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Abstract

From human crowds to cells in tissue, the detection and

efficient tracking of multiple objects in dense configurations

is an important and unsolved problem. In the past, limi-

tations of image analysis have restricted studies of dense

groups to tracking a single or subset of marked individu-

als, or to coarse-grained group-level dynamics, all of which

yield incomplete information. Here, we combine convolu-

tional neural networks (CNNs) with the model environment

of a honeybee hive to automatically recognize all individu-

als in a dense group from raw image data. We create new,

adapted individual labeling and use the segmentation ar-

chitecture U-Net with a loss function dependent on both ob-

ject identity and orientation. We additionally exploit tempo-

ral regularities of the video recording in a recurrent man-

ner and achieve near human-level performance while re-

ducing the network size by 94% compared to the original

U-Net architecture. Given our novel application of CNNs,

we generate extensive problem-specific image data in which

labeled examples are produced through a custom interface

with Amazon Mechanical Turk. This dataset contains over

375,000 labeled bee instances across 720 video frames at

2FPS, representing an extensive resource for the develop-

ment and testing of tracking methods. We correctly detect

96% of individuals with a location error of ∼ 7% of a typ-

ical body dimension, and orientation error of 12◦, approx-

imating the variability of human raters. Our results pro-

vide an important step towards efficient image-based dense

object tracking by allowing for the accurate determination

of object location and orientation across time-series image

data efficiently within one network architecture.

Introduction

Image-based dense object tracking is of broad interest

in the monitoring of crowd movement as well as the study

of collective behavior in biological systems [19]. Auto-

mated recognition of individuals in a dense group based on

video recording would allow for the efficient implementa-

tion of monitoring and tracking frameworks with no addi-

tional manual labeling or tracking devices, which are of-

ten either impractical or invasive. The challenges in image-

based dense object recognition include occlusions and vari-

ability in viewpoints and individual appearance. However,

recent progress in convolutional neural networks (CNNs)

for image segmentation [20], scene analysis [25], and ob-

ject detection [5, 11, 31, 27] represent promising develop-

ments towards dense object detection and tracking. Here we

apply these tools to a classical unsolved problem in behav-

ioral ecology, the identification of individual organisms in a

honeybee hive.

Honeybees have long drawn fascination and the study

of their behavior has yielded important insights into animal

communication, physiology, and neuroscience [35, 30, 37,

14]. Honeybees also provide an excellent model system for

the study of social behavior as they can be viewed in the nat-

ural environment of an observation hive (Fig. 1). However,

the complexity of a hive environment presents significant

challenges for automated image-based analysis and previ-

ous techniques have shown only limited success, particu-

larly under natural conditions [8, 12, 16, 15, 36, 34]. A

typical colony consists of hundreds or thousands of closely

packed, often occluded, and continually moving individu-

als. The bees are unevenly distributed over a complex back-

ground, the honeycomb, which consists of a variety of dif-

ferent cells containing nectar, pollen, and brood in various
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stages of development. If tracking difficulties can be re-

solved, however, automated image analysis would easily

surpass human observers by simultaneously following large

numbers of organisms, thus permitting sophisticated stud-

ies of social behavior including subtle effects of genetic and

molecular perturbations.

Leveraging high-resolution images of an observation bee

hive, we present a method of individual recognition and lo-

calization across frames of a video recording. We devise

a problem-specific individual labeling, adapt a previously

proposed segmentation architecture, and expand its func-

tionality to infer individual bee orientation on the comb. We

next strengthen this approach by combining image data in

following time frames in a recurrent manner allowing for

important reduction of computational cost without compro-

mising the accuracy. As no labeled data for this problem

exist, we took advantage of the distributed online market-

place of Amazon Mechanical Turk (AMT) to create exten-

sive training data at modest cost. Our method achieves de-

tection accuracy comparable to human performance on this

real-world dense object image data. Finally, we demon-

strate the usefulness of our detection techniques towards

a full tracking solution by producing exemplar trajectories

with simple registration methods.

Related work

While there have been numerous computer-tracking ap-

proaches for the study of social insects, most of them rely

on marking individuals, either with simple spots placed on

a few individuals [3], or more complex tags with barcodes

that distinguish a higher number of individuals [22, 36].

