
Learning Less is More – 6D Camera Localization via 3D Surface Regression

Eric Brachmann and Carsten Rother

Visual Learning Lab

Heidelberg University (HCI/IWR)

http://vislearn.de

Abstract

Popular research areas like autonomous driving and

augmented reality have renewed the interest in image-based

camera localization. In this work, we address the task

of predicting the 6D camera pose from a single RGB im-

age in a given 3D environment. With the advent of neu-

ral networks, previous works have either learned the en-

tire camera localization process, or multiple components

of a camera localization pipeline. Our key contribution

is to demonstrate and explain that learning a single com-

ponent of this pipeline is sufficient. This component is a

fully convolutional neural network for densely regressing

so-called scene coordinates, defining the correspondence

between the input image and the 3D scene space. The

neural network is prepended to a new end-to-end trainable

pipeline. Our system is efficient, highly accurate, robust in

training, and exhibits outstanding generalization capabili-

ties. It exceeds state-of-the-art consistently on indoor and

outdoor datasets. Interestingly, our approach surpasses ex-

isting techniques even without utilizing a 3D model of the

scene during training, since the network is able to discover

3D scene geometry automatically, solely from single-view

constraints.

1. Introduction

Precise localization is key in many applications of com-

puter vision, such as inserting a virtual character into the

smartphone view of your living room in a plausible way or

guiding a self-driving car through New York. While dif-

ferent devices, like smartphones or self-driving cars, come

with different senors, an RGB camera is often present be-

cause of its low cost and rich output. In this work, we

present a system which estimates the 6D camera pose, con-

sisting of position and orientation, within a known 3D envi-

ronment from a single RGB image.

In the last five years, we have seen an impressive leap

forward of what computer vision can achieve due to ad-

vances in machine learning. Camera localization is a par-

Estimated Camera Positions (Competitors)

Test Frames with 3D Model Fitted (Our Results)

Estimated Camera Positions (Our Results)

Figure 1. One-Shot RGB Camera Localization. Top: We use

our pose estimates to fit a 3D scene model to test images. Middle:

We visualize a camera trajectory by plotting camera positions as

dots and connecting consecutive frames. We show our estimates

in cyan and ground truth in green. Our results are highly accurate

with very few outliers. We trained from RGB images and ground

truth poses only, without using the 3D scene model. Bottom: Re-

sults of competing methods which are less accurate and produce

many wrong estimates. To improve the visualization, we connect

only consecutive frames within 5 meters range. Red: In the spirit

of PoseNet [11], we train a CNN to predict poses directly. Orange:

Results of DSAC [2] trained with a 3D scene model.

ticularly difficult learning problem because training data is

usually limited. Recording a dense or even regular sam-

pling of 6D camera views for any given scene is impracti-

cal. Therefore, generalization to unseen views is a central

capability of any camera localization system.

4654

Because of scarce training data, learning the direct map-

ping of global image appearance to camera pose with a

general purpose CNN (convolutional neural net) has seen

only limited success. Approaches like PoseNet [11] and its

derivatives [29, 10] exhibit low localization accuracy so far.

An alternative paradigm decomposes camera localiza-

tion into a sequence of less complex tasks of which only

some are learned. Recently, Brachmann et al. [2] presented

the differentiable RANSAC (DSAC) pipeline for camera lo-

calization. It builds upon the scene coordinate regression

framework originally proposed by Shotton et al. [23]. The

main idea is to map image patches to corresponding points

in 3D scene space, so called scene coordinates. This step

can be learned even from limited data, since local patch

appearance is relatively stable w.r.t. to view change. The

camera pose, which aligns the image and predicted scene

coordinates, can be estimated using RANSAC.

Specifically, in the case of DSAC [2], one CNN predicts

scene coordinates, and then random subsets of scene coor-

dinates are used to create a pool of camera pose hypothe-

ses. Each hypothesis is scored by a second CNN (“scor-

ing CNN”) according to its consensus with the global, i.e.

image-wide, scene coordinate predictions. Based on these

scores, one hypothesis is probabilistically chosen, refined

and returned as the final camera pose estimate. The pipeline

can be trained end-to-end by optimizing the expected loss of

chosen hypotheses.

