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Abstract

Despite the availability of a huge amount of video data

accompanied by descriptive texts, it is not always easy to

exploit the information contained in natural language in or-

der to automatically recognize video concepts. Towards this

goal, in this paper we use textual cues as means of super-

vision, introducing two weakly supervised techniques that

extend the Multiple Instance Learning (MIL) framework:

the Fuzzy Sets Multiple Instance Learning (FSMIL) and the

Probabilistic Labels Multiple Instance Learning (PLMIL).

The former encodes the spatio-temporal imprecision of the

linguistic descriptions with Fuzzy Sets, while the latter mod-

els different interpretations of each description’s semantics

with Probabilistic Labels, both formulated through a con-

vex optimization algorithm. In addition, we provide a novel

technique to extract weak labels in the presence of com-

plex semantics, that consists of semantic similarity com-

putations. We evaluate our methods on two distinct prob-

lems, namely face and action recognition, in the challenging

and realistic setting of movies accompanied by their screen-

plays, contained in the COGNIMUSE database. We show

that, on both tasks, our method considerably outperforms

a state-of-the-art weakly supervised approach, as well as

other baselines.

1. Introduction

Automatic video understanding has become one of the

most essential and demanding challenges and research di-

rections. The problems that span from this field, such as

activity recognition, saliency and scene analysis, comprise

detecting events and extracting high level semantics in re-

alistic video sequences. So far, the majority of the meth-

ods designed for these tasks deal with visual data ignoring

the presence of other modalities, such as text and sound.

Nonetheless, the exploitation of the information they pro-

vide can lead to better understanding of the underlying se-

mantics. In addition, most of these techniques are fully su-

pervised and are trained on diverse and usually large-scale

datasets. Recently, in an attempt to avoid the significant

Figure 1: Example of a video segment described by the text

shown below the pictures. During the time interval [0:19:21

- 0:19:34] three actions take place (“standing up”, “walk”,

“answering phone”) performed by the same person (Colin).

The corresponding text mentions the actions as “gets up”,

“walks back” and “opens his cell phone”, respectively.

cost of manual annotation, there has been an increasing in-

terest in exploring learning techniques that reduce human

intervention.

Motivated by the above, in this paper we approach video

understanding multimodally, where our goal is to recog-

nize visual concepts mining their labels from an accom-

panying descriptive document. Visual concepts could be

loosely defined as spatio-temporally localized video seg-

ments that carry a specific structure in the visual domain,

which allows them to be classified in various categories.

Some specific examples are human faces, actions, scenes,

objects etc. The main reason for using text as a comple-

mentary modality is the convenience that natural language

provides in expressing semantics. Nowadays, there is a

plethora of video data with natural language descriptions,
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i.e. videos on YouTube [30, 31, 45], TV broadcasts includ-

ing captions [9], videos from parliament or court sessions

accompanied by transcripts [24] and TV series or movies

accompanied by their subtitles, scripts, or audio descrip-

tions [7, 11, 18, 19, 23, 38, 49]. The last category has re-

cently gathered much interest, mainly because of the de-

scriptiveness of these texts and the realistic nature of the

visual data. Inspired by such work, we apply our algo-

rithms to movies accompanied by their scripts. In Figure

1 we illustrate an example that was extracted from a movie,

in which different instances of the action visual concept are

described by an accompanying text segment.

Towards this goal, we use a unidirectional model, where

information flows from text to video data. This is mod-

eled in terms of weak supervision, while no prior knowl-

edge is used. Specifically, in order to extract the label from

the text for each instance of a visual concept, we face two

distinct problems. (i) The first is the absence of specific

spatio-temporal correspondence between visual and textual

elements. In particular, in the tasks mentioned above, the

descriptions are never provided with spatial boundaries and

the temporal ones are usually imprecise. (ii) The second

major issue is the semantic ambiguity of each textual ele-

ment. This means that, when it comes to inferring complex

semantics from the video such as actions or emotions, the

extraction of the label from the text is no longer a straight-

forward procedure. For example, various expressions could

be used to describe the action labeled as “walking”, such as

“lurching” or “going for a stroll”.