Tagging is an obvious solution to recognizing individuals

in a dense environment, however, it is laborious, inappli-

cable to other systems, and impractical on a whole-colony

scale. As new individuals emerge, it becomes impossible

to mark them without opening and significantly disrupting

the colony. Additionally, tag recognition becomes impos-

sible in the situations of partial tag occlusion or viewpoint

change [36]. Due to similar difficulties, previous studies

of human crowd tracking were limited to few individuals

[18, 1] or based on priors about collective motion to aid the

performance of tracking algorithms [9, 28].

A necessary step towards efficient, image-based dense

object tracking is the capacity for individual detection in

each frame of a video recording. Recent advances in CNNs

have demonstrated their capability to detect and recognize

objects in an image (e.g [10]). Such object detection meth-

ods typically involve an exhaustive sliding window search

[31] or a variety of region-based proposals [13]. The detec-

tion step is then followed by [31] or coupled with [27, 26]

classification of the detected object in the proposed box-

shaped region [31, 11] or a masked patch [5, 26]. Such two-

step or two-function architectures were designed for images

containing multi-class, largely variable, and sparse objects.

In contrast, the images of honeybee colonies, cells or hu-

man crowds, can contain large numbers of densely packed

and highly similar individuals of the same category. In these

cases, region-based detection proposals can produce a large

list of candidate regions, possibly even covering entire im-

age with distinct objects sharing the same bounding box or

mask. Additionally, as each image contains a large num-

ber of relatively small objects, keeping the initial image

resolution is important for precise object localization. Ap-

proximative bounding box estimation [31], as well as image

rescaling [26] can result in an error margin of the location

estimation which is too large for distinguishing among in-

dividuals.

Fully convolutional networks [20] allow for image seg-

mentation and categorization on an individual pixel level.

These networks are proposal-free and produce label maps

for the entire image at its original resolution. Within this

framework, each pixel is attributed a category, however, dif-

ferentiation between instances of objects of the same cate-

gory is not possible. Instance-aware segmentation has been

previously proposed [6] introducing box-level instance pro-

posals. Images of high-density objects with numerous adja-

cent individuals necessitate developments allowing for ac-

curate object instance recognition in an efficient manner in-

dependent of the number of instances present in the image.

More recently, deep recurrent neural networks (RNNs)

were introduced to resolve the task of state estimation with

application to the problem of multi-object tracking [23].

Using simulated and real laser sensor measurements this

work aimed at predicting the current, occluded, complete

scene given a sequence of observations capturing only par-

tial information about the scene. A generative probabilistic

model inspired by Bayesian filtering [4] was proposed and

framed as a RNN architecture allowing for accurate scene

estimation even when presented with incomplete observa-

tions. The efficacy of this approach however, was demon-

strated uniquely on simulated data or simple near-perfect

sensor measurements with smooth, linear motion generat-

ing black-and-white images where object detection is not

part of the tracking task. Here we test the strength of the

Bayesian filtering concept on real-world image data com-

prising dense and cluttered objects with unknown motion

dynamics.

1. Approach

We propose a solution integrating the fully convolutional

neural network U-Net [29] (Fig. 2) with a recurrent compo-

nent for accurate object detection in a video sequence. In

order to allow for object instance recognition, we defined an

adapted labeling covering only the central part of each in-

dividual and non-adjacent to other individuals. We demon-

strate the capacity of the network to accurately reproduce
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Figure 1: Observation beehive and imaging arrange-

ment. Image data was generated from high resolution video

recordings of a custom-designed observation beehive in

which a honeybee colony was placed on an artificial comb,

covered with transparent glass and illuminated with infrared

light. Colonies in the observation hive are approximately

two-dimensional and can range in size from hundreds to

thousands of individuals.

these labels which additionally allow for recognition of the

main axis of each individual. To further indicate the head

direction on the main body axis, we propose a loss function

approximating individual orientation angle and expand the

foreground-background segmentation with object orienta-

tion angle estimation. In addition, the recurrent component

of the network leverages the information encoded in the

video sequence and improves accuracy, while keeping the

network at a fraction of the size of the original U-Net. Our

proposed approach can localize individuals and recognize

their orientation in following frames of a video recording

efficiently, in one iteration, without a separate region pro-

posal, sliding window, or masking, thus providing an im-

portant foundation for further individual object tracking in

a dense group.