Brachmann et al. report state-of-the-art accuracy for in-

door camera localization [2], but we see three main short-

comings of the DSAC pipeline. Firstly, the scoring CNN

is prone to overfit because it can memorize global patterns

of consensus to differentiate good from bad pose hypothe-

ses. For example, the CNN might focus on where errors

occur in the image rather than learning to assess the qual-

ity of errors. However, error location does not generalize

well to unseen views. Secondly, initializing the pipeline

for end-to-end training requires RGB-D training data or a

3D model of the scene to generate scene coordinate ground

truth. Neither might be available in some application sce-

narios. Thirdly, end-to-end learning is unstable because in

the DSAC pipeline [2] pose refinement is differentiated via

finite differences which leads to high gradient variance.

In this work, we propose a new, fully differentiable cam-

era localization pipeline which has only one learnable com-

ponent, a fully convolutional neural net for scene coordi-

nate regression. The output neurons of this network have a

limited receptive field, preserving the patch-based nature of

scene coordinate prediction. For hypothesis scoring, we uti-

lize a soft inlier count instead of a learnable CNN. We show

that this simple, differentiable scoring strategy is a reliable

measure of pose quality, and yet impervious to overfitting.

We present a new entropy control method to automatically

adapt the magnitude of score values to ensure broad hy-

potheses distributions for stable end-to-end learning. We

also deploy a new, analytical approximation of pose refine-

ment gradients for additional training stability. Our pipeline

is fast and substantially more accurate than state-of-the-art

camera localization methods.

Additionally, and in contrast to previous works [23, 28,

9, 5, 3, 2], we explore learning scene coordinate regression

without utilizing a 3D scene model or RGB-D training data.

RGB-D data might not be available for outdoor scenes, and

creating a scene reconstruction often requires tedious trial

and error parameter search and manual corrections. Our

system is able to discover an approximate scene geometry

automatically due to a coarse initialization followed by op-

timization of scene coordinate reprojection errors. We can

still utilize a 3D model if available but do not depend on it

for accurate camera localization, see Fig. 1.

In the following, we summarize our main contributions.

• We present a new camera localization pipeline where a

CNN regressing scene coordinates is the only learn-

able component. We implement hypothesis scoring

with a new, entropy controlled soft inlier count without

learnable parameters, which massively increases gen-

eralization capabilities.

• We show that pose refinement can be effectively dif-

ferentiated using a local linearization which results in

stable end-to-end learning.

• To the best of our knowledge, we are the first to show

that scene coordinate regression can be learned us-

ing RGB images with associated ground truth poses,

alone. Using a 3D model of the scene is optional since

the system can discover scene geometry automatically.

• We improve accuracy of RGB-based 6D camera local-

ization on three datasets, both indoor and outdoor, in-

dependent of training with or without a 3D model.

Related Work. Image-based localization has been ad-

dressed using image retrieval techniques, e.g. in [22] or

more recently in [4, 1]. These methods match a query image

to an image database annotated with pose information like

geolocation. While these methods can scale to extremely

large environments, they usually provide only a coarse esti-

mate of the camera location.

Instead of matching to a database, Kendall et al. [11]

proposed PoseNet, a CNN which learns to map an image di-

rectly to a 6D camera pose. The method has been improved

in [10] by using a reprojection loss, and in [29] by using a

more expressive architecture. Although accuracy increased

somewhat in these recent works, they are still inferior to

competing techniques discussed next.

Accurate 6D camera poses can be recovered using sparse

feature-based pipelines. Matching local image descrip-

tors to 3D points of a Structure-from-Motion scene re-

construction yields a set of 2D-3D correspondences, from

which an accurate pose estimate can be recovered [13].

4655

Research focused on making descriptor matching efficient

[15], robust [25, 19] and scale to large outdoor environ-

ments [14, 18, 20]. However, local feature detectors rely

on sufficiently textured scenes and good image quality [11].

Scene reconstruction can also be difficult for some environ-

ments [29] such as scenes with repeated texture elements.