Most of the work so far has dealt only to an extent with

the spatio-temporal ambiguity, while the semantic one was

totally ignored [7, 16, 23]. In this work, we introduce two

novel weakly supervised techniques extending the Multiple

Instance Learning (MIL)1 discriminative clustering frame-

work of [7]. The first one accounts for the temporal ambi-

guity variations, which are modeled by Fuzzy Sets (Fuzzy

Sets MIL - FSMIL), while the second models the semantic

ambiguities by probability mass functions (p.m.f) over the

label set (Probabilistic Labels MIL - PLMIL). To the best

of our knowledge, this is the first time that both methods

are formulated in the context of MIL. In addition, we pro-

pose a method of extracting labels in complex tasks using

semantic similarity computations. We further improve the

recognition, from the perspective of visual representations

using features learned from pre-trained deep architectures.

The combination of all the above ideas leads to superior

performance compared to previous work.

Finally, we focus on the recognition of faces and ac-

tions and the evaluation is performed on the COGNIMUSE

database [49]. It is important to mention that our methods

1In this paper, the term MIL does not concern only binary classification

problems with positive and negative bags, as in its original definition [15],

but also the multi-class case.

can be applied to other categories of concepts as long as

they can be explicitly described in both modalities (video &

text).

2. Related Work

During the last few years there have been various ap-

proaches of understanding videos or images using natural

language. Specifically, many have approached the problem

as machine translation, such as in [17], where image regions

are matched to words of an accompanying caption and in

[31, 38], where representations that translate video to sen-

tences and vice-versa are learned. Others have tackled it

using video-to-text alignment algorithms [8, 40].

Several works have considered text as means of su-

pervision. In the problem of naming faces, Berg et al.

[5, 6] use Linear Discriminant Analysis (LDA) followed

by a modified k-means, to classify faces in newspaper

images, while the labels are obtained from captions. In

[7, 11, 12, 19, 32, 34, 42] the authors tackle a similar

problem classifying faces in TV series or movies using

the names of the speakers provided by the corresponding

scripts. The proposed methods are based either on semi-

supervised alike techniques using exemplar tracks [19, 42],

ambiguous labeling [11, 12] or MIL [7, 32, 34].

The problem of automatically annotating actions in

videos has recently drawn the attention of several re-

searchers, because of the need to create diverse and realistic

datasets of human activities. For this purpose, Laptev et al.

used movie scripts to collect and learn realistic actions [23].

Later on, this work has been improved by incorporating in-

formation from the context, leading to the creation of the

Hollywood2 dataset [27], and by a more accurate tempo-

ral localization using MIL [16]. In these, a Bag-of-Words

text classifier is trained with annotated sentences in order

to locate specific actions in the scripts. On the contrary,

our work is based only on semantic similarity eliminating

the cost of annotation. In Bojanowski et al. [7], MIL is also

used to jointly learn names and actions, while in Miech et al.

[28], the algorithm is improved allowing large-scale opti-

mization via a variant of the Block-Coordinate Frank-Wolfe

algorithm. In [28], a supervised approach is once more fol-

lowed for the extraction of labels from the text, contrary to

[7], where SEMAFOR [13] is used, a semantic role labeling

parser, searching for two action frames. This unsupervised

method, despite its promising results, cannot be easily gen-

eralized to custom actions. Similarly, in [41], the authors

propose methods for learning multiple concepts jointly, in-

troducing an extension of the Indian Buffer Process that is

constrained by the information provided by the text. All

the above end up in considering only the most certain la-

bels that the text provides, ignoring possible paraphrases

or synonyms. This allows an automatic collection of data

with limited noise, but in general it leads to understanding
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a small proportion of each individual video.

In order to learn from partially labeled data, there has

been an extensive study on weakly supervised classification

[21]. Learning with probabilistic labels has been examined

in [22] under a probabilistic framework. Cour et al. [11]

formulated a sub-category of this method, where all possi-

ble labels are distributed uniformly (candidate labels) and

the classification is performed by minimizing a convex loss

function. Both papers concern a single instance setting,

namely a p.m.f over the label set is assigned to individual

instances. On the contrary, we assign a p.m.f to bags-of in-

stances, generalizing previous formulations. MIL has been

largely studied in the machine learning community starting

from Diettrich et al. [15], where drug activity was predicted.

