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Figure 1: A few examples of visual results produced by our system on real-world low resolution faces from WiderFace.

Abstract

This paper addresses 2 challenging tasks: improving the

quality of low resolution facial images and accurately locat-

ing the facial landmarks on such poor resolution images. To

this end, we make the following 5 contributions: (a) we pro-

pose Super-FAN: the very first end-to-end system that ad-

dresses both tasks simultaneously, i.e. both improves face

resolution and detects the facial landmarks. The novelty

or Super-FAN lies in incorporating structural information

in a GAN-based super-resolution algorithm via integrating

a sub-network for face alignment through heatmap regres-

sion and optimizing a novel heatmap loss. (b) We illustrate

the benefit of training the two networks jointly by report-

ing good results not only on frontal images (as in prior

work) but on the whole spectrum of facial poses, and not

only on synthetic low resolution images (as in prior work)

but also on real-world images. (c) We improve upon the

state-of-the-art in face super-resolution by proposing a new

residual-based architecture. (d) Quantitatively, we show

large improvement over the state-of-the-art for both face

super-resolution and alignment. (e) Qualitatively, we show

for the first time good results on real-world low resolution

images like the ones of Fig. 1.

1. Introduction

The aim of this paper is to improve upon the quality and

understanding of very low resolution facial images. This

is important in many applications, like face editing surveil-

lance/security. In terms of quality, our aim is to increase

the resolution and recover the details of real-world low res-

olution facial images like the ones shown in the first row

of Fig. 1; this task is also known as face super-resolution

(when the input resolution is too small this task is some-

times called face hallucination). In terms of understanding,

we wish to extract mid- and high-level facial information by

localizing a set a predefined facial landmarks with semantic

meaning like the tip of the nose, the corners of the eyes etc.;

this task is also known as face alignment.

Attempting to address both tasks simultaneously is really

a chicken-and-egg problem: On one hand, being able to de-

tect the facial landmarks has already been shown beneficial

for face super-resolution [33, 29]; however how to accom-

plish this for low resolution faces in arbitrary poses is still

an open problem [4]. On the other hand, if one could ef-

fectively super-resolve low quality and low resolution faces

across the whole spectrum of facial poses, then facial land-

marks can be localized with high accuracy.

Because it is difficult to detect landmarks in very low

resolution faces (as noticed in [32, 33] and validated in this

work), prior super-resolution methods based on this idea
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[33, 29] produce blurry images with artifacts when the facial

landmarks are poorly localized. Our main contribution is to

show that actually one can jointly perform facial landmark

localization and super-resolution even for very low resolu-

tion faces in completely arbitrary poses (e.g. profile images,

see also Figs. 1 and 5).

In summary, our contributions are:

1. We propose Super-FAN: the very first end-to-end sys-

tem that addresses face super-resolution and alignment

simultaneously, via integrating a sub-network for facial

landmark localization through heatmap regression into a

GAN-based super-resolution network, and incorporating

a novel heatmap loss. See also Fig. 2.

2. We show the benefit of training the two networks jointly

on both synthetically generated and real-world low-

resolution faces of arbitrary facial poses.

3. We also propose an improved residual-based architec-

ture for super-resolution.

4. Quantitatively, we report, for the first time, results across

the whole spectrum of facial poses on the LS3D-W

dataset [4], and show large improvement over the state-

of-the-art on both super-resolution and face alignment.

5. Qualitatively, we show, for the first time, good visual

results on real-world low resolution facial images taken

from the WiderFace dataset [30] (see Figs. 1 and 5).

2. Closely related work

This section reviews related work in image and face

super-resolution, and facial landmark localization.

Image super-resolution. Early attempts on super-

resolution using CNNs [6, 15] used standard Lp losses for

training which result in blurry super-resolved images. To al-

leviate this, rather than using an MSE over pixels (between

the super-resolved and the ground truth HR image), the au-

thors of [14] proposed an MSE over feature maps, coined

perceptual loss. Notably, we also use a perceptual loss in

our method. More recently, in [19], the authors presented a

GAN-based [7] approach which uses a discriminator to dif-

ferentiate between the super-resolved and the original HR

images and the perceptual loss. In [25], a patch-based tex-

ture loss is proposed to improve reconstruction quality.