Imaging experiment and dataset

Image data was generated from high-resolution video

recordings of a custom-designed observation beehive in

which a honeybee colony was placed on one side of a

beehive comb, covered with transparent glass and illumi-

nated with infrared light which is imperceptible to the bees

(Fig. 1). In brief, the hive was situated on the roof of a labo-

ratory building at OIST graduate university within a prefab-

ricated room of size of 3.6 m x 2.7 m x 2.3 m. The tempera-

ture was kept constant at 32.5◦C and the humidity between

30 and 40%. An entrance/exit pipe 20 cm long connected

the hive to the outside. We used a Vieworks Industrial Cam-

era VC series VC-25MX-M72D0-DIN-FM (CMOS sen-

sor, 25 Megapixels, CoaXpress interface, monochrome, F-

mount, with image size of 5120 x 5120 pixels) located 1 m

from the hive, so that a typical bee body covered 70 × 160

Figure 2: Network architecture. We used the U-Net archi-

tecture with a reduced number of filters and one less pooling

and deconvolution steps. A recurrent element was added

before the final prediction – prior representation was stored

(pink) and concatenated with the representation of the next

image in the time series (red).

pixels. The glass surface covered 51 cm x 51 cm. Infrared

LEDs operating at 850 nm were mounted around the cam-

era at an angle to avoid reflections. We placed LEDs on

four 23 cm x 22 cm panels with each panel equipped with

14 stripes (6 LEDs / strip) for a total of 84 LEDs per panel

generating 13.4 W per panel. Additionally we used one high

power infrared spot made of 3 LEDs (ENGIN LZ4-00R608)

operating at 850nm and generating 9W. Image data was

streamed with four optic fibers to a server where it was

compressed without loss with custom software and stored.

The resulting images are in grayscale with 8-bit encoding.

The data analyzed here come from two video recordings at

30FPS and 70FPS. For the higher 70FPS time resolution,

the infrared light intensity was doubled to compensate for

the shorter exposure time. Imaged colonies typically con-

tain over 500 individuals.

Data labeling

We devised a custom javascript interface for manual an-

notation of bee locations and orientations in the images

(Supplemental Fig. S1). Through the interface the user

defines a bee position and orientation by dragging, drop-

ping, and rotating a bee symbol in an image. An additional

round symbol was used to mark the abdomens of bees par-

tially hidden inside of a comb cell where the orientation

angle is difficult to determine. We used this interface to

generate a labeled image set through AMT. We used 360

frames of the 30FPS and 360 of the 70FPS recording, both

down-sampled to 2FPS. In each frame we selected regions

of size of 3072×2048 and 3072×3072 pixels, respectively,

containing most of the colony bees against various back-
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grounds that we submitted for labeling (Supplemental Fig.

S2-S3). As a result we obtained a dataset of 8, 640 30FPS

and 12, 960 70 FPS 512 × 512 pixel images containing to-

tal of 375, 698 labeled bees, with an average of 17.4 bees

per image. We also submitted four frames – two from each

recording – with a total of 2, 034 bee instances for labeling

10-times by independent workers to obtain an estimate of

human error in position and angle labeling. This error was

calculated as standard deviation of distance of each of the

10 labels to the reference label used in the main dataset for

training and testing.

Training data

As the annotation outcome, every individual in an image

(e.g. Fig. 3a) was assigned (x, y, t, α) denoting the coordi-

nates of the central point of a bee against the top-left corner

of the image, type of the label (t = 1 when full bee body

is visible and t = 2 when the bee is inside a comb cell),

and the body rotation angle α against the vertical pointing

upwards and calculated clockwise (α = 0 if t = 2)1. To

use this information for segmentation-based individual lo-

calization, we generated regions centered over the central

point of each bee. For labels with t = 1 the regions were

ellipse-shaped with semi-minor axis r1 = 20 pixels and

semi-major axis r2 = 35 pixels, and rotated by the angle α

(Fig. 3b). For labels where t = 2 the regions were circular

with r = 20 pixels. Regions of this shape and size cover

the central parts of each bee and are non-adjacent to regions

covering neighboring bees in the image.

To compensate for the class imbalance between fore-

ground bee regions and the non-bee background, we gen-

erated weights used for balancing the loss function at ev-

ery pixel. For every bee region a 2D Gaussian of the same

shape was generated, centered over the bee central point,

and scaled by either the proportion in the training set of the

background pixels to the number of bee-region pixels of the

given type t = 1 and t = 2 in the task of class segmentation,

or scaled by proportion in the training set of the background

pixels to the number of bee-region pixels of any type in the

task of finding bee orientation angle.