We surpass the accuracy of state-of-the-art feature-based

methods for indoor and outdoor camera localization tasks,

often even without using a 3D reconstruction.

The original scene coordinate regression pipeline for

RGB-D camera localization of Shotton et al. [23] is related

to sparse feature approaches by recovering camera pose by

means of 2D-3D correspondences. But instead of matching

a discrete set of points, Shotton et al. formulate correspon-

dence prediction as a continuous regression problem. A ran-

dom forest learns to map any image patch to a 3D scene

point. The scene coordinate regression pipeline has been

improved in several follow-up works, e.g. in terms of accu-

racy [28, 9] or learning camera localization on-the-fly [5].

However, these methods heavily depend on a depth channel

which greatly simplifies the problem due to strong geomet-

ric constrains. An RGB version of the scene coordinate re-

gression pipeline was proposed in [3] using an auto-context

random forest. Similarly, Massiceti et al. [17] use a ran-

dom forest mapped to a neural net within a similar pipeline.

However, both systems can only be trained with scene coor-

dinate ground truth, using either RGB-D data or a 3D scene

model, and were not trained in an end-to-end fashion. Our

approach is most closely related to the DSAC pipeline [2]

which was introduced in detail above.

2. Method

Our pipeline follows the basic framework of differen-

tiable RANSAC (DSAC) [2] which we describe in Sec. 2.1

for the task of camera pose estimation. In Sections 2.2

and 2.3, we explain the key architectural differences to the

DSAC pipeline, namely using a fully convolutional network

for scene coordinate regression, and scoring pose hypothe-

sis using a soft inlier count without learnable parameters.

See also Fig. 2 for an overview of our approach. We discuss

the training procedure of our pipeline, with and without the

use of a 3D scene model, in Sec. 2.4.

2.1. Background

Given an RGB image I , we aim at finding an estimate of

the 6D camera pose h̃ consisting of a 3D translation t̃ and

a 3D rotation θ̃. Our system has learnable parameters w

which control the search for pose estimate h̃. Differentiable

RANSAC [2] estimates h̃ in the following steps:

1. Scene Coordinate Regression. A CNN predicts for

each pixel i with position pi the corresponding 3D

point yi(w) in the local coordinate frame of the scene.

Learned: Scene Coordinate Regression

Fixed but Differentiable: Pose Optimization

Pose Hypotheses Final Estimate

Input RGB Scene Coordinate

Prediction
FCN

6
4

0
x4

8
0

8
0

x6
0

3D Scene Scene Coordinates

Figure 2. System Overview. Given an RGB image, we estimate

the 6D camera pose in two stages. Firstly, a fully convolutional

network (FCN) regresses 3D scene coordinates (XYZ mapped to

RGB for visualization). This CNN is the only learnable compo-

nent of our system. Secondly, the system optimizes the pose by

sampling a pool of hypotheses, scoring them using a soft inlier

count, selecting one according to the scores, and refining it as the

final estimate. The second stage contains no learnable parameters

but is fully differentiable.

This scene coordinate yi(w) defines a 2D-3D corre-

spondence between the image and the scene.

2. Pose Hypothesis Sampling. Four scene coordinates

suffice to define a unique camera pose by solving the

perspective-n-point problem [8]. Since predictions can

be erroneous, a pool of n pose hypotheses h(w) is

generated by selecting random 4-tupels of scene coor-

dinate predictions. Each hypothesis h(w) depends on

parameters w via the corresponding scene coordinates.

3. Hypothesis Selection. A function s(h) scores the

consensus of each hypothesis with all scene coordi-

nate predictions. One hypothesis hj(w) with index

j is selected according to a probability distribution

P (j;w, α) which is derived from the score values. Hy-

potheses with a high score are more likely to be se-

lected. Hyper-parameter α controls the broadness of

the distribution, and will be discussed together with

the details of scoring in Sec. 2.3. Selecting hypothesis

probabilistically facilitates end-to-end learning, as we

will discuss shortly.