Notice that all the aforementioned image super-

resolution methods can be applied to all types of images

and hence do not incorporate face-specific information, as

proposed in our work. Also, in most cases, the aim is to pro-

duce high-fidelity images given an image which is already

of good resolution (usually 128 × 128) while face super-

resolution methods typically report results on very low res-

olution faces (16× 16 or 32× 32).

From all the above mentioned methods, our work is more

closely related to [14] and [19]. In particular, one of our

contributions is to describe an improved GAN-based ar-

chitecture for super-resolution, which we used as a strong

baseline on top of which we built our integrated face super-

resolution and alignment network.

Face super-resolution. The recent work of [31] uses

a GAN-based approach (like the one of [19] without the

perceptual loss) to super-resolve very low-resolution faces.

The method was shown to work well for frontal and pre-

aligned faces taken from the CelebA dataset [20]. In [32],

the same authors proposed a two-step decoder-encoder-

decoder architecture which incorporates a spatial trans-

former network to undo translation, scale and rotation mis-

alignments. Their method was tested on pre-aligned, syn-

thetically generated LR images from the frontal dataset of

CelebA [20]. Notably, our network does not try to undo

misalignment but simply learns how to super-resolve, re-

specting at the same time the structure of the human face by

integrating a landmark localization sub-network.

The closest work to our method is [33] which performs

face super-resolution and dense facial correspondence in

an alternating manner. Their algorithm was tested on the

frontal faces of PubFig [17] and Helen [18] while few re-

sults on real images (4 in total) were also shown with less

success. The main difference with our work is that, in [33],

the dense correspondence algorithm is not based on neu-

ral networks, but on cascaded regression, is pre-learned dis-

jointly from the super-resolution network and remains fixed.

As such, [33] suffers from the same problem of having to

detect landmarks on blurry faces which is particularly evi-

dent for the first iterations of the algorithm. On the contrary,

we propose learning both super-resolution and facial land-

mark localization jointly in an end-to-end fashion, and use

just one shot to jointly super-resolve the image and localize

the facial landmarks. See Fig. 2. As we show, this results

in large performance improvement and generates images of

high fidelity across the whole spectrum of facial poses.

It is worth noting that we go beyond the state-of-the-

art and rigorously evaluate super-resolution and facial land-

mark localization across facial pose both quantitatively and

qualitatively. As opposed to prior work which primarily

uses frontal datasets [32, 5, 12, 33, 31, 29] (e.g. CelebA,

Helen, LFW, BioID) to report results, the low resolution im-

ages in our experiments were generated using the newly cre-

ated LS3D-W balanced dataset [4] which contains an even

number of facial images per facial pose. We also report

qualitatively results on more than 200 real-world low reso-

lution facial images taken from the WiderFace dataset [30].

To our knowledge, this is the most comprehensive evalua-

tion of face super-resolution algorithms on real images.

Face alignment. A recent evaluation of face alignment

[4] has shown that when resolution drops down to 30 pixels,

the performance drop of a state-of-the-art network trained

on standard facial resolution (192 × 192) for medium and

large poses is more than 15% and 30%, respectively. This

result is one of the main motivations behind our work. As
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Figure 2: The proposed Super-FAN architecture comprises three connected networks: the first network is a newly proposed

Super-resolution network (see sub-section 4.1). The second network is a WGAN-based discriminator used to distinguish

between the super-resolved and the original HR image (see sub-section 4.2). The third network is FAN, a face alignment

network for localizing the facial landmarks on the super-resolved facial image and improving super-resolution through a

newly-introduced heatmap loss (see sub-section 4.3).

our aim is not to propose a new architecture for face align-

ment, we employed the Face Alignment Network (FAN) of

[4], built by combining the Hourglass network of [21] with

the residual block of [3]. As shown in [4], FAN provides

excellent performance across the whole spectrum of facial

poses for good resolution images. As we show in this pa-

per, a FAN specifically trained to localize the landmarks in

low resolution images performs poorly. One of our contri-

butions is to show that a FAN when integrated and jointly

trained with a super-resolution network can localize facial

landmarks in low resolution images with high accuracy.

3. Datasets

To systematically evaluate face super-resolution across

pose, we constructed a training dataset from 300W-LP

[34], AFLW [16], Celeb-A [20] and a portion of LS3D-

W balanced [4]. For testing, we used the remaining im-

ages from LS3D-W balanced, in which each pose range

([0o−30o], [30o−60o], [60o−90o]) is equally represented.