Training and testing datasets were organized in two

ways. First, out of the 21, 610 images 2, 176 were randomly

sampled in equal proportions from the 30FPS and 70FPS

recording and used as test set. Second, the images were or-

ganized in 60 sequences of 360 images of 512 × 512 pixel

size. In this time series data the first 324 images of each

sequence were used for training and the remaining 36 for

testing.

1The dataset can be found at: https://groups.oist.jp/

bptu/honeybee-tracking-dataset

Network and training

We used the U-Net [29] segmentation architecture. The

number of filters in the initial convolutional layer was dou-

bled after every pooling layer in the expansive path and di-

vided by 2 after each deconvolution in the contracting path

(Fig. 2). The convolution kernel size was set as 3.

We first trained the network for foreground-background

segmentation with the loss function defined as 3-class soft-

max scaled by the class imbalance in the entire training set.

Next, we expanded the task to finding the direction of each

individual orientation. Each foreground pixel, instead of the

class label, was set at the value of the bee rotation angle and

background pixels were labeled as −1. Class identity was

not used in this expanded task. The loss function was de-

fined as:

L = wc sin(
α−α̂

2
),

where wc is the class weight and α, α̂ are the predicted and

labeled orientation angle, respectively.

In the network output each contiguous foreground region

was interpreted as an individual bee. Foreground patches

smaller than 100 and larger than 6, 000 pixels were dis-

carded, as the label size is < 2, 200 pixels. The centroid

location was calculated as the mid-point of all x- and y-

coordinates of points in each region. The main body axis

was calculated as the angle of the first principal component

of the points in each region. In the segmentation task, re-

gion class was assigned as the class identity of the majority

of pixels within given region. In the bee orientation recog-

nition task, the predicted angle was calculated as the top

0.01 quantile of all values predicted in the given foreground

region. This strategy was motivated by the observation that

the orientations in the outer edges of a region are often un-

derestimated, and that the highest value found within a re-

gion is closest to the labeled orientation angle. In addition

to an independent prediction, the orientation angle was used

to assign back and front to the region principal axis.

We additionally expanded the functionality of U-Net to

to take advantage of regularities in the image time series

patterns. In each pass of the network training or prediction

the before-last layer was kept as a prior for the next pass

of the network. In the following pass the next image in the

time sequence was used as input and the before-last layer

was concatenated with the prior representation before cal-

culating network output.

Adaptive moment estimation [17] was used during train-

ing. Method accuracy was estimated in terms of the capac-

ity to correctly recognize and localize all individuals in an

image. We implemented the CNN using Caffe2.
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(a) Original image (b) Segmentation labels (c) Segmentation results (d) Position and body axis

Figure 3: Example results for segmentation. For the original image (a), we show training labels marking bees (b, blue),

and abdomens of bees inside honeycomb cells (b, red). The rest of the image is background. (c) Results of the segmentation

network in which each pixel in the input image is classified with a background label, bee label, or abdomen label. (d) We

show predicted locations and body axes estimations (d, red) compared to human labeling (d, yellow). For each contiguously

labeled region, the predicted bee location was calculated as the centroid and the predicted body axis was calculated as the

angle of the first principal component. Regions representing abdomens are drawn as circles as orientation is ambiguous.

Two unlabeled false positives (FP’s) are present in this example in the image boundary, as well as a questionable class label

mismatch – a partially visible bee was labeled as fully visible (blue class label) but predicted as bee abdomen (red class label).

(a) Original image (b) Network output (c) Body axis and angle (d) Directed axis

Figure 4: Example results for body orientation prediction. For each original image input (a), the network produces

orientation predictions (b) for pixels identified as foreground (classes bee or bee abdomen). Orientation values are represented

by the colorwheel within the dashed square. As in Fig. 3 we estimate body location (c, small squares) and body axis (c, white

lines) by computing the centroid and first principal component of contiguous foreground regions, respectively. The body

orientation is separately computed as the mean orientation angle for each region (c, red arrows). The location and body

orientation from human labeling are denoted by yellow arrows. (d) The final predicted body orientation angle is calculated

as the body axis with the direction indicated by the estimated angle (d, labels in yellow and predicted directed axis in red).

The observation hive is aligned perpendicular to the floor so that a vertically-oriented bee is shown as a vertical arrow.

