. How should image restoration algorithms be

evaluated, then?

Definition 2. We say that Algorithm A dominates Algo-

rithm B if it has better perceptual quality and less distortion.

Note that if Algorithm A is better than B in only one of

the two criteria, then neither A dominates B nor B domi-

nates A. Therefore, among a group of algorithms, there may

be a large subset which can be considered equally good.
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Figure 8. Perception-distortion evaluation of SR algorithms. We plot 16 algorithms on the perception-distortion plane. Perception is

measured by the recent NR metric by Ma et al. [26] which is specifically designed for SR quality assessment. Distortion is measured by

the common full-reference metrics RMSE, SSIM, MS-SSIM, IFC, VIF and VGG2,2. In all plots, the lower left corner is blank, revealing

an unattainable region in the perception-distortion plane. In proximity of the unattainable region, an improvement in perceptual quality

comes at the expense of higher distortion.

Definition 3. We say that an algorithm is admissible among

a group of algorithms, if it is not dominated by any other

algorithm in the group.

As shown in Figure 7, these definitions have very simple

interpretations when plotting algorithms on the perception-

distortion plane. In particular, the admissible algorithms

in the group, are those which lie closest to the perception-

distortion bound.

As discussed in Sec. 2, distortion is measured by full-

reference (FR) metrics, e.g. [45, 47, 41, 40, 3, 52, 16]. The

choice of the FR metric, depends on the type of similar-

ities we want to measure (per-pixel, semantic, etc.). Per-

ceptual quality, on the other hand, is ideally quantified by

collecting human opinion scores, which is time consum-

ing and costly [31, 37]. Instead, the divergence d(pX , p
X̂
)

can be computed, for instance by training a discrimina-

tor net (see Sec. 5). However, this requires many train-

ing images and is thus also time consuming. A practi-

cal alternative is to utilize no-reference (NR) metrics, e.g.

[29, 30, 37, 31, 50, 17, 26], which quantify the perceptual

quality of an image without a corresponding original im-

age. In scenarios where NR metrics are highly correlated

with human mean-opinion-scores (e.g. 4× super-resolution

[26]), they can be used as a fast and simple method for ap-

proximating the perceptual quality of an algorithm2.

We use this approach to evaluate 16 SR algorithms in a

4× magnification task, by plotting them on the perception-

distortion plane (Fig. 8). We measure perceptual quality us-

ing the recent NR metric by Ma et al. [26] which is specif-

ically designed for SR quality assessment (see Supplemen-

tary for experiments with the NR metrics BRISQUE [29],

NIQE [30] and BLIINDS-II [37]). We measure distortion

by the five common FR metrics RMSE, SSIM [45], MS-

SSIM [47], IFC [41] and VIF [40], and additionally by the

recent VGG2,2 metric (the distance in the feature space of

a VGG net) [22, 16]. To conform to previous evaluations,

we compute all metrics on the y-channel after discarding a

4-pixel border (except for VGG2,2, which is computed on

RGB images). Comparisons on color images can be found

in the Supplementary. The algorithms are evaluated on the

BSD100 dataset [27]. The evaluated algorithms include:

A+ [42], SRCNN [9], SelfEx [13], VDSR [18], Johnson

et al. [16], LapSRN [19], Bae et al. [2] (“primary” vari-

ant), EDSR [24], SRResNet variants which optimize MSE

2In scenarios where NR metrics are inaccurate (e.g. blind deblurring

with large blurs [20, 25]), the perceptual metric should be human-opinion-

scores or the loss of a discriminator trained to distinguish the algorithms’

outputs from natural images.
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Figure 9. Visual comparison of algorithms closest to the perception-distortion bound. The algorithms are ordered from low to high

distortion (evaluated by IFC). Notice the co-occurring increase in perceptual quality.

and VGG2,2 [22], SRGAN variants which optimize MSE,

VGG2,2, and VGG5,4, in addition to an adversarial loss

[22], ENet [38] (“PAT” variant), Deng [7] (γ = 0.55), and

Mechrez et al. [28].