4656

4. Hypothesis Refinement. Refinement R is an iterative

procedure which alternates between determining inlier

pixels using the current pose estimate, and optimizing

the estimate w.r.t. the inliers. We discuss the details of

refinement in Sec. 2.4. The selected and refined pose

hypothesis is the final estimate of the system, i.e. h̃ =
R(hj(w)).

Learning the Pipeline. We assume a set of training images

D with ground truth poses h∗. The probabilistic selection of

a pose hypothesis in step 3 allows for optimizing learnable

parameters w by minimizing the expected pose loss ℓ of the

final estimate over the training set [2]:

w̃ = argmin
w

∑

D

Ej∼P (j;w,α) [ℓ(R(hj(w)),h∗)] . (1)

Any differentiable loss ℓ(h,h∗) qualifies but we follow [2]

by using ℓ(h,h∗) = max(∠(θ,θ∗), ||t−t∗||), i.e. the max-

imum of rotational and translational error. Partial deriva-

tives of Eq. 1 w.r.t. parameters w are given by

∂

∂w
Ej [·] = Ej

[

ℓ(·)
∂

∂w
logP (j;w, α) +

∂

∂w
ℓ(·)

]

, (2)

where we use (·) as a stand-in for corresponding argu-

ments of Eq. 1. Eq. 2 allows us to learn our pipeline in

an end-to-end fashion using standard back propagation.

2.2. Scene Coordinate Regression

The DSAC pipeline [2] uses a CNN for scene coordi-

nate regression which takes an image patch of 42 × 42
px as input and produces one scene coordinate prediction

for the center pixel. This design is inefficient because the

CNN processes neighboring patches independently without

reusing computations. They alleviate the problem by sam-

pling 40× 40 patches per image instead of making a dense

prediction for all patches. In contrast, we use a fully convo-

lutional network (FCN) [16], although without upsampling

layers. Please see the supplementary materials for the exact

architecture. Our FCN takes an RGB image of 640×480 px

as input and produces 80×60 scene coordinate predictions,

i.e. we regress more scene coordinates in less time. Similar

to DSAC [2], we use a VGG-style [24] architecture with ≈
30M parameters, and our output neurons have a receptive

field of 41× 41 px.

2.3. Hypothesis Scoring

Scoring determines which camera pose hypothesis is

chosen and refined to yield the final estimate. DSAC [2]

uses a separate CNN for this task. This scoring CNN takes

a 40×40 image of reprojection errors, and regresses a score

value s(h) for each hypothesis. The reprojection error for

pixel i and hypothesis h is defined as

ri(h,w) = ||Ch−1yi(w)− pi||, (3)

where C is the camera calibration matrix. We assume ho-

mogeneous coordinates, and application of perspective di-

vision before calculating the norm. The final hypothesis is

chosen according to the softmax distribution P (j;w, α):

j ∼ P (j;w, α) =
exp(αs(hj(w)))

∑

k exp(αs(hk(w)))
, (4)

where hyper-parameter α is a fixed scaling factor that en-

sures a broad distribution. Parameter α controls the flow of

gradients in end-to-end learning by limiting or enhancing

the influence of hypotheses with smaller scores compared

to hypotheses with larger scores.

We identify two problems when learning function s(h).
Firstly, the image of reprojection errors contains informa-

tion about the global image structure, e.g. where errors oc-

cur. Scene coordinate regression generalizes well because

only local, i.e. patch-based, predictions are being made.

The scoring CNN of DSAC [2] however learns patterns in

the global error image that do not generalize well to un-

seen views. Secondly, during end-to-end learning, the score

CNN has an incentive to produce increasingly large scores

which puts more weight on the best hypothesis over all other

hypotheses in the pool. At some point, one hypothesis will

have probability 1 resulting in the minimal expected task

loss, see Eq. 1. Note that the scaling factor α is fixed in

[2]. Hence, distribution P (j;w, α) can collapse, leading to

overfitting and training instability. Regularization might be

able to alleviate both problems but we show that a simple

and differentiable inlier counting schema is an effective and

robust measure of camera pose quality, see Fig. 3.

