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Abstract

The Normalized Cut (NCut) objective function, widely

used in data clustering and image segmentation, quantifies

the cost of graph partitioning in a way that biases clusters

or segments that are balanced towards having lower val-

ues than unbalanced partitionings. However, this bias is so

strong that it avoids any singleton partitions, even when ver-
tices are very weakly connected to the rest of the graph. Mo-

tivated by the Bühler-Hein family of balanced cut costs, we

propose the family of Compassionately Conservative Bal-
anced (CCB) Cut costs, which are indexed by a parameter
that can be used to strike a compromise between the de-

sire to avoid too many singleton partitions and the notion

that all partitions should be balanced. We show that CCB-
Cut minimization can be relaxed into an orthogonally con-

strained ℓτ -minimization problem that coincides with the
problem of computing Piecewise Flat Embeddings (PFE)

for one particular index value, and we present an algorithm

for solving the relaxed problem by iteratively minimizing a

sequence of reweighted Rayleigh quotients (IRRQ). Using

images from the BSDS500 database, we show that image

segmentation based on CCB-Cut minimization provides bet-

ter accuracy with respect to ground truth and greater vari-

ability in region size than NCut-based image segmentation.

1. Introduction
The Normalized Cut (NCut) graph partitioning cost

function was first introduced over two decades ago to tackle
the perceptual grouping problem [19, 20], and its approxi-
mate minimization via continuous relaxation into a general-
ized eigenvector problem has emerged as one of the funda-
mental techniques of data clustering [14].

The key observation that motivated the normalization of
graph cut cost functions is that when graph partitioning is
performed by minimizing the sum of the weights of edges
that are cut (the Cut cost), the resulting partitions will be
unbalanced; vertices that are weakly connected to the rest
of the graph are likely to be separated to form singleton par-
titions, while the rest of the graph vertices are likely to re-

(a) Toy Graph (b) argmin Cut (c) argmin NCut

Figure 1: (a) A graph having unit weight edges except for
the two edges with weight α/2. (b) Minimizing the Cut cost
removes the weakly-connected vertex, whereas (c) mini-
mizing the Normalized Cut (NCut) cost yields a more ”bal-
anced” partitioning.

main in large partitions. Normalizing the cut cost by the
degrees of each partition (NCut [19, 20]), the size of each
partition (Average Cut [18]), or the minimum of the size
of each partition and its complement (Ratio or Cheeger Cut
[7]) yield balanced partitions that have similar total degree
or size when minimized.

Is it possible that these types of normalization go too far?
Consider the example of Figure 1, in which we wish to par-
tition the toy graph into two subgraphs. This graph (1a)
contains seven vertices and nine edges; all but two of the
edges have unit weight, and the two indicated edges have
weight α/2 for α ∈ (0, 1). Since α < 1, the degree of the
vertex sharing these two edges is guaranteed to be smaller
than the degree of any other vertex in the graph. Hence, as
shown in (1b), minimizing the Cut cost will separate that
weakly-connected vertex from the rest of the graph. Min-
imizing the NCut cost creates a more balanced partition-
ing as shown in (1c); however, this partitioning will al-
ways have a lower-cost NCut than removing the weakly-
connected vertex, even when α is infinitesimally small. Per-
haps the Ratio Cut (RCut) is a better choice: for this graph,
α = 2/3 is a critical value above which (1c) minimizes the
RCut cost, and below which (1b) yields the minimum. But
is there really anything special about α = 2/3?

If this graph represented an image to be segmented, one
would want to use ground-truth segmentation maps from
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Figure 2: Using the Bühler-Hein p-Normalized (a) and p-
Ratio (b) Cut costs to partition the graph in Fig. (1a). Over
all possible (p, α), either the partitionings in Fig.’s (1b) or
(1c) yield the minimum value. For both families of costs,
there are substantial ranges of α for which only one parti-
tioning emerges for all p.

training images to suggest an optimal critical value for α,
above which the more “balanced” partitioning is desired,
and below which the weakly-connected vertex should be
separated. The ground truth might dictate that even the Ra-
tio Cut cost provides too much normalization, or instead,
that it does not provide enough.

One potential idea is to use the infinite families of bal-
anced cost functions defined by Bühler and Hein [4] and in-
dexed by a parameter p ∈ (1,∞). We refer to these families
as the Bühler-Hein p-Normalized (BHNp) and the Bühler-
Hein p-Ratio (BHRp) Cuts. BHNp is equivalent to NCut for
p = 2 and the Normalized Cheeger (NCh) Cut as p → 1+,
and BHRp is equivalent to RCut for p = 2 and the Ra-
tio Cheeger (RCh) Cut as p → 1+, so both families of cut
costs can be thought of as interpolating between different
normalization factors. However, as shown in Fig. (2), when
we minimize BHNp Cut and BHRp Cut for the graph in Fig.
(1), there are substantial ranges of α for which no value of
p will allow a bifurcation between solutions.