300W-LP is a synthetically expanded dataset obtained

by artificially rendering the faces from 300W [24] into large

poses (−900 to 900). While the dataset contains 61,225 im-

ages, there are only about 3,000 unique faces. Also, the

images are affected by artifacts caused by the warping pro-

cedure. We included the entire dataset in our training set.

AFLW is a large-scale face alignment dataset that con-

tains faces in various poses and expressions collected from

Flickr. All 25,993 faces were included in our training set.

Celeb-A is a large-scale facial attribute dataset contain-

ing 10,177 unique identities and 202,599 facial images in

total. Most of the images are occlusion-free and in frontal or

near-frontal poses. To avoid biasing the training set towards

frontal poses, we only used a randomly selected subset of

approx. 20,000 faces.

LS3D-W balanced is a subset of the LS3D-W [4]

dataset containing 7,200 images captured in-the-wild, in

which each pose range ([00−300], [300−600], [600−900])
is equally represented (2,400 images each). We used 4,200

images for training, and kept 3000 for testing.

WiderFace is a face detection dataset containing 32,203

images with faces that exhibit a high degree of variability

in pose, occlusion and quality. In order to assess the perfor-

mance of our super-resolution method on in-the-wild, real-

world images, we randomly selected 200 very low resolu-

tion, heavily blurred faces for qualitative evaluation.

4. Method

In this section, we describe the proposed architecture

comprising of three connected networks: the first network

is a Super-resolution network used to super-resolve the LR

images. The second network is a discriminator used to dis-

tinguish between the super-resolved and the original HR im-

ages. The third network is FAN: the face alignment network

for localizing the facial landmarks on the super-resolved fa-

cial images. Note that at test time the discriminator is not

used. Overall, we call our network Super-FAN. See Fig. 2

Notably, for super-resolution, we propose a new archi-

tecture, shown in Fig. 3a, and detailed, along with the loss

functions to train it, in sub-section 4.1. Our discrimina-

tor, based on Wasserstein GANs [1], is described in sub-

section 4.2. Our integrated FAN along with our newly-

introduced heatmap regression loss for super-resolution is

described in sub-section 4.3. Sub-section 4.4 provides the

overall loss for training Super-FAN. Finally, sub-section 4.5

describes the complete training procedure.

4.1. Superresolution network

In this section, we propose a new residual-based archi-

tecture for super-resolution, inspired by [19], and provide

the intuition and motivation behind our design choices. Our

network as well as the one of [19] are shown in Figs. 3a

and 3b, respectively. Their differences are detailed below.

Following recent work [32, 31], the input and output reso-

lutions are 16× 16 and 64× 64, respectively.

Per-block layer distribution. The architecture of [19],

shown in Fig. 3b, uses 16, 1 and 1 blocks (layers) operating

at the original, twice the original, and 4 times the original

resolution, respectively; in particular, 16 blocks operate at a
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resolution 16 × 16, 1 at 32 × 32 and another 1 at 64 × 64.

Let us denote this architecture as 16− 1− 1. We propose a

generalized architecture of the form N1 −N2 −N3, where

N1, N2 and N3 are the number of blocks used at the origi-

nal, twice the original, and 4 times the original resolution,

respectively. As opposed to the architecture of [19] where

most of the blocks (i.e. 16) work at the input resolution,

we opted for a more balanced distribution: 12-3-2, shown

in Fig. 3a. Our motivation behind this change is as follows:

since the main goal of the network is to super-resolve its

input via hallucination, using only a single block at higher

resolutions (as in [19]) is insufficient for the generation of

sharp details, especially for images found in challenging

scenarios (e.g. Fig. 1).

Building block architecture. While we experimented with

a few variants of residual blocks [10, 11], similarly to

[14, 19], we used the one proposed in [8]. The block con-

tains two 3× 3 convolutional layers, each of them followed

by a batch normalization layer [13]. While [19] uses a

PReLU activation function, in our experiments, we noticed

no improvements compared to ReLU, therefore we used Re-

LUs throughout the network. See Fig. 3a.

On the “long” skip connection. The SR-ResNet of [19]

groups its 16 modules operating at the original resolution in

a large block, equipped with a skip connection that links the

first and the last block, in an attempt to improve the gradi-

ent flow. We argue that the resolution increase is a gradual

process in which each layer should improve upon the rep-

resentation of the previous one, thus the infusion of lower

level futures will have a small impact on the overall perfor-

mance. In practice, and at least for our network, we found

very small gains when using it. See supplementary material

for additional results.