Except for the efforts on naming faces mentioned before,

MIL has been used in detecting objects [48] and classify-

ing scenes [26] in images, where annotation lacks specific

spatial localization. While the definition of MIL is suffi-

cient for most of its applications, it is important sometimes

to make discriminations between instances in each bag. In

order to model this case, we redefine MIL using Fuzzy Sets.

3. Multimodal Learning of Concepts

Given a video and a descriptive text that are crudely

aligned [19], namely each portion of the text is attributed

with temporal boundaries, we aim to localize and identify

all the existing instances of a chosen visual concept, such

as faces, actions or scenes. The adversities of such a task

are clearly illustrated in Figure 1, where the concept exam-

ined is that of human actions. Our approach breaks down

the problem into three subproblems. (a) First of all, the

exact position in space and time of each visual concept is

unknown, thus it needs to be detected automatically. (b)

Secondly, concepts are usually expressed in the text in a

different way than their original definition. For instance, as

shown in Figure 1, the action “standing up” is mentioned by

the phrase “gets up”, while the action “answering phone” is

mentioned by the phrase “opens his cell phone”. In order

to tackle this problem, we need to detect the part of the

text that implies a concept and then mine the label infor-

mation. (c) Finally, following the alignment procedure, the

text is divided into segments that describe specific time in-

tervals of the video. Each one of them might mention more

than one instances of a visual concept. Thus, we need to

apply a learning procedure that matches the mined labels

with the detected concepts. Note here that sometimes a con-

cept described in the text might not appear in the video or

vice-versa. As a result, we need to design an algorithm that

learns the visual concepts globally without restricting each

one of them to the labels mentioned in its corresponding

time interval.

Solving (a) and (b) requires task dependent systems,

which are both described in section 4. The outputs of these

Figure 2: Illustration of the two modalities as parallel data

streams.

systems are perceived as visual and linguistic objects (v and

w, respectively) with their temporal boundaries determined.

Following the computation of these, we address (c) and we

formulate the learning algorithms.

3.1. Problem Statement

We assume a dual modality scheme, where both modal-

ities carry the same semantics. This can be modeled with

two data streams flowing in parallel as time evolves (Figure

2). The first data stream consists of the unidentified visual

objects that we want to recognize. We denote as V the set

of V visual objects. The second modality consists of the

linguistic objects that carry in some way the information

for the identification of each v ∈ V , namely they describe

the v. We denote as W the set of W linguistic objects (i.e.

words or sentences).

We assume that each v is represented in a feature space

and its representation is a vector xv . We define a matrix

X ∈ R
V×D containing all the visual features. The time in-

terval of each v is denoted as Tv = [t1v, t
2
v].

Let Y be the label set of Y discrete labels. Each w ∈ W
is mapped to a label yw through a mapping ψ : W → Y .

This can be either deterministic, matching each w to a sole

label y, or probabilistic, matching each w to a p.m.f over

the label set (see section 3.3.2). The time interval of each w
is denoted as Tw = [t1w, t

2
w].

Our goal is to assign a specific label to each v, drawn

from Y . We denote the indicator matrix Z ∈ {0, 1}V×Y ,

which means that zvy = 1 iff the label assigned to v equals

y. We want to infer Z given the visual feature matrix X ,

the mapping ψ and the temporal intervals Tv, Tw.

3.2. Clustering Model

Our model is based on DIFFRAC [4], a discrimina-

tive clustering method. In particular, Bach and Har-

chaoui, in order to assign labels to unsupervised data, form

a ridge regression loss function using a linear classifier

f(x) = xω + b, where ω ∈ R
D×Y and b ∈ R

1×Y , which

is optimized by the following:

min
Z,ω,b

1

2V
‖Z −Xω − 1V b‖

2
F +

λ

2
Tr(ωT

ω), (1)

where λ stands for the regularization parameter. Eq. (1)

can be solved analytically w.r.t. the classifier leading to a
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(a) (b)

Figure 3: (a): Example of the two data streams formed by linguistic and visual objects concerning the concept of human

actions. Next to each visual object we demonstrate its ground truth. The formation of the streams is carried out by solving

subproblems (a) and (b). (b): The construction of bags under the MIL setting with Fuzzy Sets and Probabilistic Labels. The

label set here is [“walk”, “turn”, “running”, “driving car”, “getting out the car”].