In this paper, we show that although the Bühler-Hein
costs provide a mechanism for interpolating between Nor-
malized (or Ratio) Cuts and Normalized (or Ratio) Cheeger
Cuts, they do not provide a path for interpolating all the way
to the unnormalized Cut cost. However, a different set of in-
finite families of balanced cost functions can be constructed
that do enable such interpolation. Our proposed families
are called the Compassionately Conservative Normalized
(CCN) Cut and the Compassionately Conservative Ratio
(CCR) Cut. Both are indexed by a parameter τ ∈ (0,∞);
CCNτ is equivalent to NCut for τ = 2 and the unnormal-
ized Cut cost for τ = 0, and CCRτ is equivalent to RCut for
τ = 2 and the unnormalized Cut cost for τ = 0. As we can
see from Fig. (3), when we minimize CCNτ and CCRτ for
the graph in Fig. (1), different ranges of τ can be selected
that will allow a bifurcation between solutions for any value
of α.

This paper makes four novel contributions to graph par-
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Figure 3: Using the CCNτ (a) and CCRτ (b) Cut costs to
partition the graph in Fig. (1a). Over all possible (p, α),
either the partitionings in Fig.’s (1b) or (1c) yield the min-
imum value. For both families of costs, for any choice of
α ∈ (0, 1), ranges of τ exist that enable either partitioning.

titioning in computer vision:

• presenting Compassionately Conservative Balanced
(CCB) Cuts: families of cut costs that enable normal-
izations ranging from Normalized/Ratio Cuts to unnor-
malized Cuts and can be naturally extended to k-way
partitionings with k > 2;

• presenting a continuous relaxation of CCB Cut mini-
mization and illuminating its connection to computing
Piecewise Flat Embeddings (PFE) [24];

• presenting an efficient algorithm for solving the
relaxed problem via minimizing a succession of
reweighted Rayleigh quotients (IRRQ); and

• demonstrating empirical advantages of the CCB Cut
costs and the IRRQ minimization algorithm for the ap-
plication of image segmentation.

2. Balanced Cut Costs
Consider an undirected weighted graph G = (V,E)

that we wish to partition into two disjoint subgraphs Gi =
(Vi, Ei), i = 1, 2, by removing the edges connecting V1 and
V2. A standard cost of partitioning G is the Cut cost, defined
as the total weight of the edges that have been removed:

Cut(V1, V2) =
∑

vi∈V1,vj∈V2

wi,j , (1)

where the vertex set V = {v1, v2, · · · , vn}, and W is the
weighted adjacency matrix (or affinity matrix) of G.

Minimizing the Cut cost is undesirable, however, as it
can often yield partitionings that simply disconnect one ver-
tex from the rest of the graph [22]. More balanced partitions
emerge if the Cut cost is normalized by some function of the
total sizes or total degrees (volumes) of the subgraphs. Such
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balanced cut costs can be expressed generally by:

BCut(V1, V2) =
Cut(V1, V2)

Θ(V1, V2)
, (2)

where Θ(V1, V2) is a symmetric function that decreases
with increasing differences in the sizes or degrees of V1 and
V2. A variety of balanced cut costs have been proposed in
the literature, including the Normalized Cut [19, 20], Aver-
age Cut [18], Ratio Cut [8, 10], and Normalized and Ratio
Cheeger Cuts [4, 7].

In Theorem 4.1 of [4], Bühler and Hein show that there
exists an infinite family of balanced cut costs that contains
Normalized, Average, Ratio, and Cheeger Cuts. If we con-
sider the following function:

Φp(v) =
2p

(

(

1
v

)
1

p−1 +
(

1
1−v

)
1

p−1

)p−1 , (3)

for p > 1 and v ∈ (0, 1), then BCut(V1, V2) with
Θ(V1, V2) = Φp(|V1|/|V |) is the aforementioned BHRp

Cut, and it approaches the Ratio Cheeger Cut as p →
1+ and equals the Average/Ratio Cuts for p = 2. If
Θ(V1, V2) = Φp(Vol(V1)/Vol(V )), BCut(V1, V2) is the
BHNp Cut, and it approaches the Normalized Cheeger Cut
as p → 1+ and equals the Normalized Cut for p = 2. (The
volume of a subgraph is defined as Vol(Vℓ) =

∑

vj∈Vℓ
dj ,

where dj =
∑

m wj,m is the degree of vertex vj .) Note that
this is a rescaling of the balanced cut costs in [4], defined so
that the maximum value of Θ(V1, V2) is always unity.