Interestingly, the same pattern is observed in all plots:

(i) The lower left corner is blank, revealing an unattain-

able region in the perception-distortion plane. (ii) In prox-

imity of this blank region, NR and FR metrics are anti-

correlated, indicating a tradeoff between perception and

distortion. Notice that the tradeoff exists even for the IFC

and VIF measures, which are considered to capture visual

quality better than MSE and SSIM. The tradeoff is evident

also for the VGG2,2 measure, but is somewhat weaker than

for MSE. This may indicate that VGG2,2 is a more “percep-

tual” metric. It should be noted, however, that when using

other NR metrics to measure perceptual quality, the trade-

off for VGG2,2 does not appear to be weaker (see Supple-

mentary). This is due to the sensitivity of some of the NR

metrics to the periodic artifacts that arise when minimizing

the VGG2,2 distortion3 (see Fig. 9).

Figure 9 depicts the outputs of several algorithms lying

closest to the perception-distortion bound in the IFC graph.

While the images are ordered from low to high distortion

(according to IFC), their perceptual quality clearly improves

from left to right.

Both FR and NR measures are commonly validated by

calculating their correlation with human opinion scores,

based on the assumption that both should be correlated

with perceptual quality. However, as Fig. 10 shows, while

FR measures can be well-correlated with perceptual quality

when distant from the unattainable region, this is clearly not

the case when approaching the perception-distortion bound.

In particular, all tested FR methods are inconsistent with

human opinion scores which found the SRGAN to be su-

perb in terms of perceptual quality [22], while NR meth-

ods successfully determine this. We conclude that image

restoration algorithms should always be evaluated by a pair

of NR and FR metrics, constituting a reliable, reproducible

and simple method for comparison, which accounts for both

perceptual quality and distortion.

3Minimizing VGG2,2 (as done by SRResNet-VGG2,2), leads to

sharper images (compared to minimizing MSE) but with periodic artifacts

[16]. Different NR metrics have different sensitivities to these artifacts.

Until 2017: IFC well-correlated 

with perceptual quality

After 2017: IFC anti-correlated 

with perceptual quality

Figure 10. Correlation between distortion and perceptual qual-

ity. In proximity of the perception-distortion bound, distortion

and perceptual quality are anti-correlated. However, correlation

is possible at distance from the bound.

Up until 2016, SR algorithms occupied only the upper-

left section of the perception-distortion plane. Nowa-

days, emerging techniques are exploring new regions in

this plane. The SRGAN, ENet, Deng, Johnson et al. and

Mechrez et al. methods are the first (to our knowledge) to

populate the high perceptual quality region. In the near

future we will most likely witness continued efforts to ap-

proach the perception-distortion bound, not only in the low-

distortion region, but throughout the entire plane.

7. Conclusion

We proved and demonstrated the counter-intuitive phe-

nomenon that distortion and perceptual quality are at odds

with each other. Namely, the lower the distortion of an

algorithm, the more its distribution must deviate from the

statistics of natural scenes. We showed empirically that

this tradeoff exists for many popular distortion measures,

including those considered to be well-correlated with hu-

man perception. Therefore, any distortion measure alone,

is unsuitable for assessing image restoration methods. Our

novel methodology utilizes a pair of NR and FR metrics to

place each algorithm on the perception-distortion plane, fa-

cilitating a more informative comparison of image restora-

tion methods.

Acknowledgements This research was supported in part

by an Alon Fellowship, by the Israel Science Foundation

(grant no. 852/17), and by the Ollendorf Foundation.

6235



References

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gen-

erative adversarial networks. In International Conference on

Machine Learning (ICML), pages 214–223, 2017. 3, 6

[2] W. Bae, J. Yoo, and J. Chul Ye. Beyond deep residual

learning for image restoration: Persistent homology-guided

manifold simplification. In Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, pages 145–