new objective function that needs to be minimized only

w.r.t. the assignment matrix Z: minZ
1
2 (ZZ

T
A(X, λ)),

where A(X, λ) is a matrix that depends on the parameter λ
and the Gram matrix XX

T , which can be replaced by any

kernel (see [4]). Relaxing the matrix Z ∈ {0, 1}V×Y to

Z ∈ [0, 1]V×Y , the objective becomes a convex quadratic

function constrained by the following:

∀v ∈ V, ∀y ∈ Y, zvy ≥ 0, (2)

Z·1Y = 1V , (3)

where zvy denotes the (v, y) element of matrix Z.

3.3. Weakly Supervised Methods

In order to incorporate in the model the weak supervi-

sion that the complementary modality provides, we have to

resolve two kinds of ambiguities:

• Which visual object v is described by each linguistic ob-

ject w?

• Which label yw is implied from each w?

3.3.1 Fuzzy Sets Multiple Instance Learning - FSMIL

In an attempt to address the first question, similar to [7], we

assume that each w should describe at least one of the v that

temporally overlaps with it. This leads to a multi-class MIL

approach, where for each w a bag-of-instances is created

containing all the overlapping v:

Vw = {v | v ∈ V , Tw ∩ Tv 6= 0}. (4)

We extend this framework in order to discriminate between

visual objects with different temporal overlaps. In fact, the

longer the overlap, the more likely it is for a visual object

v to be described by the corresponding linguistic w. For

example, during a dialogue, in the video stream the camera

usually focuses on the current speaker longer than the silent

person, while the document mentions the first. Thus, we

need to encode this observation on our MIL sets. This is

done by defining a novel type of MIL sets using fuzzy logic

(see Figure 3). Each member of the set is accompanied by

a value that demonstrates its membership grade :

Vw = {(v, µw(v)) | v ∈ V , µw(v) = g(
|Tw ∩ Tv|

|Tv|
)}, (5)

where g is an increasing membership function with g(0) =
0, g(1) = 1. In addition, we note that, in order to compen-

sate for the crude alignment mistakes, we can add a hyper-

parameter ǫ that adjusts the linguistic object time interval as

follows: T́w = [t1w − ǫr, t2w + ǫr], where r = |Tw| / |Tw|
and |Tw| is the average value of |Tw|, over all w.

3.3.2 Probabilistic Labels Multiple Instance Learning

- PLMIL

As mentioned before, the labels extracted from the comple-

mentary modality involve a level of uncertainty. This hap-

pens due to the fact that the extraction procedure is a classi-

fication problem on its own. Solving this problem is equiva-

lent to inferring the mapping ψ. Obtaining the label that the

classifier predicts for each linguistic object w, renders the

mapping deterministic, while obtaining the posterior prob-

abilities that the classifier gives, renders it probabilistic.

In this work, we use a probabilistic mapping using the

posterior probabilities ψw(y) = P[yw = y|w]. In order to

match them with the visual objects v, we perceive them as

Probabilistic Labels (PLs). As mentioned in [22], match-

ing a PL to an instance that needs to be classified, accounts

for an initial estimation of its true label. In our problem,

we generalize the definition of [22], matching PLs to bags-

of-instances, meaning that at least one instance of the set
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should be described by this measure of initial confidence.

In this case, the model’s input data is formed as follows:

D =
⋃

w∈W
(Vw, ψw(·)).

We address the classification problem of text segments

in an unsupervised manner. Specifically, we calculate the

semantic similarity swy of each w with the linguistic rep-

resentation of each label y using the algorithm of [20].

We also apply a threshold θ to each similarity value in

order to eliminate the noisy w that do not imply any of

the labels. Thus, for each w we obtain a similarity vec-

tor sw, which is then normalized to constitute a p.m.f :

ψw(y) = swy /
∑

ℓ∈Y
swℓ.