Soft Inlier Counting. The original RANSAC-schema [6]

measures hypothesis consensus by counting data points ex-

plained by the model, so called inliers. In our application,

the inlier count is given by
∑

i ✶(τ − ri(h,w)), where ✶

denotes the Heaviside step function, ri denotes a reprojec-

tion error (see Eq. 3), and τ is the inlier threshold. Several

earlier scene coordinate regression works relied on the in-

lier count to score hypotheses, e.g. [23, 3]. For our purpose,

we construct a differentiable version by substituting the step

function with a sigmoid function.

s(h) =
∑

i

sig(τ − β(ri(h,w))), (5)

where hyper-parameter β controls the softness of the sig-

moid. This scoring function is similar to MSAC [26] but

does not use a hard cut-off. We use Eq. 5 in distribution

P (j;w, α) to select a pose hypothesis.

Controlling Entropy. The magnitude of inlier scores can

vary significantly depending on the difficulty of the scene,

usually ranging from 102 to 103 for different environments.

The magnitude can also change during end-to-end learn-

ing when scene coordinate regression improves and pro-

duces smaller reprojection errors. As mentioned earlier,

4657

Training Set (2 Images Total)

Test

Image

Estimation with Scoring CNN (DSAC) Estimation with Soft Inlier Count (Our)

Estimated Camera Poses 3D Model Overlay

DSAC
Our

3D Model Overlay

Figure 3. Generalization Capabilities. We train two CNNs for scene coordinate regression and pose hypothesis scoring following

DSAC [2] but using only two training images (gray). The system cannot generalize to an unseen test image (green), and produces an

estimate far off (orange, 3.7m and 12.6◦ pose error). Exchanging the scoring CNN for a soft inlier count (see Sec. 2.3), we obtain an accu-

rate estimate (blue, 0.1m and 0.3◦ pose error). Note that, apart from the scoring function, we fix all components of the test run, including

pose hypotheses sampling. This experiment illustrates that scene coordinate regression generalizes well, while score regression does not.

keeping scores within a reasonable range is important for

having a broad distribution P (j;w, α), and hence stabi-

lizing end-to-end training. Setting α manually per scene

is a tedious task, hence we adapt α automatically during

end-to-end training. We measure distribution broadness via

the Shannon entropy as a function of α:

S(α) = −
∑

j

P (j;w, α) logP (j;w, α). (6)

We optimize α according to argminα |S(α) − S∗| with

target entropy value S∗ via gradient descent in parallel to

end-to-end training of the pipeline. This schema estab-

lishes the target entropy within the first few iterations of

end-to-end training and keeps it stable throughout.

2.4. Training Procedure

Our pipeline can be trained in an end-to-end fashion us-

ing pairs of RGB images and ground truth poses, but do-

ing so from scratch will fail as the system quickly reaches

a local minimum. The DSAC pipeline is initialized using

scene coordinate ground truth extracted from RGB-D train-

ing data [2]. We propose a new 3-step training schema with

different objective functions in each step. Depending on

whether a 3D scene model is available or not, we use ren-

dered or approximate scene coordinates to initialize the net-

work in the first step. Training steps two and three improve

the accuracy of the system which is crucial when no 3D

model was provided for initialization.

Scene Coordinate Initialization. In the first training step,

we initialize our pipeline similar to DSAC [2] by optimizing

w̃ = argmin
w

∑

i

||yi(w)− y∗

i ||. (7)

We render scene coordinates y∗ using ground truth poses

h∗, and a 3D scene model, if available. Without

a 3D model, we approximate scene coordinate y∗

i by

h∗(dxi

f
, dyi

f
, d, 1)T , where xi and yi are the 2D coordinates

Scene CoordinatesRGB Image Heuristic

Figure 4. Initial Scene Coordinate Heuristic. When ground truth

scene coordinates (middle) are unknown, we use a heuristic (right)

for initializing our pipeline. This heuristic assumes that each scene

point has a constant distance to the camera plane.

of pixel i, f denotes the focal length, and d represents a

constant depth prior. This heuristic assumes that all scene

points have a constant distance from the camera plane, see

Fig. 4 for a visualization. The heuristic ignores scene geom-

etry completely. However, it effectively disentangles cam-

era views by coarsely assigning the correct range of scene

coordinate values to different spatial parts of the 3D envi-

ronment. The heuristic itself will yield poor localization

accuracy, but serves as basis for the next training step.