4.1.1 Pixel and perceptual losses

Pixel loss. Given a low resolution image ILR (of resolution

16× 16) and the corresponding high resolution image IHR

(of resolution 64× 64), we used the pixel-wise MSE loss to

minimize the distance between the high resolution and the

super-resolved image. It is defined as follows:

lpixel =
1

r2WH

rW∑

x=1

rH∑

y=1

(IHR
x,y −GθG(I

LR)x,y)
2, (1)

where W and H denote the size of ILR and r is the upsam-

pling factor (set to 4 in our case).

Perceptual loss. While the pixel-wise MSE loss achieves

high PSNR values, it often results in images which lack fine

details, are blurry and unrealistic (see Fig. 4). To address

this, in [14, 19], a perceptual loss is proposed in which the

super-resolved image and the original image must also be

close in feature space. While [19] defines this loss over the

activations of layer 5 4 (the one just before the FC layers) of

VGG-19 [26], we instead used a combination of low, mid-

dle and high level features computed after the B1, B2 and

B3 blocks of ResNet-50 [10]. The loss over the ResNet fea-

tures at a given level i is defined as:

lfeature/i =
1

WiHi

Wi∑

x=1

Hi∑

y=1

(φi(I
HR)x,y

− φi(GθG(I
LR))x,y)

2,

(2)

where φi denotes the feature map obtained after the last con-

volutional layer of the i−th block and Wi, Hi its size.
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BatchNorm

ReLU

+
Conv

BatchNorm

ReLU

+

DeconvDeconv
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(b) SR-ResNet

Figure 3: A comparison between the proposed super-

resolution architecture (left) and the one described in [19]

(right). See also sub-section 4.1.

4.2. Adversarial network

The idea of using a GAN [7] for face super-resolution is

straightforward: the generator G in this case is the super-

resolution network which via a discriminator D and an ad-

versarial loss is enforced to produce more realistic super-
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resolved images lying in the manifold of facial images.

Prior work in image super-resolution [19] used the GAN

formulation of [23]. While in our work, we do not make an

attempt to improve the GAN formulation per se, we are the

first to make use of recent advances within super-resolution

and replace [23] with the Wasserstein GAN of (WGAN) [1],

as also improved in [9] (see also Eq. (3)).

We emphasize that our finding is that the improvement

over [23] is only with respect to the stability and easiness of

training and not with the quality of the super-resolved facial

images: while training from scratch with the GAN loss of

[23] is tricky and often leads to an unsatisfactory solution,

by using a WGAN loss, we stabilized the training and al-

lowed for the introduction of the GAN loss at earlier stages

in the training process, thus reducing the overall training

time. Finally, in terms of network architecture, we used the

DCGAN [23] without batch normalization.

4.2.1 Adversarial loss

Following [1] and [9], the WGAN loss employed in our face

super-resolution network is defined as:

lWGAN = E
Î∼Pg

[D(Î)]− E
I∼Pr

[D(IHR)]

+ λ E
Î∼P

Î

[ (‖∇
Î
D(Î)‖

2
− 1)2 ],

(3)

where Pr is the data distribution and Pg is the generator G

distribution defined by Î = G(ILR). PÎ is obtained by uni-

formly sampling along straight lines between pairs of sam-

ples from Pr and Pg .

4.3. Face Alignment Network

The losses defined above (pixel, perceptual and adversar-

ial) have been used in general purpose super-resolution and

although alone do provide descent results for facial super-

resolution, they also fail to incorporate information related

to the structure of the human face into the super-resolution

process. We have observed that when these losses are used

alone pose or expression related details may be missing or

facial parts maybe incorrectly located (see Fig. 4).

To alleviate this, we propose to enforce facial structural

consistency between the low and the high resolution image

via integrating a network for facial landmark localization

through heatmap regression into the super-resolution pro-

cess and optimizing an appropriate heatmap loss.

To this end, we propose to use the super-resolved im-

age as input to a FAN and train it so that it produces the

same output as that of another FAN applied on the original

high resolution image. We note that FAN uses the concept

of heatmap regression to localize the landmarks: rather than

training a network to regress a 68×2 vector of x and y coor-

dinates, each landmark is represented by an output channel

containing a 2D Gaussian centered at the landmark’s loca-

tion, and then the network is trained to regress the 2D Gaus-

sians, also known as heatmaps. As a number of works have

shown (e.g. [2]), these heatmaps capture shape information

(e.g. pose and expression), spatial context and structural

part relationships. Enforcing the super-resolved and the cor-

responding HR image to yield the same heatmaps via mini-

mization of their distance is a key element of our approach:

not only are we able to localize the facial landmarks but

actually we impose these two images to have similar facial

structure. In terms of architecture, we simply used FAN [4]

with 2 Hourglass modules.