In addition to providing a way to interpolate between
Cheeger Cuts and Normalized/Ratio Cuts for 1 < p < 2,
(3) enables cut costs with normalizations that are slightly
more conservative (closer to unity) than Normalized/Ratio
Cuts by selecting p > 2. It is straightforward to show this
by noting that:

Φ∞(v) = lim
p→∞

Φp(v) =
√

4v(1− v) =
√

Φ2(v) , (4)

and so 1 > Φ∞(v) > Φ2(v) for all v ∈ (0, 1), v �= 1/2,
which can be seen in the left side of Figure 4.

The behavior of (3) as p → ∞ suggests that there is
room to define even more conservative normalization func-
tions. We do so in this paper by considering the following
transformation of Φp(v):

Ψτ (v) = Ψ 2
p−1

(v) = (Φp(v))
1

p−1 (5)

=
2p/(p−1)

(

1
v

)
1

p−1 +
(

1
1−v

)
1

p−1

=
21+τ/2

(

1
v

)τ/2
+
(

1
1−v

)τ/2
,

where τ = 2/(p− 1). (The reason for switching
parametrizations from p to τ will be addressed at the end
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Figure 4: Left: the family Φp(v) that enables the balanced
cut costs defined by [4], which includes Normalized/Ratio
Cuts and Cheeger Cuts but limits the extent of more conser-
vative normalizations. Right: the family Ψτ (v) that enables
the proposed balanced cut costs; for 0 < τ < 2, the pro-
posed costs interpolate from Normalized/Ratio Cuts to Cuts
with no normalization at all.

of Section 3.) Clearly Ψ2(v) = Φ2(v), and so Normal-
ized/Ratio Cuts arise from employing (5) in place of (3) for
τ = 2. More interestingly, however, is that Ψ0(v) = 1, and
so for 0 < τ < 2, defining BCut(V1, V2) with Θ(V1, V2) =
Ψτ (|V1|/|V |) or Ψτ (Vol(V1)/Vol(V )) provides a way to
interpolate between Normalized/Ratio Cuts and Cuts with
no normalization at all. This behavior of increasing Ψτ (v)
as τ → 0+ can be seen in the right side of Figure 4.

Of pedagogical interest is that limτ→∞ Ψτ (v) =
δ(v − 1/2), and so as τ → ∞, employing (5) to de-
fine Θ(V1, V2) would yield balanced cut costs that diverge
whenever the sizes or degrees of V1 and V2 are unequal.
Since our interest in this paper is to explore the impact of cut
costs having more conservative normalizations than Nor-
malized/Ratio Cuts, we will restrict our attention to the use
of Ψτ (v) for τ ∈ (0, 2).

In addition to enabling a greater range of conservative
normalizations, the use of (5) in place of (3) yields an added
benefit: the resulting Balanced Cut costs can be directly ex-
tended to form costs of partitionings into k > 2 subgraphs.
(As discussed in [4], it is not obvious whether such a di-
rect extension to the Bühler-Hein cut costs exists.) If we
now consider that we wish to partition G into k disjoint sub-
graphs Gi = (Vi, Ei), i = 1, 2, . . . , k, then an unbalanced
way to measure the cost of the partitioning is the multiway
cut cost, defined in terms of pairwise cut costs as:

Cut(V1, . . . , Vk) =
1

2

k
∑

ℓ=1

Cut(Vℓ, V \Vℓ) . (6)

The family of multiway balanced cut costs that we
propose is described generally by the Compassionately
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Conservative Balanced Cut:

CCBτ (V1, . . . , Vk) =
1

2

k
∑

ℓ=1

Cut(Vℓ, V \Vℓ)

2τ/2
(

∑

vj∈Vℓ
πj

)τ/2
, (7)

where π = [π1, . . . , πn]
T is a user-defined vector of pos-

itive weights. If π = 1n, then
∑

vj∈Vℓ
πj = |Vℓ|, and

we refer to (7) as the Compassionately Conservative Ra-
tio Cut (CCRτ ). If π = d (the degree vector), then
∑

vj∈Vℓ
πj = Vol(Vℓ), and we refer to (7) as the Com-

passionately Conservative Normalized Cut (CCNτ ). With
some algebraic manipulation, it is straightforward to see
that (7) is a generalization of (2); when k = 2, (7) reduces to
(2) with Θ(V1, V2) = Ψτ

(

∑

vj∈V1
πj

/

∑

vj∈V πj

)

. Fur-
thermore, (7) generalizes multiclass cut costs presented in
the research literature; CCB2, CCR2, and CCN2 are scaled
versions of the Multiclass Penalized Cut [25], the Multiclass
Ratio Cut [21], and the Multiclass Normalized Cut [23, 21],
respectively, and so choosing τ ∈ (0, 2) generates Multi-
class Balanced Cut costs that interpolate between (6) and
any of these previously developed costs.