153, 2017. 8

[3] D. M. Chandler and S. S. Hemami. VSNR: A wavelet-based

visual signal-to-noise ratio for natural images. IEEE Trans-

actions on Image Processing, 16(9):2284–2298, 2007. 2, 7

[4] T. M. Cover and J. A. Thomas. Elements of information the-

ory. John Wiley & Sons, 2012. 2, 5

[5] I. Csiszár, P. C. Shields, et al. Information theory and statis-

tics: A tutorial. Foundations and Trends R© in Communica-

tions and Information Theory, 1(4):417–528, 2004. 5

[6] R. Dahl, M. Norouzi, and J. Shlens. Pixel recursive super

resolution. In International Conference on Computer Vision

(ICCV), pages 5439–5448, 2017. 1, 2

[7] X. Deng. Enhancing image quality via style transfer for sin-

gle image super-resolution. IEEE Signal Processing Letters,

2018. 8

[8] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-

tive image models using a Laplacian pyramid of adversarial

networks. In Advances in Neural Information Processing

Systems (NIPS), pages 1486–1494, 2015. 2

[9] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep

convolutional network for image super-resolution. In Euro-

pean Conference on Computer Vision (ECCV), pages 184–

199, 2014. 7

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in Neural Information

Processing Systems (NIPS), pages 2672–2680, 2014. 2, 3, 6

[11] S. Guadarrama, R. Dahl, D. Bieber, M. Norouzi, J. Shlens,

and K. Murphy. PixColor: Pixel recursive colorization.

British Machine Vision Conference (BMVC), 2017. 2

[12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.

Courville. Improved training of wasserstein gans. In Ad-

vances in Neural Information Processing Systems (NIPS),

pages 5769–5779, 2017. 6

[13] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In Conference

on Computer Vision and Pattern Recognition (CVPR), pages

5197–5206, 2015. 7

[14] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be

color!: Joint end-to-end learning of global and local im-

age priors for automatic image colorization with simultane-

ous classification. ACM Transactions on Graphics (TOG),

35(4):110, 2016. 2

[15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 1125–1134, 2017. 2, 3, 5

[16] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision (ECCV), pages 694–711,

2016. 1, 2, 5, 7, 8

[17] L. Kang, P. Ye, Y. Li, and D. Doermann. Convolutional

neural networks for no-reference image quality assessment.

In Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1733–1740, 2014. 7

[18] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image

super-resolution using very deep convolutional networks. In

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1646–1654, 2016. 7

[19] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep

Laplacian pyramid networks for fast and accurate super-

resolution. In Conference on Computer Vision and Pattern

Recognition (CVPR), pages 624–632, 2017. 8

[20] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja, and M.-H. Yang.

A comparative study for single image blind deblurring. In

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1701–1709, 2016. 7

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 4

[22] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunning-

ham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and

W. Shi. Photo-realistic single image super-resolution using a

generative adversarial network. In Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4681–4690,

2017. 1, 2, 3, 4, 5, 7, 8

[23] Q. Li and Z. Wang. Reduced-reference image quality assess-

ment using divisive normalization-based image representa-

tion. IEEE Journal of Selected Topics in Signal Processing,

3(2):202–211, 2009. 2

[24] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced

deep residual networks for single image super-resolution.

In Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, 2017. 8

[25] Y. Liu, J. Wang, S. Cho, A. Finkelstein, and S. Rusinkiewicz.

A no-reference metric for evaluating the quality of mo-

tion deblurring. ACM Transactions on Graphics (TOG),

32(6):175–1, 2013. 7

[26] C. Ma, C.-Y. Yang, X. Yang, and M.-H. Yang. Learn-

ing a no-reference quality metric for single-image super-

resolution. Computer Vision and Image Understanding,

158:1–16, 2017. 7

[27] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In International Conference on Computer Vi-

sion (ICCV), volume 2, pages 416–423, 2001. 7

[28] R. Mechrez, I. Talmi, F. Shama, and L. Zelnik-Manor. Learn-

ing to maintain natural image statistics. arXiv preprint

arXiv:1803.04626, 2018. 8

[29] A. Mittal, A. K. Moorthy, and A. C. Bovik. No-reference

image quality assessment in the spatial domain. IEEE Trans-

actions on Image Processing, 21(12):4695–4708, 2012. 2, 3,

7

[30] A. Mittal, R. Soundararajan, and A. C. Bovik. Making a

completely blind image quality analyzer. IEEE Signal Pro-

cessing Letters, 20(3):209–212, 2013. 3, 7

6236



[31] A. K. Moorthy and A. C. Bovik. Blind image quality as-

sessment: From natural scene statistics to perceptual quality.

IEEE transactions on Image Processing, 20(12):3350–3364,

2011. 2, 3, 7

[32] F. Nielsen. Hypothesis testing, information divergence and

computational geometry. In Geometric Science of Informa-

tion, pages 241–248, 2013. 2

[33] M. Nikolova. Model distortions in Bayesian MAP recon-

struction. Inverse Problems and Imaging, 1(2):399, 2007.