4.3.1 Heatmap loss

Based on the above discussion, we propose to enforce struc-

tural consistency between the super-resolved and the corre-

sponding HR facial image via a heatmap loss defined as:

lheatmap =
1

N

N∑

n=1

∑

ij

(M̃n
i,j − M̂n

i,j)
2, (4)

where M̃n
i,j is the heatmap corresponding to the n−th land-

mark at pixel (i, j) produced by running the FAN integrated

into our super-resolution network on the super-resolved im-

age ÎHR and M̂n
i,j is the heatmap obtained by running an-

other FAN on the original image IHR.

Another key feature of our heatmap loss is that its op-

timization does not require having access to ground truth

landmark annotations just access to a pre-trained FAN. This

allows us to train the entire super-resolution network in

a weakly supervised manner which is necessary since for

some of the datasets used for training (e.g. CelebA) ground

truth landmark annotations are not available, anyway.

4.4. Overall training loss

The overall loss used for training Super-FAN is:

lSR = αlpixel + βlfeature + γlheatmap + ζlWGAN , (5)

where α, β, γ and ζ are the corresponding weights.

4.5. Training

All images were cropped based on the bounding box

such that the face height is 50 px. Input and output res-

olutions were 16 × 16 px and 64 × 64 px, respectively.

To avoid overfitting, we performed random image flipping,

scaling (between 0.85 and 1.15), rotation (between −30o

and 30o), color, brightness and contrast jittering. All mod-

els, except for the one trained with the GAN loss, were

trained for 60 epochs, during which the learning rate was

gradually decreased from 2.5e-4 to 1e-5. The model trained

with the GAN loss was based on a previously trained model
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Ours-pixel Ours-pixel-feature
Ours-pixel-feature-

heatmap

Ours-pixel-feature-

heatmap-GANbilinear Original imageSRGAN

Figure 4: Visual results on LS3D-W. Notice that: (a) The proposed Ours-pixel-feature already provides better results than

those of SR-GAN [19]. (b) By additionally adding the newly proposed heatmap loss (Ours-pixel-feature-heatmap) the gener-

ated faces are better structured and look far more realistic. Ours-pixel-feature-heatmap-GAN is Super-FAN which improves

upon Ours-pixel-feature-heatmap by adding the GAN loss and by end-to-end training. Best viewed in electronic format.

which was fine-tunned for 5 more epochs. The ratio be-

tween running the generator and the discriminator was kept

to 1. Finally, for end-to-end training of the final model (i.e.

Super-FAN), all networks (super-resolution, discriminator

and FAN) were trained jointly for 5 epochs with a learning

rate of 2.5e-4. All models, implemented in PyTorch [22],

were trained using rmsprop [27].

5. Experiments

In this section, we evaluate the performance of Super-

FAN. The details of our experiments are as follows:

Training/Testing. Unless otherwise stated, all methods, in-

cluding [19], were trained on the training sets of section 3.

We report quantitative and qualitative results on the subset

of LS3D-W balanced consisting of 3,000 images, with each

pose range being equally represented. We report qualitative

results for more than 200 images from WiderFace.

Performance metrics. In sub-section 5.1, we report re-

sults using the standard super-resolution metrics, namely

the PSNR and SSIM [28], confirming [19] that both of them

are a poor measure of the perceived image quality. In sub-

section 5.2, we report results on facial landmark localization

accuracy. To alleviate the issues with PSNR and SSIM, we

also propose another indirect way to assess super-resolution

quality based on facial landmarks: in particular, we trained

a FAN on high resolution images and then used it to local-

ize the landmarks on the super-resolved images produced by

each method. As our test set (LS3D-W balanced) provides

the ground truth landmarks, we can use landmark localiza-

tion accuracy to assess the quality of the super-resolved im-

ages: the rationale is that, the better the quality of the super-

resolved image, the higher the localization accuracy will be,

as the FAN used saw only real high resolution images dur-

ing training. The metric used to quantify performance is the

Area Under the Curve (AUC) [4].