3.3.3 Integration of the Weak Supervision in the Clus-

tering Model

In the MIL case each bag Vw is matched to a single label y
and is represented by the following constraint:

∀w ∈ W ,
∑

v∈Vw

zvy ≥ 1. (6)

For the purpose of accounting for noise, slack variables are

used to reformulate both the objective function and the con-

straints:

min
Z,ξ

Tr(ZZ
T
A(X, λ)) + κ

∑

w∈W

ξ2w, (7)

s.t ∀w ∈ W ,
∑

v∈Vw

zvy ≥ 1− ξw. (8)

In our FSMIL, we intend to add different weights to the

elements of each bag depending on the membership grade:

∀w ∈ W ,
∑

v∈Vw

zvyµw(v) ≥ 1− ξw. (9)

For the PLMIL case, let Yw ⊆ Y be the set of the labels for

which the p.m.f ψw(y) is non-zero. For each label y ∈ Yw

we construct a constraint formed as in (9), i.e.:

∀w ∈ W , ∀y ∈ Yw ,
∑

v∈Vw

zvyµw(v) ≥ 1− ξwy. (10)

The discrimination between the various labels of Yw is car-

ried out by the slack variables. In particular, we rewrite the

objective function as follows:

min
Z,ξ

Tr(ZZ
T
A(X, λ)) + κ

∑

w∈W

∑

y∈Yw

f(ψw(y))ξ
2
wy,

(11)

where f(·) is an increasing function that transforms prob-

abilities to slack variable weights. In this way, we manage

to relax the constraints inversely proportional to the proba-

bility of the corresponding label. As a result, a constraint is

harder to be violated as long as the probability is high.

Rounding: Similarly to [7] we choose a simple rounding

procedure for Z that accounts for taking the maximum val-

ues along its rows and replacing it with 1. The rest of the

values are replaced with 0.

4. Experiments

4.1. Dataset

The COGNIMUSE database [1] is a video-oriented

database multimodally annotated with audio-visual events,

saliency, cross-media relations and emotion [49]. It is a

generic database that can be used for event detection and

summarization, as well as audio-visual concept recognition.

Other existing databases such as the MPII-MD [37], the M-

VAD [43], the MSVD [10], the MSR-VTT [46], the VTW

[47], the TACoS [35, 39], the TACoS Multi-Level [36] and

the YouCook [14] are not annotated in terms of specific vi-

sual concepts, but in terms of sentence descriptions. More-

over, the datasets used in [11, 19, 34, 42] are only annotated

with human faces. Finally, the Hollywood2 [27] and the

Casablanca [7] datasets were not sufficient for the action

recognition task, due to the fact that only automatically col-

lected labels from the text are provided rather than the text

itself. Regarding Casablanca, it was not possible to apply

our FMSIL method for the face recognition task either, as

we observed that, in this movie, each face track and each

sentence have either zero overlap (Tv ∩ Tw = ∅) or the face

track’s temporal interval is a subset of that of the sentence

(hence Tv∩Tw = Tv), which always yields a zero or unitary

membership grade for the FSMIL case. On the contrary,

the COGNIMUSE database consists of long videos that are

continuously annotated with action labels and are accom-

panied by texts in a raw format. In addition, we manually

annotated the detected face tracks in order to evaluate the

face recognition task. All the above, render COGNIMUSE

more relevant and useful for the tasks that we are dealing

with. In this work, we used 5 out of the 7 annotated 30-

minutes movie clips, which are: A Beautiful Mind (BMI),

Crash (CRA), The Departed (DEP), Gladiator (GLA) and

Lord of the Rings - the Return of the King (LOR).

4.2. Implementation

Detection and Feature Extraction: We spatio-temporally

detect and track faces similarly to [7], where face tracks are

represented by SIFT descriptors and the kernels are com-

puted separately for each facial feature taking into account

whether a face is frontal or profile. Contrary to this, we use

deep features extracted by the last fully connected layer of

the VGG-face pre-trained CNN [33], while a single kernel

is computed on each pair of face tracks regardless to the

faces’ poses. Similarly to [7, 19, 42] the kernel applied is

a min-min RBF. For the problem of action recognition, we

use the temporal boundaries provided by the dataset. We

represent them through the C3D pre-trained CNN, follow-

ing the methodology stated in [44] .