3. Relaxing the CCB Cut
As with many balanced cut costs, minimizing the CCB

Cut is NP-hard. However, we can formulate a continuous
relaxation of CCBτ for all τ > 0. Unfortunately, the spec-
tral clustering relaxation of BHNp and BHRp in terms of
the second eigenvector of the graph p-Laplacian [4] is of
no help; it is only tight as p → 0+ (and therefore not
for τ ∈ (0, 2)), and furthermore, CCB Cuts are not even
members of the Bühler-Hein family of cuts except for when
τ = p = 2. Hence, we must identify a different relaxation.

To do so, we first reformulate CCBτ to express it in
terms of an n × k indicator matrix X so that Xi,j = 1
if vi ∈ Vj and Xi,j = 0 otherwise. If xi is the ith

column of X, then
∑

vj∈Vi
πj can be written in terms of

the diagonal matrix Π = diag(π) as xT

i Πxi, and the
pairwise cut cost between Vi and V \Vi can be written as
Cut(Vi, V \Vi) = xT

i W (1− xi) = xT

i d − xT

i Wxi =
xT

i Dxi − xT

i Wxi = xT

i Lxi, where L = D − W. This
allows us to express (7) as:

CCBτ (V1, . . . , Vk) =
1

2

k
∑

ℓ=1

xT

ℓ Lxℓ

2τ/2
(

xT

ℓ Πxℓ

)τ/2
. (8)

Minimizing (7) is equivalent to minimizing (8) subject to
the constraint that XTX is positive diagonal, which ensures
that none of the Vi’s will collapse to the empty set.

To guide us towards an appropriate CCBτ relaxation, we
first consider how the Multiclass Penalized Cut (CCB2) can
be relaxed. Using an argument similar to Yu and Shi [23],

we see that if Y = X
(

XTΠX
)−1/2, then YTΠY = I and

(7) is equivalent to a scalar multiple of tr
(

YTLY
)

. Hence,
the solution to minimizing a relaxed version of CCB2 is
Ỹ = UQ, where U is the n×k matrix whose columns are
the orthonormal eigenvectors u2, . . ., uk+1 corresponding
to the smallest nontrivial eigenvalues of Π−1/2LΠ−1/2,
and Q is an arbitrary k× k orthogonal matrix. The opti-
mal solution X̃ to (7) with τ = 2 can then be approximated
by k-means clustering [16], nonmaximal suppression [23]
or Procrustean rounding [25] on Ỹ.

Note that if we define ŷi to be the transpose of the ith

row of Y, then minimizing the relaxed version of CCB2

is equivalent to solving the constrained minimization prob-
lem:

min
Y∈Rn×k

J2(Y) :=
n
∑

i=1

n
∑

j=1

wi,j‖ŷi − ŷj‖
2
2 (9)

subject to: YTΠY = I , YTΠ1 = 0 ,

which, when π = d, is identical to the Laplacian Eigen-
maps (LE) problem [3] for computing embeddings of data
that are assumed to lie on a manifold. The balance con-
straint YTΠ1 = 0 is necessary to avoid eigenvectors of
Π−1/2LΠ−1/2 corresponding to the trivial eigenvalue.

Turning our attention now to the more general case

where τ > 0, if we define αℓ =
(

∑

i πix
2
i,ℓ

)−1/2

for

ℓ = 1, . . . , k, and we note that
(

XTΠX
)−1/2

= diag(α),
we can write:

CCBτ (V1, . . . , Vk) =
1

2

k
∑

ℓ=1

∑

i,j wi,j (xi,ℓ − xj,ℓ)
2

2τ/2
(

∑

i πix2
i,ℓ

)τ/2

=
1

21+τ/2

k
∑

ℓ=1

ατ
ℓ

∑

i,j

wi,j |xi,ℓ − xj,ℓ|
τ

=
1

21+τ/2

∑

i,j

wi,j

∥

∥

∥

(

XTDX
)−1/2

(x̂i − x̂j)
∥

∥

∥

τ

τ

=
1

21+τ/2

∑

i,j

wi,j‖ŷi − ŷj‖
τ
τ . (10)

Hence, the relaxation of (8) is obtained by dropping the
condition that Y = X

(

XTΠX
)−1/2 and solving the con-

strained minimization problem:

min
Y∈Rn×k

Jτ (Y) :=

n
∑

i=1

n
∑

j=1

wi,j‖ŷi − ŷj‖
τ
τ (11)

subject to: YTΠY = I .