Optimization of Reprojection Error. In a second training

step, we optimize the reprojection error, calculated using

the ground truth pose. It encodes single view constraints

that are effective for recovering the correct depth of scene

points in case we used the heuristic in the first training step.

Thus, we optimize

w̃ = argmin
w

∑

i

ri(h
∗,w), (8)

which lets our system learn about the scene geometry with-

out using a 3D scene model. However, we found that opti-

mizing the reprojection error can improve accuracy, even if

a 3D model was available for the initialization.

4658

End-to-End Optimization. In a third step, we train our

pipeline in an end-to-end fashion according to Eq. 1. This

requires all components to be differentiable, including pose

refinement. In DSAC [2], refinement gradients are calcu-

lated via finite differences. Note that refinement depends

on thousands of inputs, namely all scene coordinate predic-

tions, which makes calculation of finite differences slow,

and results in high gradient variance due to numerical in-

stabilities. In the following, we discuss pose refinement in

detail, and explain an efficient, analytical approximation for

refinement gradients, resulting in stable end-to-end training.

As mentioned earlier, pose refinement alternates be-

tween, firstly, determining a set of inlier pixels w.r.t. to the

current pose estimate, and, secondly, optimizing the pose

w.r.t. to reprojection errors over the inlier set. We define the

inlier set I to contain all pixels with a reprojection error ri
below a threshold τ , i.e. I = {i|ri < τ}. For pose opti-

mization, we combine the reprojection errors of all inliers

within one residual vector:

(r(h,w))i =

{

ri(h,w) if i ∈ I,

0 otherwise
(9)

We optimize the pose according to:

R(h) = argmin
h′

||r(h′,w)||2. (10)

We use the iterative Gauss-Newton algorithm, which gives

the following update rule:

Rt+1 = Rt − (JT
r
Jr)

−1JT
r
r(Rt,w), (11)

where t denotes the iteration number, and we abbreviate

Rt(h) by Rt. The Jacobean matrix Jr contains partial

derivatives (Jr)ij =
∂(r(Rt,w))i

∂(Rt)j
. We optimize until conver-

gence, re-calculate the inlier set, and repeat until the inlier

set converges, too. Note that for DSAC [2] the number of

refinement iterations and the number of inliers considered

are limited to reduce the computational demand of finite

differences. We do not have to make similar concessions,

here.

The model linearization of Gauss-Netwon allows us to

approximate refinement gradients ∂
∂w

R(h) around the op-

timum found in the last optimization iteration [7]. We fix

the optimum as hO = Rt=∞(h) which makes the last up-

date step R(h) = hO − (JT
r
Jr)

−1JT
r
r(hO,w), and the

corresponding derivatives

∂

∂w
R(h) ≈ −(JT

r
Jr)

−1JT
r

∂

∂w
r(hO,w), (12)

which allow for stable end-to-end training according to

Eq. 1.

3. Experiments

We evaluate our approach on three publicly available

camera localization datasets, both indoor and outdoor.

7Scenes [23]. This RGB-D dataset comprises of 7 diffi-

cult indoor scenes with motion blur, repeating structures

and texture-less surfaces. Several thousand frames are given

as training and test sequences for each scene. The dataset

includes ground truth poses and accurate 3D scene models.

We ignore depth channels and utilize only RGB images.

12Scenes [27]. This dataset is very similar to 7Scenes but

has larger indoor environments, and contains smaller train-

ing sets of several hundred frames per scene.

Cambridge Landmarks [11]. The dataset contains RGB

images of six large outdoor environments, divided in train-

ing and test sequences of several hundred frames. Coarse

SfM reconstructions are also provided.

Parameter Settings. We train our pipeline for a fixed num-

ber of iterations using ADAM [12] on full training sets,

and select hyper-parameters that achieve the lowest train-

ing loss. During test time we always choose the hypothesis

with maximum score. See the supplementary materials for

a full parameter listing.