Variants compared. In section 4, we presented a number

of networks and losses for super-resolution which are all

evaluated herein. These methods are named as follows:

• Ours-pixel: this is the super-resolution network of sub-

section 4.1 trained with the pixel loss of Eq. (1).

• Ours-pixel-feature: this is the super-resolution network

of sub-section 4.1 trained with the pixel loss of Eq. (1)

and the perceptual loss of Eq. (2).

• Ours-pixel-feature-heatmap: this is the super-resolution

network of sub-section 4.1 trained with the pixel loss of

Eq. (1), the perceptual loss of Eq. (2), and the newly

proposed heatmap loss of Eq. (4).

• Ours-Super-FAN: this improves upon ours-pixel-feature-

heatmap by additionally training with the GAN loss of

Eq. (3) and by end-to-end training.

Comparison with the state-of-the-art. We report re-

sults for the method of [19], implemented with and with-

out the GAN loss, called SR-GAN and SR-ResNet, respec-

tively, and for the standard baseline based on bilinear in-
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terpolation. We also show visual results on WiderFace by

running the code from [33] 1.

5.1. Superresolution results

Our quantitative results on LS3D-W across all facial

poses are shown in Table 1. In terms of PSNR, the best re-

sults are achieved by Ours-pixel-feature-heatmap. In terms

of SSIM, the best performing method seems to be Ours-

pixel. From these numbers, it is hard to safely conclude

which method is the best. Visually inspecting the super-

resolved images though in Fig. 4 clearly shows that the

sharper and more detailed facial images are by far produced

by Ours-pixel-feature-heatmap and Ours-Super-FAN. No-

tably, Ours-pixel achieves top performance in terms of

SSIM, yet the images generated by it are blurry and un-

realistic (see Fig. 4), and are arguably less visually appeal-

ing than the ones produced by incorporating the other loss

terms. We confirm the findings of [19] that these metrics

can sometimes be misleading.

5.2. Facial landmark localization results

Herein, we present facial landmark localization results

(on LS3D-W), also in light of our proposed way to evaluate

super-resolution based on the accuracy of a pre-trained FAN

on the super-resolved images (see Performance metrics).

We report results for the following methods:

• FAN-bilinear: this method upsamples the LR image us-

ing bilinear interpolation and then runs FAN on it.

• Retrained FAN-bilinear: this is the same as FAN-bilinear.

However, FAN was re-trained to work exclusively with

bilinearly upsampled LR images.

• FAN-SR-ResNet: the LR image is super-resolved using

SR-ResNet [19] and then FAN is run on it.

• FAN-SR-GAN: the LR image is super-resolved using us-

ing SR-GAN [19] and then FAN is run on it.

• FAN-Ours-pixel: the LR image is super-resolved using

Ours-pixel and then FAN is run on it.

• FAN-Ours-pixel-feature: the LR image is super-resolved

using Ours-pixel-feature and then FAN is run on it.

• FAN-Ours-pixel-feature-heatmap-GAN: the LR image is

super-resolved using Ours-pixel-feature-heatmap-GAN

and then FAN is run on it. The FAN is not trained with

the rest of the super-resolution network i.e. the same FAN

as above was used. This variant is included to highlight

the importance of jointly training the face alignment and

super-resolution networks as proposed in this work.

• Super-FAN: this is the same as above however, this time,

FAN is jointly trained with the rest of the network.

• FAN-HR images: this method uses directly the original

HR images as input to FAN. This method provides an

upper bound in performance.

The results are summarized in Fig. 4 and Table 2. See

supplementary material for examples showing the landmark

localization accuracy. From the results, we conclude that:

1. Super-FAN is by far the best performing method being

the only method attaining performance close to the upper

performance bound provided by FAN-HR images.

2. Jointly training the face alignment and super-resolution

networks is necessary to obtain high performance:

Super-FAN largely outperforms FAN-Ours-pixel-

feature-heatmap-GAN (second best method).

3. The performance drop of Super-FAN for large poses

(> 60o) is almost twice as much as that of FAN-HR im-

ages. This indicates that facial pose is still an issue in

face super-resolution.

4. Even a FAN trained exclusively to work with bilinearly

upsampled images (Retrained FAN-Bilinear), clearly an

unrealistic scenario, produces moderate results, and far

inferior to the ones produced by Super-FAN.