Note that the balance constraint YTΠ1 = 0 is only neces-
sary for the case τ = 2.
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Remarkably, in the special case where π = d and τ = 1,
(11) is exactly the Piecewise Flat Embedding (PFE) prob-
lem [24], whose solution is an embedding in which the data
are naturally clustered due to the promotion of sparsity in
the differences between rows of Y. It is for this reason that
we choose to parametrize CCB Cuts in terms of τ and not
p: solutions to the relaxed versions of CCBτ for τ ∈ (0, 1]
can be expected to be piecewise constant, consistent with
the sparse nature of solutions to ℓτ -minimization problems
for τ ∈ (0, 1].

4. IRRQ Minimization Algorithm
While (11) with τ = 2 has a solution that can be written

in terms of the eigenvectors corresponding to the smallest
k nontrivial eigenvalues of Π−1/2LΠ−1/2, no analytical
form of the solution is known for τ �= 2. In [24], Yu et
al. proposed approximating the solution to (11) with τ = 1
via the Splitting Orthogonality Constraint (SOC) algorithm
[15], which requires an initial estimate of Y and performs
a nested iteration with parameters at each level that must be
tuned. While it is possible to partially generalize this ap-
proach to handle (11) with τ > 1, Jτ (Y) is non-convex
for τ ∈ (0, 1), and so the SOC algorithm is not applicable
in this regime. Furthermore, even in the regime in which
it is applicable, the use of splitting in the algorithm formu-
lation means that the solutions will not strictly satisfy the
orthogonality constraint YTDY = I.

Here, we propose an alternative algorithm for solving
(11) that can be applied for all τ ∈ (0, 2], that does
not require an initial estimate of Y, and that does strictly
satisfy the orthogonality constraint. Our alternative algo-
rithm is motivated from the Iteratively Reweighted Least
Squares (IRLS) algorithms commonly used to solve ℓ1-
minimization problems [9]. In IRLS, ℓ1-minimization is
performed by iteratively solving a succession of weighted
least-squares (ℓ2-minimization) problems, with the weights
updated at each iteration so as to decrease the impact of
large residual errors. IRLS algorithms do require initializa-
tion, but it is the weights that must be initialized as opposed
to the solution. Weights are typically initialized to unity (al-
though they can be initialized differently by an expert user),
and in specific cases [9], IRLS algorithms have provable
convergence guarantees.

In our relaxed problem (11), the presence of the orthogo-
nality constraint renders IRLS algorithms invalid. However,
solutions to (11) can be approximated by iteratively solving
a series of constrained weighted ℓ2-minimization problems,
each of the form:

min
Y∈Rn×k

J Γ

2 (Y) :=

n
∑

i=1

n
∑

j=1

wi,jγi,j‖ŷi − ŷj‖
2
2 (12)

subject to: YTΠY = I , YTΠ1 = 0 ,

where Γ is the n × n matrix of weights (with entries γi,j)
that is updated at each iteration in a manner similar to IRLS.

To establish a connection between (11) and (12), we first
eliminate the balance constraint from (12) using the result
of the following Lemma, which is proved in Appendix C of
[6]:

Lemma 4.1. Let

Y =
{

Y ∈ R
n×k|YTΠY = I,YTΠ1 = 0

}

,

G =
{

G ∈ R
(n−1)×k|GTG = I

}

,

and define ℵ(G) = Π−1/2BG for G ∈ G, where B =

M
(

MTM
)−1/2

,M ∈ R
n×(n−1) is a full rank matrix with

null
(

MT
)

= span(q), and q = Π1/21/
∥

∥Π1/21
∥

∥. Then ℵ

is a bijection from G to Y .

Using this Lemma allows us to solve (12) by first solv-
ing:

Ĝ := arg min
GTG=I

J Γ

2 (ℵ(G)) , (13)

and then computing Y = ℵ

(

Ĝ
)

.
An analogy to IRLS suggests that under the assump-

tion that component-wise differences in the embedding do
not vanish, the best choice of weights for (12) would be
γi,j =

∥

∥ŷ∗

i − ŷ∗

j

∥

∥

τ

τ
/
∥

∥ŷ∗

i − ŷ∗

j

∥

∥

2

2
for i �= j, where Y∗ is

the solution to (11). This choice of weights would yield
J Γ
2 (Y∗) = Jτ (Y

∗). In practice, however, Y∗ is unknown,
and many of the component-wise differences in the em-
bedding will vanish. Hence, we propose using regularized
weights as suggested in [9]:

γi,j :=
[

wi,j‖ŷi − ŷj‖
2
2 + ε2

]−1+τ/2

, (14)

and we update ε according to the schedule prescribed by
[9], which suggests:

ε ← min
(

ε, n−1r(Y)κ+1

)

, (15)

where r(Y)κ is the κth largest element of
{

w
1/2
i,j ‖ŷi − ŷj‖2 , ∀i, j = 1, . . . , n

}

.
Combining the steps of solving (12) and updating (14)–

(15) into a sequence of iterations yields Algorithm 1 for
computing the solution to (11). Since (12) is equivalent
to (13), and (13) can be transformed into an unconstrained
minimization of a Rayleigh Quotient, we term this al-
gorithm Iteratively Reweighted Rayleigh Quotient (IRRQ)
Minimization.