4

[34] S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training

generative neural samplers using variational divergence min-

imization. In Advances in Neural Information Processing

Systems (NIPS), pages 271–279, 2016. 3, 6

[35] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting.

In Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2536–2544, 2016. 2, 3, 5

[36] O. Rippel and L. Bourdev. Real-time adaptive image com-

pression. In International Conference on Machine Learning

(ICML), pages 2922–2930, 2017. 2, 3, 5

[37] M. A. Saad, A. C. Bovik, and C. Charrier. Blind image

quality assessment: A natural scene statistics approach in

the DCT domain. IEEE transactions on Image Processing,

21(8):3339–3352, 2012. 3, 7

[38] M. S. M. Sajjadi, B. Scholkopf, and M. Hirsch. EnhanceNet:

Single image super-resolution through automated texture

synthesis. In International Conference on Computer Vision

(ICCV), pages 4491–4500, 2017. 1, 2, 3, 5, 8

[39] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans. In

Advances in Neural Information Processing Systems (NIPS),

pages 2234–2242, 2016. 2

[40] H. R. Sheikh and A. C. Bovik. Image information and visual

quality. IEEE Transactions on Image Processing, 15(2):430–

444, 2006. 2, 7

[41] H. R. Sheikh, A. C. Bovik, and G. De Veciana. An infor-

mation fidelity criterion for image quality assessment using

natural scene statistics. IEEE Transactions on Image Pro-

cessing, 14(12):2117–2128, 2005. 2, 7

[42] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted

anchored neighborhood regression for fast super-resolution.

In Asian Conference on Computer Vision, pages 111–126,

2014. 7

[43] T. Van Erven and P. Harremos. Rényi divergence and

Kullback-Leibler divergence. IEEE Transactions on Infor-

mation Theory, 60(7):3797–3820, 2014. 5

[44] Z. Wang and A. C. Bovik. Mean squared error: Love it or

leave it? A new look at signal fidelity measures. IEEE Signal

Processing Magazine, 26(1):98–117, 2009. 1, 2

[45] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: From error visibility to struc-

tural similarity. IEEE Transactions on Image Processing,

13(4):600–612, 2004. 1, 2, 7

[46] Z. Wang and E. P. Simoncelli. Reduced-reference image

quality assessment using a wavelet-domain natural image

statistic model. In Human Vision and Electronic Imaging,

volume 5666, pages 149–159, 2005. 2

[47] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale struc-

tural similarity for image quality assessment. In Conference

on Signals, Systems and Computers, volume 2, pages 1398–

1402, 2003. 2, 7

[48] Z. Wang, G. Wu, H. R. Sheikh, E. P. Simoncelli, E.-H. Yang,

and A. C. Bovik. Quality-aware images. IEEE Transactions

on Image Processing, 15(6):1680–1689, 2006. 2

[49] C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image super-

resolution: A benchmark. In European Conference on Com-

puter Vision (ECCV), pages 372–386, 2014. 1

[50] P. Ye, J. Kumar, L. Kang, and D. Doermann. Unsupervised

feature learning framework for no-reference image quality

assessment. In Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1098–1105, 2012. 7

[51] R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-

Johnson, and M. N. Do. Semantic image inpainting with

deep generative models. In Conference on Computer Vision

and Pattern Recognition (CVPR), pages 5485–5493, 2017.

1, 2, 3, 5

[52] L. Zhang, L. Zhang, X. Mou, and D. Zhang. FSIM: A feature

similarity index for image quality assessment. IEEE Trans-

actions on Image Processing, 20(8):2378–2386, 2011. 2, 7

[53] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-

tion. In European Conference on Computer Vision (ECCV),

pages 649–666, 2016. 2

[54] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and

A. A. Efros. Real-time user-guided image colorization with

learned deep priors. ACM Transactions on Graphics (TOG),

9(4), 2017. 2

[55] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired

image-to-image translation using cycle-consistent adversar-

ial networks. In International Conference on Computer Vi-

sion (ICCV), pages 2223–2232, 2017. 2, 3

6237