Label Mining from Text: Prior to applying the label ex-

traction algorithms, we perform a crude alignment between

the script and the subtitles through a widely used DTW al-
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Set Development Test All

DEP LOR MAP BMI CRA GLA MAP MAP

Text+MIL 0.433 0.656 0.544 0.551 0.434 0.437 0.474 0.502

SIFT+MIL [7] 0.630 0.879 0.755 0.724 0.644 0.681 0.683 0.711

SIFT+FSMIL 0.693 0.881 0.787 0.770 0.691 0.746 0.736 0.756

VGG+MIL 0.834 0.954 0.894 0.825 0.696 0.830 0.784 0.828

VGG+FSMIL (Ours) 0.864 0.952 0.908 0.857 0.731 0.901 0.830 0.861

[28]+VGG: fg 0.788 0.898 0.843 0.666 0.479 0.577 0.574 0.682

[28]+VGG+FSMIL: fg 0.810 0.913 0.862 0.696 0.505 0.651 0.617 0.715

[28]+VGG: bg 0.185 0.189 0.187 0.304 0.047 0.052 0.134 0.155

[28]+VGG+FSMIL: bg 0.184 0.189 0.187 0.269 0.278 0.038 0.195 0.192

Table 1: The Average Precision (AP) scores of each movie in the Development and the Test Set for the Face Recognition

Task. The Mean Average Precision (MAP) calculated in the two sets separately and for the database as a whole is also shown.

gorithm [19]. The label set for the face recognition task

is defined using the cast list of each movie (this information

was downloaded from the Website TMDB [2]). The charac-

ter labels are then extracted using regular expression match-

ing, where the query expressions are the names included in

the cast list. We define the label set for the action recog-

nition task using a subset of the total classes of the COG-

NIMUSE database. We locate the linguistic objects w by

composing short sentences constituted by each sentence’s

verb as well as words that are linked to the verb through

specific dependencies, such as the direct object and adverbs.

We use the toolbox CoreNLP [25] in order to perform the

document’s dependency parsing. Finally, we calculate the

semantic similarities on every label - short sentence pair ap-

plying an off-the-shelf sentence similarity algorithm [20].

This comprises a hybrid approach between Latent Semantic

Analysis (LSA) and knowledge from WordNet [29]. The

similarities that do not exceed a specific threshold θ, exper-

imentally set to 0.4, are discarded.

4.3. Learning Experiments

In the following experiments we evaluate our methods

on the tasks of (i) face and (ii) action recognition. For the

FSMIL setting, after extensive experimentation with a vari-

ety of Γ and S-shaped membership functions (e.g. sigmoid,

linear, piecewise quadratic, cubic), we selected a specific Γ-

shaped function, using as criteria the performance and sen-

sitivity to hyperparameters, that is defined as follows:

g(x) =

{

0 x ≤ a
k(x−a)2

1+k(x−a)2 a ≤ x ≤ 1
(12)

where a is the membership threshold and k is a parameter

that controls how abrupt the increase above the threshold

will be. We need to assign k a large value (above 1000) in

order to have g(1) = 1. For those values there are no signif-

icant changes in the results. We tune the hyperparameters

a and ǫ on the Development set independently for the two

tasks, yielding a = 0.2, ǫ = 0 for task (i) and a = 0.1,

ǫ = 100 for task (ii). For the PLMIL setting, we observed

that, in the COGNIMUSE dataset, the best results were ob-

tained when weights were close to 1 (candidate labels), thus

the mapping function f is again given by (12), setting a to 0

and k to a large value as previously stated. The hyperparam-

eter sensitivity was assessed on the Test set and we saw that

the deviations from the reported results were small, thus the

sensitivity is assumed to be low. Moreover, the chosen val-

ues demonstrate almost optimal performance on the Test set

as well, thus there was no overfitting on the Development

set. The source code of the entire system and experiments

(including results on hyperparameter sensitivity), as well as

precomputed features can be found at [3].

4.3.1 Face Recognition

We evaluate each method’s performance using the Average

Precision (AP) previously used in [7, 11]. We compare our

model (VGG+FSMIL) to the methodology of Bojanowski

et al. [7] - that has outperformed other weakly supervised

methods, such as [11] and [42] - as well as with other

baselines described next:

1. Text+MIL: We solve the problem by minimizing only

the factor related to the slack variables. This method,

converges to an optimum that satisfies the constraints posed

by the text, without taking into account the visual features.