Unlike SOC, IRRQ requires tuning of only a single hy-
perparameter κ, it can be used for any τ ∈ (0, 2), and
it guarantees a solution in which the orthogonality con-
straint is strictly enforced. Furthermore, IRRQ does not
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Algorithm 1 IRRQ Algorithm for Solving (11)
procedure IRRQ(W, k, τ , κ)

γ
(0)
i,j := 1, ε0 := 1, m := 0, n := size(W, 1)

while εm > 0 do
(a) Y(m+1) := arg min

Y
T
ΠY=I

Y
T
Π1=0

Y∈R
n×k

J Γ
(m)

2 (Y)

(b) εm+1 := min
(

εm, n−1r
(

Y(m+1)
)

κ+1

)

(c) γ(m+1)
i,j :=

[

wi,j‖ŷi − ŷj‖
2
2 + ε2m+1

]−1+τ/2

end while
return Y(m)

end procedure

require a preprocessing step to estimate an initial cluster-
ing; rather, only the weights γi,j must be initialized, and
they can all be initialized to unity. Interestingly, this ini-
tialization is equivalent to implicitly using an initial clus-
tering that corresponds to the solution of the relaxed NCut
problem. This is because J 11

T

2 (Y) is equivalent to the
LE objective function J2(Y) in (9). If different initial-
izations are desired, for instance, by computing an ini-
tial embedding Y(0) using a Gaussian Mixture Model as
in [24], these can be incorporated by setting the initial
weights to be γ
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Solving IRRQ Step (a)
Computing Y(m+1) in step (a) of the IRRQ minimiza-

tion algorithm is nontrivial. From the relationship between
(12)–(13), we can see that computing Y(m+1) is equivalent
to solving

Ĝ(m+1) := arg min
GTG=I

J Γ
(m)

2 (ℵ(G)) , (16)

and then computing Y(m+1) = ℵ

(

Ĝ(m+1)
)

. Problem (16)
can be expressed as the Rayleigh quotient minimization:

Ĝ(m+1) := argmin tr
(

GTBTΠ
−1/2

L̂(m)Π−1/2BG

·
(

GTG
)−1

)

, (17)

where L̂(m) is the Laplacian of the graph having weight
matrix W⊙Γ(m) and ⊙ denotes Hadamard product. The
solution to (17) is given by Ĝ(m+1) = UH, where U ∈
R

(n−1)×k is the matrix whose columns are the orthonor-
mal eigenvectors u1, . . ., uk corresponding to the smallest
eigenvalues of BTΠ

−1/2
L̂(m)Π−1/2B, and H ∈ R

k×k is
an arbitrary orthogonal matrix. (Note that by eliminating

the balance constraint, we also eliminate the possibility of
a trivial eigenvalue of BTΠ−1/2L̂(m)Π−1/2B. Such an
eigenvalue would have eigenvector p for which Bp is in
the direction of q; however, this is contradicted by the fact
that range(B) = range

(

MT
)

.)
The ability of this solution to scale to large n depends

critically on the structure of M, and on whether or not B
must explicitly be constructed. Since we are free to choose
any full-rank n×(n− 1) matrix M such that MTq = 0, we
make the particular choice MT = [q̂ | − q1In−1], where
q̂ = [q2, q3, . . . , qn]

T and In−1 is the (n− 1)× (n− 1)
identity matrix. This particular choice of M is sparse, and
therefore, as shown in Appendix D of [6], the multiplication
of an arbitrary vector by BTΠ−1/2L̂(m)Π−1/2B can be
performed efficiently without explicitly constructing B.

A final note is that the solution to step (a) is not actu-
ally unique: Y(m+1) can be postmultiplied by HT and still
be a valid solution (recalling that H is orthogonal). This is
not a problem for steps (b) and (c) of Algorithm 1, because
r and γi,j are invariant to such transformations of Y(m+1).
As a consequence, IRRQ minimization could yield an entire
family of solutions to the PFE problem. This could be prob-
lematic because the ℓτ -norms/pseudo-norms are not invari-
ant under orthogonal transformations for τ �= 2. In practice,
however, we have found that the ℓτ -norms/pseudo-norms
are minimized for the choice H = I and we therefore sug-
gest this choice. Proof that this is the best choice remains
an open problem.