5. FAN-Ours-pixel-feature outperforms both FAN-SR-

GAN and FAN-SR-ResNet. This shows that the pro-

posed super-resolution network of section 4.1 (which

does not use heatmap or WGAN losses) already outper-

forms the state-of-the-art.

6. From FAN-Ours-pixel to Super-FAN, each of the losses

added improves performance which is in accordance to

the produced visual results of Fig. 4. This validates our

approach to evaluate super-resolution performance indi-

rectly using facial landmark localization accuracy.

5.3. Comparison on realworld images

Most face super-resolution methods show results on syn-

thetically generated LR images. While these results are

valuable for assessing performance, a critical aspect of any

system is its performance on real-world data captured in un-

constrained conditions. To address this, in this section and

in our supplementary material, we provide visual results by

running our system on more than 200 low resolution blurry

images taken from the WiderFace and compare its perfor-

mance with that of SR-GAN [19] and CBN [33].

Initially, we found that the performance of our method

on real images, when trained on artificially downsampled

images, was sub-optimal, with the super-resolved images

often lacking sharp details. However, retraining Super-FAN

by applying additionally random Gaussian blur (of kernel

size between 3 and 7 px) to the input images, and simulat-

ing jpeg artifacts and color distortion, seems to largely al-

leviate the problem. Results of our method, SR-GAN (also

retrained in the same way as our method) and CBN can be

seen in Figs. 1 and 5, while the results on all 200 images

can be found in the supplementary material.

1It is hard in general to compare with [33] because the provided code

pre-processes the facial images very differently to our method.
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Figure 5: Results produced by our system, SR-GAN [19] and CBN [33] on real-world low resolution faces from WiderFace.

Method
PSNR SSIM

30 60 90 30 60 90

bilinear upsample (baseline) 20.25 21.45 22.10 0.7248 0.7618 0.7829

SR-ResNet 21.21 22.23 22.83 0.7764 0.7962 0.8077

SR-GAN 20.01 20.94 21.48 0.7269 0.7465 0.7586

Ours-pixel 21.55 22.45 23.05 0.8001 0.8127 0.8240

Ours-pixel-feature 21.50 22.51 23.10 0.7950 0.7970 0.8205

Ours-pixel-feature-heatmap 21.55 22.55 23.17 0.7960 0.8105 0.8210

Ours-Super-FAN 20.85 21.67 22.24 0.7745 0.7921 0.8025

Table 1: PSNR- and SSIM-based super-resolution performance on LS3D-W balanced dataset across pose (higher is better).

The results are not indicative of visual quality. See Fig. 4.

Method [0-30] [30-60] [60-90]

FAN-bilinear 10.7% 6.9% 2.3%

FAN-SR-ResNet 48.9% 38.9% 21.4%

FAN-SR-GAN 47.1% 36.5% 19.6%

Retrained FAN-bilinear 55.9% 49.2% 37.8%

FAN-Ours-pixel 52.3% 45.3% 28.3%

FAN-Ours-pixel-feature 57.0% 50.2% 34.9%

FAN-Ours-pixel-feature-heatmap 61.0% 55.6% 42.3%

Super-FAN 67.0% 63.0% 52.5%

FAN-HR images 75.3% 72.7% 68.2%

Table 2: AUC across pose (calculated for a threshold of

10%; see [4]) on our LS3D-W balanced test set. The results,

in this case, are indicative of visual quality. See Fig. 4.

Our method provides the sharper and more detailed re-

sults performing well across all poses. SR-GAN fails to

produce sharp results. CBN produces unrealistic results es-

pecially for the images that landmark localization was poor.

A few failure cases of our method are shown in Fig. 6;

mainly cases of extreme poses, large occlusions and heavy

blurring. With respect to the latter, although our augmenta-

tion strategy seems effective, it is certainly far from optimal.

Enhancing it is left for interesting future work.
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Figure 6: Failure cases of our method on WiderFace. Typ-

ically, these include extreme facial poses, large occlusions

and heavy blurring.

6. Conclusions

We proposed Super-FAN: the very first end-to-end sys-

tem for integrated facial super-resolution and landmark

localization. Our method incorporates facial structural

information in a newly proposed architecture for super-

resolution, via integrating a sub-network for face align-

ment and optimizing a novel heatmap loss. We show large

improvement over the state-of-the-art for both face super-

resolution and alignment across the whole spectrum of fa-

cial poses. We also show, for the first time, good results on

real-world low resolution facial images.
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