The constraints are formed using the simple MIL setting.

2. SIFT+MIL [7]: The algorithm of Bojanowski et al. that

uses SIFT descriptors as feature vectors and simple MIL

setting, without taking into account the temporal overlaps,

namely the bags are constructed as noted by (4).

3. SIFT+FSMIL: Our proposed learning method imple-

mented with SIFT descriptors.

4. VGG+MIL: The algorithm of Bojanowski et al. imple-

mented with VGG-face descriptors.

5. VGG+FSMIL (Ours): The proposed learning method

implemented with VGG-face descriptors.

The comparative results for each movie are shown in Ta-

ble 1. As it can be clearly seen, our method demonstrates

superior performance than [7] concerning every case.
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First of all, the inferior performance of the Text+MIL

method shows the inefficiency of using only textual infor-

mation in tackling the problem. The higher accuracy ac-

complished by the methods implemented with VGG proves

the benefits of deep learning over hand-crafted features as

means of representing faces. Moreover, incorporating the

information given by the overlaps of visual and linguistic

objects, we improve the accuracy regardless of the nature

of the representation. In particular, due to the fact that our

method reduces the ambiguity in each bag-of-instances, we

outperform the baseline even without the use of deep fea-

tures. As expected, the combination of the above (VGG

and FSMIL) shows the highest accuracy. This can be eas-

ily explained as each one of the methods improves different

aspects of the learning procedure.

In the comparisons above, we discard background (bg)

characters and optimize on foreground (fg). Additionally, in

Table 1, we compare our method to [28], that has achieved

state-of-the-art results by using a bg class constraint. In par-

ticular, tracks that have no assigned weak label are collected

in a bag and a percentage of them, determined by a hyper-

parameter α2 (we set it to 0.6), is enforced by a constraint

to be classified as bg. We observe that when we incorporate

FSMIL, our method always outperforms [28] on fg charac-

ters and provides either similar, or better results on bg.

4.3.2 Action Recognition

Regarding the task of action recognition, several experi-

ments were carried out for each movie, while changing the

cardinality of the label set. In particular, the performance

is evaluated using the 2, 4, 6, 8 and 10 most frequent ac-

tion classes. The evaluation is performed using the Mean

AP metric, which stands for averaging the APs over each

movie set. The results are demonstrated both for the Devel-

opment and the Test set in Table 2. We also illustrate the

performances of the methods on the whole dataset with the

per sample accuracy vs proportion of total instances curves

of Figure 4.

We choose as baseline the aforementioned Text+MIL, as

well as a similar methodology to Bojanowski et al. [7]. In

this experiment, we focus on the different ways of learning

from the text, rather than the visual features, thus in all

cases we use the C3D descriptor for the representation of

actions. The methods compared are:

1. Text+MIL: Same as the one described in section 4.3.1.

The action labels are extracted by locating the sentences

that are semantically identical to one of the labels of the

set Y (similarity = 1).

2. MIL ([7] modified): The learning algorithm of Bo-

janowski et al. mentioned in 4.3.1. We replace the dense

trajectories descriptors with C3D. Again, we use only the

sentences that are semantically identical to some label.

3. Sim+MIL: The same learning algorithm, but labels are

Number of Classes 2 4 6 8 10

Set Development

Text+MIL 0.566 0.315 0.253 0.083 0.089

MIL(modified) [7] 0.638 0.420 0.283 0.266 0.194

Sim+MIL 0.837 0.299 0.243 0.339 0.202

Sim+PLMIL 0.837 0.304 0.308 0.348 0.229

Sim+FSMIL 0.945 0.614 0.435 0.383 0.317

Sim+FSMIL+PLMIL (Ours) 0.945 0.617 0.520 0.491 0.450

Set Test Set

Text+MIL 0.306 0.199 0.188 0.134 0.147

MIL(modified) [7] 0.405 0.180 0.184 0.189 0.212

Sim+MIL 0.631 0.591 0.182 0.094 0.129

Sim+PLMIL 0.585 0.564 0.298 0.140 0.148

Sim+FSMIL 0.792 0.458 0.232 0.168 0.146

Sim+FSMIL+PLMIL (Ours) 0.692 0.521 0.299 0.249 0.270

Table 2: The Mean Average Precision (AP) scores over the

Development and Test set for five independent experiments

for the Action Recognition Task.

extracted from sentences that are semantically similar

to one of the labels of the set Y (θ ≤ similarity ≤ 1).