Results

Segmentation

We first tested if individual recognition can be accom-

plished with the chosen segmentation architecture and two

classes of foreground pixels, those that are part of visible

bees and those that are part of the abdomens of bees inside

the honeycomb cells. We found that the original U-Net ar-

chitecture resulted in important overfitting and an increase

in loss function in the test set (Supplemental Fig. S4), hence

we reduced the size of the U-Net by using 32 filters in the

first convolutional layer and eliminating one pooling and

one deconvolution layer. This reduced U-Net contained a

total of 1.9M parameters compared to 31M parameters in

the original U-Net, thus shrinking the network to just 6% of

the original size. Decreasing the number of parameters di-

minished overfitting. Even so, overfitting was still observ-

able in the reduced network (Supplemental Fig. S4). We

also tested different regularization scenarios using weight

decay and dropout [33], none of which achieved satisfac-
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tory performance within the feasible time span of training

(Supplemental Fig. S4). This could be due to fact that in

fully convolutional neural networks, such as U-Net, there

is no fully connected layer on which the dropout is usually

performed. Different from the fully connected layers, con-

volutional layers have smaller number of parameters com-

pared to the size of feature maps. Hence, it is believed that

convolutional layers suffer less from overfitting and, even

though dropout has shown its effectiveness in convolutional

layers in some cases [24, 32], its effect in convolutional lay-

ers has not been studied thoroughly.

We therefore used early-stop in training as a measure

against overfitting. In the following, we report network

performance after 18 iterations of training – the iteration

selected based on the increase of loss function of this seg-

mentation network. We apply this stop criterion to training

of this segmentation network as well as orientation finding

network and recurrent network described below.

The segmentation network predicted individual location

with a precision of ∼ 6 pixel on average (Table 1), which is

similar to the variability among human-assigned labels (∼ 7
pixels) and much less then a typical bee width of ∼ 70 pix-

els. While the class prediction was also accurate, there were

seemingly high number of false positives (FPs). However,

we noted that most FPs are reported on the image boundary

where only incomplete object is visible – 62% are within 50
pixel margin of the image (e.g. Fig. 3d, Supplemental Fig.

S5). Similarly, the disagreement among human labelers was

the highest on the image boundaries, 54% of disagreements

are located within 50 pixel margins of the image, a surface

of < 20% of the size of the images annotated by the raters

(Supplemental Fig. S6-S7). Therefore, in a comprehensive

tracking solution, the number of FPs can be reduced by dis-

carding the boundary regions and using overlapping image

patches. Additionally, we noticed multiple examples of FPs

that, upon a closer inspection were, instead abdomens of

bees inside cells that were difficult to spot by human raters

(see e.g. Supplemental Fig. S8). Therefore, among the

44% of FPs predicted as bee abdomens, we expect some to

be unlabeled true positives (TPs). Foreground class identity

– full bee body vs. abdomen of a partially visible bee – was

incorrectly assigned in 20% of cases however, note that the

distinction of the two can often be disputable (e.g. Fig. 3).

We used the elliptical shapes of segmented regions rep-

resenting bee bodies to deduce the main body axis orienta-

tion. In particular, we found that the first principal compo-

nent of the segmented patches resulted in a relatively pre-

cise approximation of each individual orientation with only

13◦ difference on average with the labeled axis orientation

(Fig. 3d, Table 1).

Location and orientation recognition

We expanded the segmentation network into an architec-

ture appropriate for the estimation of object orientation an-

gle instead of object category. In this approach, foreground

class labels were exchanged with object instance orienta-

tion angle. This architecture produced similar performance

to the segmentation network with a high TP rate (0.94) and

body axis recognition based on the label shape (16◦), sug-

gesting that changing the label and loss function did not af-

fect the foreground-background segmentation accuracy.

For the orientation angle, we observed that the error dis-

tribution exhibited a small constant baseline component in-

dicative of random predictions (Supplemental Fig. S9), and

to avoid the undue influence of outlier values we report me-

dian error in our results (Table 1). This baseline error can

be partially explained by uncertainties at image boundaries,

as well as by the variability of angle labeling among hu-

man raters (Supplemental Fig. S10-S11), and is not related

to the bee density in the image. The orientation angle pre-

diction has a median error of 34◦ which is proportionally

similar to the axis error given that the head-tail orientation

error can range within [0, 180] and the axis within [0, 90].
Notably, rotation invariance of the CNNs is an unresolved

question and more complicated solutions were proposed to

address it [7, 21, 38]. It is therefore encouraging that a rela-

tively simple loss function with a reduced U-Net segmenta-

tion network allows for approximation of the orientation of

the densely packed honeybees. Moreover, the predicted ori-

entation angle can be used merely to indicate the head-tail

location on the axis estimated from the shape of the label.