Choosing κ for Rapid Convergence
In IRLS algorithms for ℓτ -minimization, linear conver-

gence can typically be achieved for τ ≥ 1 and super-linear
convergence for τ ∈ (0, 1) if κ is chosen large enough so
that if the resulting solution is θ-sparse, then κ > θ. (Actu-
ally, there are much more sophisticated convergence results
in [9], but this is a good rule-of-thumb.) Without attempt-
ing to prove convergence results for the IRRQ algorithm,
we use a similar strategy in choosing κ. In practice, the
main difficulty in choosing κ is that θ is not known exactly
until the problem is solved. To approximate θ, we use an es-
timate θ̂ equal to twice the number of graph edges that con-
nect different clusters from a k-means clustering performed
on the initial embedding Y(0). For “scale-free” behavior,
we introduce the hyperparameter κ̃ ∈ (0, 1) that can then
be mapped to κ by κ = θ̂ + κ̃

(

2 |E| − θ̂
)

, where |E| is the
total number of edges in the graph.

5. CCB Cuts for Segmentation
To investigate the performance of CCB Cuts for im-

age segmentation, we segment the 200 test images in the
BSDS500 dataset [1], each of which has a variety of
manually-labeled segmentations with different numbers of
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Original NCut−M CCN1 − M RCut−M CCR1 − M NCut−H CCN1 − H RCut−H CCR1 − H

Figure 5: Example BSDS500 test image and segmentation results. First row: Lab affinities; second row: mPb affinities; third
row: PMI affinities. *−M indicates multiway segmentation; *−H indicates hierarchical 2-way segmentation. k = 28 clusters
specified for each case. Images appearing to have fewer segments actually have a number of small/singleton segments.

Original NCut: k=2 k=4 k=9 k=14 CCN1:k=2 k= 4 k= 9 k=14

Figure 6: Hierarchical clustering results for NCuts (CCN2 Cuts) and CCN1 Cuts for different numbers of clusters k and Lab
affinities. Top row: segmentation maps; bottom row: colorized segmentation maps.

segments that can be used as ground truth. We explore three
different affinity constructions for each image:

• Lab: a Gaussian kernel on squared Euclidean dis-
tances in L∗a∗b∗ color space;

• mPb: an exponentiated negative maximum of the mul-
tiscale probability of boundary (mPb) using the code
provided with the BSDS500 dataset [1]; and,

• PMI: an exponentiated version of a statistic related
to pointwise mutual information (PMI) used in crisp
boundary detection [13].

We use a 10-pixel radius to define neighborhoods for affin-
ity construction. For efficiency, we downsample each affin-
ity matrix by two scale levels (and subsequently upsample
the computed embeddings) using the strategy in [2, 17].

Figure 5 illustrates segmentation results on a BSDS500
test image for both multi-way and hierarchical 2-way seg-
mentation using various types of balanced cuts. Although
different segmentations appear to have different numbers
of regions, many of the regions are small/singleton, and
all segmentation results have the same number of regions.
Figure 6 shows how hierarchical 2-way segmentation us-
ing CCN Cuts with τ = 1 does not exhibit the iterative
“chopping” behavior common to hierarchical NCuts mini-
mization.

Quantitative Validation
Drawing any conclusions based on visual assessment of

segmentation maps can be problematic in the absence of
quantitative validation. First, to validate that CCB segmen-
tation yields less balanced partitions than NCut and Cheeger
Cut-based segmentation, we show in Figure 7 the “de-
gree spread” for segmentation results from various methods
across all test images, as measured by the ratio of the stan-
dard deviation of the partition volumes to the mean partition
volume.

Next, we evaluate segmentation performance with re-
spect to ground truth using the three criteria discussed in
[1] and used in [24]: Segmentation covering, Probabilis-
tic Rand Index (PRI), and Variation of Information (VI).
Covering and PRI increase and VI decreases as segmenta-
tions become closer to the ground truth. We segment each
BSDS500 test image multiple times by minimizing CCB
Cuts for various values of τ ∈ (0, 2], once corresponding
to each value of k (number of segments) reflected in one of
the ground-truth segmentations, and once for each of k = 5,
10, 15, 20, and 25, if any of these are not reflected in the
ground truth. Each multi-way segmentation algorithm pro-
ceeds by solving/approximating the corresponding embed-
ding and then subsequently performing k-means clustering
on the result. We also perform segmentation using hierar-
chical 2-way cuts; in this case, clustering is performed at
each step by identifying the threshold that best minimizes
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Figure 7: Ratio of the standard deviation of partition vol-
umes to the mean partition volume for CCNτ , NCut and
Normalized Cheeger Cut-based segmentation of BSDS im-
ages for various numbers of segments.

the balanced cut cost in question. For comparison purposes,
we also apply the inverse power method of [11]; this method
hierarchically approximates 2-way cuts that minimize the
Normalized/Ratio Cheeger costs.