Each sentence is assigned a single label, the one with the

maximum similarity.

4. Sim+PLMIL: Our PLMIL method. We assign a proba-

bilistic label to each sentence.

5. Sim+FSMIL: Our FSMIL method. We construct the

bags-of-instances as fuzzy sets.

6. Sim+FSMIL+PLMIL (Ours): The combination of

our contributions using semantically similar sentences,

probabilistic labels and fuzzy bags-of-instances.

First note that the proposed combined model demon-

strates superior performance over the Text + MIL baseline,

confirming the importance of using visual information, as

previously mentioned in 4.3.1. Higher performance is also

reported over the baseline of [7] in every case, leading to

an improvement of 20% – 30% in the Development set and

6% – 34% in the Test set. Moreover, Figure 4 shows that

it outperforms all methods in the whole dataset, except for

the case of two classes. Next, we examine each of our con-

tributions independently.

The method of extracting labels through similarity mea-

surements outperforms the baseline mainly when the num-

ber of classes is small (2-4), as shown in Table 2. In this

case, the concepts implied by the labels, in terms of seman-

tics, are rarely confused, hence most of the similarity mea-

surements produce correct labels. However, as this number

increases the Sim+MIL method does not prove very effi-

cient on its own. A possible explanation is that the seman-

tically identical labels of the baseline usually consist of a

more clean set, while the confusion introduced to the model

with semantically similar labels rises. As a result, despite

the fact that a small amount of bags-of-instances are anno-

tated, the baseline algorithm will still be able to make a few

correct predictions with large confidence. This is illustrated

in Figure 4 (c) and (d), where the most confident predictions
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(a) (b) (c)

(d) (e)

Figure 4: The curves show the per sample accuracy plotted against the proportion of total instances, concerning the whole

dataset. Each figure corresponds to a different experiment concerning the number of classes. Note that as the number of

classes increases, the model that combines our methods greatly outperforms each one of them individually as well as the

baseline. Please see color version for better visibility.

of the baseline are accurate, contrary to those of Sim+MIL.

This confusion is compensated partially by either

PLMIL or FSMIL. Regarding the first one, when the classes

are few, a sentence is rarely similar to more than one con-

cepts, hence the labels are mainly deterministic. How-

ever, modeling labels in a probabilistic way achieves bet-

ter disambiguation of the sentences’ meanings as the num-

ber of classes grows larger, which is proved by the fact

that Sim+PLMIL outperforms Sim+MIL for 6-10 classes in

both sets. As far as the FSMIL is concerned, this method is

expected to perform better on its own for the reasons men-

tioned in section 4.3.1, regardless of the number of classes.

Indeed, Sim+FSMIL outperforms Sim+MIL in most of the

cases.

Interestingly, the combination of our contributions man-

ages to outperform the baseline, even if none of them could

do so independently. This can be explained by the fact that

the algorithm leverages each one of them to resolve differ-

ent kinds of ambiguities. Regarding the lower results in the

Test set compared to the Development, we noticed that the

scripts of the test movies are not sufficiently aligned to the

videos, while a significant amount of actions occur in the

background, consequently are not described in the text.

5. Conclusion

In this work we tackled the problem of automatically

learning visual concepts by combining visual and textual in-

formation. We proposed two novel weakly supervised tech-

niques that can be easily generalized to other Multimodal

Learning tasks, that efficiently deal with temporal ambigui-

ties (FSMIL), as well as semantic ones (PLMIL). Contrary

to previous work, we acquire richer information from the

text using semantic similarity. We evaluated our models

on the COGNIMUSE dataset, containing densely annotated

movies accompanied by their scripts. Our techniques pro-

vide significant improvement over a state-of-the-art weakly

supervised method, in both face and action recognition

tasks. Regarding our future work, we plan to extend our

uni-directional model to a bi-directional, where information

will flow from text to video and vice-versa, jointly learning

visual and linguistic concepts. Finally, the generality of our

formulation motivates us in exploring its potential in learn-

ing from other modalities such as the audio channel.
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