In this way we obtained an orientation error of the directed

axis ∼ 22◦ with this network (Table 1).

Recurrent detection and tracking

We inspected whether regularities in object appearance

and movement across time could improve the orientation

angle prediction. Image data were organized in a time se-

quence and, in following iterations of training and testing,

consecutive images in the sequence were fed as network in-

put. In each iteration, the penultimate layer of the network

was kept as representation of a prior that was concatenated

with the same penultimate layer representation of the fol-

lowing image in the sequence in the next iteration of train-

ing or testing. In this way network output was a result of

both the information in the previous and current time point.

Indeed, we found that incorporating time series image

data reduced the error in orientation angle prediction by

two-fold (15◦) and axis prediction by 2/3 (11◦). The ori-

entation error obtained by orienting body axis with the pre-

dicted orientation angle was reduced to 12◦ (Fig. 4, Ta-

ble 1), which is significantly better than the non-recurrent

approach (Kruskal-Wallis test, p < 0.0001) and only

marginally higher than the variability observed among hu-
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TP FP

Error:

Object Position Orientation
Axis [◦]

Directed

class [pixel] angle [◦] axis [◦]

Human labeling - 0.15 (0.07) 0.04 6.7 7.7 - -

Segmentation 0.96 0.21 (0.12) 0.19 5.9 - 13.3 (11.2) -

Orientation 0.94 0.18 (0.10) - 5.6 34.0 (32.2) 15.7 (13.1) 22.1 (16.7)

Recurrent orientation 0.96 0.14 (0.06) - 5.1 15.2 (13.3) 10.6 (8.8) 12.1 (9.7)

Table 1: Summary results for location and orientation prediction. In the first row we show the variability among human

raters estimated by repeating the labeling task 10 times on an image set. TP-true positives, FP-false positives. As network

performance median of error values are listed. Values in brackets are the results after a 50 pixel margin of the image is

discarded, eliminating predictions on partially visible objects. Results cited in the abstract are marked in bold and the full

error distributions are presented in Supplemental Fig. S9.

man raters.

Finally, to explore whether our bee detection results

could provide the foundation for fully automated image-

based tracking, we used elementary ideas to reconstruct bee

trajectories. We matched the closest individuals in follow-

ing time points and, in case a trajectory is lost, searched up

to five frames ahead for a close match that could complete

this trajectory. Individual’s position, orientation, angle, and

velocity were taken into account in the matching. Addi-

tionally, short trajectories beginning or ending in the central

parts of the image were discarded as potential FPs. As we

have no ground truth labels for the individuals’ trajectories

in our data, we cannot yet quantitatively assess the accuracy

of this way performed trajectory estimation. We note how-

ever many examples that appear relatively complete (Fig. 5,

Supplemental Movie) among the 60 sequences of 36 frames

of the test set.

2. Conclusions

Accurate individual recognition is an important step to-

wards automated dense object tracking. Here we described

an approach for recognizing all individual bees and their

orientation in the natural environment of a densely packed

honeybee comb. We leverage the power of current segmen-

tation architectures and design labeling to encode additional

information about the segmented object – both in label

shape and value – which allowed us to accurately indicate

individual’s position and orientation. We additionally en-

hance our recognition approach through a recursive frame-

work that places the improved accuracy near the level of

human labeling, at a strongly reduced computational cost.

While our principal advance is dense object detection,

our results are an important step towards individual trajec-

tory reconstruction as demonstrated with our naive match-

ing approach. Of course, quantitative trajectory reconstruc-

tion requires algorithms and analysis beyond the scope of

this manuscript [2, 39]. Nevertheless, the positive examples

Figure 5: Trajectory reconstruction. The results of a

recurrent approach to object detection allow for trajec-

tory reconstruction using an elementary matching method

for registering individuals across frames (see Supplemental

Movie).

achieved through this simple matching approach, even at

low frame-rate (2FPS), demonstrate that the results provide

important steps towards fully automated image-based dense

object tracking applicable in other than beehive biological

systems [40, 41].

Finally, we suggest that the environment of a honeybee

hive offers an excellent model system for the development

of tracking approaches. The hive is dense and complex

though still tractable for labeling and offers unparalleled ac-

cess for video recordings. We expect our work to foster sig-

nificant advances in the quantitative study of this important

4191



social organism. In addition, our labeled dataset can be used

for the development of other image-based tracking methods

and the flexibility of CNN-based segmentation will allow

our approach to be usefully applied to a variety of systems.
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