Competitors. We compare to the latest incarnation of

PoseNet [10] which can be trained using a standard pose

loss or, utilizing a 3D model, a geometric loss for improved

accuracy. We also compare to the Spatial LSTM of [29]. We

include results of several sparse feature baselines, most no-

tably Active Search [20]. We compare to DSAC [2] trained

using RGB-D training data as in [2], and using rendered

scene coordinates (denoted “RGB training”).

3.1. Camera Localization Accuracy

We list our main experimental results in Table 1 for the

7Scenes and Cambridge datasets. Compared to the PoseNet

variants [10, 29] we improve accuracy by a factor of 10 for

many scenes, and compared to the sparse feature-based Ac-

tive Search [20] by a factor of 2. Compared to DSAC [2],

which is the strongest competitor, we massively improve ac-

curacy for the Cambridge dataset. We observe only a small

to moderate loss in accuracy when our method is trained

without a 3D scene model. Note that the only two com-

petitors that do not depend on a 3D model, namely PoseNet

[10] and the spatial LSTM [29], achieve a much lower ac-

curacy. In fact, for most scenes, our method trained without

a 3D model surpasses the accuracy of competitors utilizing

a 3D model. Similar to DSAC [2] and the Spatial LSTM

[29], we were not able to estimate reasonable poses for the

Cambridge Street scene which is one order of magnitude

larger than the other outdoor scenes. The capacity of our

neural network might be insufficient for this scene scale but

we did not explore this possibility.

The median pose accuracy used in Table 1 does not

reflect the frequency of wrong pose estimates very well.

4659

Table 1. Median 6D Localization Errors. We report results for the 7Scenes dataset [23] and the Cambridge Landmarks dataset [11]. We

mark best results bold (if both, translational and rotational error, are lowest). Results of DSAC marked with an asterisk (*) are before

end-to-end optimization which did not converge. A dash (-) indicates that a method failed completely.

Dataset Training w/ 3D Model w/o 3D Model

7Scenes
PoseNet [10]

(Geom. Loss)

Active

Search [20]

DSAC [2]

(RGB Training)
Ours

PoseNet [10]

(Pose Loss)

Spatial

LSTM [29]
Ours

Chess 0.13m, 4.5◦ 0.04m, 2.0◦ 0.02m, 1.2◦ 0.02m, 0.5◦ 0.14m, 4.5◦ 0.24m, 5.8◦ 0.02m, 0.7◦

Fire 0.27m, 11.3◦ 0.03m, 1.5◦ 0.04m, 1.5◦ 0.02m, 0.9◦ 0.27m, 11.8◦ 0.34m, 11.9◦ 0.03m, 1.1◦

Heads 0.17m, 13.0◦ 0.02m, 1.5◦ 0.03m, 2.7◦ 0.01m, 0.8◦ 0.18m, 12.1◦ 0.21m, 13.7◦ 0.12m, 6.7◦

Office 0.19m, 5.6◦ 0.09m, 3.6◦ 0.04m, 1.6◦ 0.03m, 0.7◦ 0.20m, 5.8◦ 0.30m, 8.1◦ 0.03m, 0.8◦

Pumpkin 0.26m, 4.8◦ 0.08m, 3.1◦ 0.05m, 2.0◦ 0.04m, 1.1◦ 0.25m, 4.8◦ 0.33m, 7.0◦ 0.05m, 1.1◦

Kitchen 0.23m, 5.4◦ 0.07m, 3.4◦ 0.05m, 2.0◦ 0.04m, 1.1◦ 0.24m, 5.5◦ 0.37m, 8.8◦ 0.05m, 1.3◦

Stairs 0.35m, 12.4◦ 0.03m, 2.2◦ 1.17m, 33.1◦ 0.09m, 2.6◦ 0.37m, 10.6◦ 0.40m, 13.7◦ 0.29m, 5.1◦