In CCB Cut minimization (for both multi-way and hier-
archical 2-way segmentation), we iterate until the relative
change in cost between two iterations falls below 1%, or
until a maximum of 50 iterations are performed, whichever
occurs first. The hyperparameter κ̃ is set to 10−4 for Lab
affinities and to 0.2 for mPb and PMI affinities. Follow-
ing the strategy of [24], we report results for both a fixed
scheme, in which we run the algorithm repeatedly with k
corresponding to each number of segments in the ground-
truth and average the performance results from the multi-
ple runs, and the dynamic scheme, in which we choose the
value of k from k = 5, 10, 15, 20, and 25 that yields the
best performance for a particular image. Table 1 shows the
performance results for a subset of the cut costs; to save
space, we excluded results from smaller values of τ , which
typically performed worse than τ = 1 but better than τ = 2,
and we excluded results from ratio-costs, which are similar
to those of normalized-costs.

A few interesting conclusions can be drawn. First, the
use of simple Lab affinities surprisingly yields superior
results compared to the more complicated mPb and PMI
affinities. Second, PRI values appear to indicate that greater
degrees of balance are better, whereas VI and Covering val-
ues seem to indicate that CCN with τ = 1 provides the best
results. Third, better results are found when hierarchical
2-way segmentation is performed as opposed to simultane-
ous multiway segmentation. However, in our MATLAB im-
plementation, multiway segmentation is significantly faster
than hierarchical 2-way segmentation, as shown in Table 2.
In the future, it would be interesting to compare these results
to those of hierarchical 2-way segmentation via minimizing
ratios of differences of set functions [12, 5].

Affinity Method Covering PRI VI
fixed dynamic fixed dynamic fixed dynamic

Lab NCut−M 0.48 0.65 0.70 0.83 2.17 1.50
CCN1 − M 0.49 0.66 0.69 0.83 2.13 1.47
NCut−H 0.51 0.67 0.78 0.87 1.98 1.43
CCN1 − H 0.57 0.69 0.69 0.78 1.81 1.38
NCheeger 0.46 0.62 0.78 0.87 2.21 1.66

mPb NCut−M 0.29 0.48 0.75 0.84 2.86 2.10
CCN1 − M 0.32 0.51 0.75 0.83 2.75 1.96
NCut−H 0.30 0.48 0.83 0.89 2.61 2.00
CCN1 − H 0.38 0.52 0.73 0.78 2.35 1.83
NCheeger 0.27 0.48 0.83 0.88 2.90 2.31

PMI NCut−M 0.34 0.53 0.76 0.85 2.62 1.86
CCN1 − M 0.40 0.58 0.77 0.86 2.34 1.65
NCut−H 0.37 0.54 0.87 0.90 2.37 1.75
CCN1 − H 0.47 0.60 0.78 0.81 1.99 1.55
NCheeger 0.33 0.51 0.84 0.89 2.65 2.04

Table 1: Comparison of various segmentation methods on
BSDS500 test set, averaged across images. For each affinity
construction, the best results for each performance measure
are highlighted in bold. *−M indicates multiway segmen-
tation; *−H indicates hierarchical 2-way segmentation.

Cost Function Quartile I Median Quartile III Max
CCNτ − Multiway 2.0 2.9 4.2 14.9
CCNτ − Hierarchical 13.0 23.4 41.6 258.2
NCheeger 2.4 4.0 9.4 434.6
CCRτ − Multiway 1.0 1.4 1.9 8.0
CCRτ − Hierarchical 10.0 18.6 31.6 180.7
RCheeger 1.4 2.6 9.5 378.1

Table 2: Statistics of computation times (minutes) required
for segmentation, excluding affinity construction. Statistics
are computed across all values of τ , all numbers of clusters,
all images, and all affinity types.

6. Conclusion
Compassionately Conservative Balanced Cuts enable

normalizations ranging from Normalized/Ratio Cuts to un-
normalized Cuts, allowing a tradeoff between generating
partitions that are too similar in size/degree and avoiding all
singletons. They can be directly applied to the k-way parti-
tioning problem for any k ≥ 2, and their minimization can
be relaxed into a problem that can be solved by minimizing
a succession of Rayleigh quotients. Image segmentation ex-
periments show that minimizing the CCB Cut yields more
accurate results than minimizing NCuts/RCuts and gener-
ates regions having greater variability in size/degree.

A. Code
Prototype implementations of algorithms in this paper

are available at the MATLAB Central File Exchange under
File ID #66158.
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