Cambridge

Great Court 7.00m, 3.7◦ - *2.80m, 1.5◦ 0.40m, 0.2◦ 6.83m, 3.5◦ - 0.66m, 0.4◦

K. College 0.99m, 1.1◦ 0.42m, 0.6◦ *0.30m, 0.5◦ 0.18m, 0.3◦ 0.88m, 1.0◦ 0.99m, 1.0◦ 0.23m, 0.4◦

Old Hospital 2.17m, 2.9◦ 0.44m, 1.0◦ 0.33m, 0.6◦ 0.20m, 0.3◦ 3.20m, 3.3◦ 1.51m, 4.3◦ 0.24m, 0.5◦

Shop Facade 1.05m, 4.0◦ 0.12m, 0.4◦ 0.09m, 0.4◦ 0.06m, 0.3◦ 0.88m, 3.8◦ 1.18m, 7.4◦ 0.09m, 0.4◦

St M. Church 1.49m, 3.4◦ 0.19m, 0.5◦ *0.55m, 1.6◦ 0.13m, 0.4◦ 1.57m, 3.2◦ 1.52m, 6.7◦ 0.20m, 0.7◦

Street 20.7m, 25.7◦ 0.85m, 0.8◦ - - 20.3m, 25.5◦ - -

a) b) c)

38,6%

55,9%

60,4%

62,5%

76,1%

0% 20% 40% 60% 80%

ORB+PNP [22]

DSAC (RGB Training)

Our (w/o 3D Model)

DSAC (RGB-D Training)

Our (w/ 3D Model)

% Correct Test Frames

7Scenes Results (5cm,5°)

61,0%

62,1%

68,2%

79,7%

96,4%

0% 20% 40% 60% 80% 100%

Our (w/o 3D Model)

SIFT+PNP [25]

Valentin et al. [26]

DSAC (RGB Training)

Our (w/ 3D Model)

% Correct Test Frames

12Scenes Results (5cm,5°)

60,4%

59,0%

0,6%

76,1%

75,4%

72,4%

0% 20% 40% 60% 80%

Opt. End-to-End

Opt. Reproj.

Initialization

Opt. End-to-End

Opt. Reproj.

Initialization

w
/o

 3
D

 m
o

d
e

l
w

/
3

D
 m

o
d

e
l

% Correct Test Frames

3-Step Training Procedure

Figure 5. Indoor Localization Accuracy. We show the percentage of test frames of the 7Scenes (a) resp. the 12Scenes (b) dataset with

a pose error below 5cm and 5◦. We mark our method blue. Note that all competitors depend on a 3D model. For our method, we show

results after each of our 3 training steps on the 7Scenes dataset (c).

Therefore, we show the percentage of test images with a

pose error below 5cm and 5◦ for the 7Scenes dataset in

Fig. 5 a). Note that all competitors listed require a 3D model

of the scene. PoseNet [10] and the Spatial LSTM [29] do

not report results using this measure, but based on their me-

dian accuracy they achieve less than 50% on 7Scenes. We

outperform all competitors, most notably DSAC [2] trained

with RGB-D data (+13.6%). When training DSAC using

a 3D model (“RGB Training”), its performance drops by

6.6% due to inaccuracies in the 3D model. Our method

trained without a 3D model exceeds the accuracy of DSAC

trained with a 3D model by 4.5%.

We show results for the 12Scenes dataset in Fig. 5 b).

We achieve an accuracy of 96.4% with a 16.7% mar-

gin to DSAC. Training without a 3D model still achieves

a good accuracy comparable to a sparse feature baseline

(SIFT+PNP [27]). See Fig. 6 for a qualitative comparison

of DSAC and our method trained with and without a 3D

model, respectively. We include additional qualitative re-

sults in the supplementary video1.

3.2. Detailed Studies

Inlier Count vs. Scoring CNN. We retrain DSAC, sub-

stituting the scoring CNN for our soft inlier count. We

measure the percentage of test frames with an error below

5cm and 5◦. Results improve from 55.9% to 58.9% for

7Scenes. The effect is strongest for the Heads and Stairs

scenes (+19% resp. +8%) which have the smallest training

sets. Accuracy for 12Scenes, where all training sets are

small, also increases from 79.7% to 89.6%. We conclude

that the soft inlier count helps generalization, considerably.

1https://youtu.be/DjJFRTFEUq0

4660

