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Abstract

In this paper, we introduce the new ideas of augment-

ing Convolutional Neural Networks (CNNs) with Memory

and learning to learn the network parameters for the unla-

belled images on the fly in one-shot learning. Specifically,

we present Memory Matching Networks (MM-Net) — a nov-

el deep architecture that explores the training procedure,

following the philosophy that training and test conditions

must match. Technically, MM-Net writes the features of a

set of labelled images (support set) into memory and read-

s from memory when performing inference to holistically

leverage the knowledge in the set. Meanwhile, a Contextual

Learner employs the memory slots in a sequential manner to

predict the parameters of CNNs for unlabelled images. The

whole architecture is trained by once showing only a few

examples per class and switching the learning from mini-

batch to minibatch, which is tailored for one-shot learning

when presented with a few examples of new categories at

test time. Unlike the conventional one-shot learning ap-

proaches, our MM-Net could output one unified model ir-

respective of the number of shots and categories. Extensive

experiments are conducted on two public datasets, i.e., Om-

niglot and miniImageNet, and superior results are reported

when compared to state-of-the-art approaches. More re-

markably, our MM-Net improves one-shot accuracy on Om-

niglot from 98.95% to 99.28% and from 49.21% to 53.37%

on miniImageNet.

1. Introduction

The recent advances in deep Convolutional Neural Net-

works (CNNs) have demonstrated high capability in visual

recognition. For instance, an ensemble of residual nets [12]

achieves 3.57% top-5 error on the ImageNet test set, which

is even lower than 5.1% of the reported human-level perfor-

mance. The achievements have relied on the fact that learn-
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ing deep CNNs requires large quantities of annotated data.

As a result, the standard optimization of deep CNNs does

not offer a satisfactory solution for learning new categories

from very little data, which is generally referred to as “One-

Shot or Few-Shot Learning” problem. One possible way to

alleviate this problem is to capitalize on the idea of transfer

learning [3, 35] by fine-tuning a pre-trained network from

another task with more labelled data. However, as pointed

out in [35], the benefit of a pre-trained network will great-

ly decrease especially when the network was trained on the

task or data which is very different from the target one, not

to mention that the very little data may even break down

the whole network due to overfitting. More importantly, the

general training procedure which contains a number of ex-

amples per category in each batch does not match inference

at test time when only a single or very few examples of a

new category is given. This discrepancy affects the gener-

alization of the learnt deep CNNs from prior knowledge.

We propose to mitigate the aforementioned two issues in

our one-shot learning framework. First, we induce from a

single or few examples per category to form a small set of

labelled images (support set) in each batch of training. The

optimization of our framework is then performed by rec-

ognizing other instances (unlabelled images) from the cat-

egories in the support set correctly. As such, the training

strategy is amended particularly for one-shot learning so as

to match inference in the test stage. Moreover, a memory

module is leveraged to compress and generalize the input

set into slots in the memory and produce the outputs holis-

tically on the whole support set, which further enhances the

recognition. Second, we feed the memory slots into one

Recurrent Neural Networks (RNNs), as a contextual learn-

er, to predict the parameters of CNNs for the unlabelled

images. As a result, the contextual learner captures both

long-term memory across all the categories in the training

and short-term knowledge specified on the categories at test

time. Note that our solution does not require a fine-tuning

process and computes the parameters on the fly. In addition,

the memory is an uniform medium which could convert dif-
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ferent size of support sets into common memory slots, mak-

ing it very flexible to train an unified model irrespective of

the number of shots and categories.

By consolidating the idea of learning a learner to predict

parameters in networks and matching training and inference

strategy, we present a novel Memory Matching Networks

(MM-Net) for one-shot image recognition, as shown in Fig-

ure 1. Specifically, a single or few examples per category

are fed into a batch every time as a support set of labelled

images in training. A deep CNNs is exploited to learn image

representations, which update the memory through a write

controller. A read controller enhances the image representa-

tions with the memory across all the categories to produce

feature embeddings of images in the support set. Mean-

while, we take the memory slots as a sequence of inputs

to a contextual learner, i.e., bidirectional Long Short-Term

Memory (bi-LSTM) networks, to predict the parameters of

the convolutional layers in the CNNs. The outputs of C-

NNs are regarded as embeddings of unlabelled images. As

such, the contextual relations between categories are also

explored in learning network parameters. The dot product

between the embeddings of a given unlabelled image and

each image in the support set is computed as the similarity

and the label of the nearest one is assigned to this unlabelled

image. The whole deep network is end-to-end optimized by

minimizing the error of predicting the labels in the batch

conditioned on the support set. It is also worth noting that

we could form each batch with different number of shots

and categories in training stage to learn an unified architec-

ture for performing inference on any one-shot learning sce-

narios. At inference time, the support set is then replaced

by the examples from new categories and there is no any

change in the procedure.

The main contribution of this work is the proposal of

Memory Matching Networks for addressing the issue of

one-shot learning in image recognition. The solution al-

so leads to the elegant views of how the discrepancy be-

tween training and inference in one-shot learning should be

amended and how to make the parameters of CNNs com-

putable on the fly in the context of very little data, which

are problems not yet fully understood in the literature.

2. Related Work

One-Shot Learning. The research of one-shot learn-

ing has proceeded mainly along following directions: da-

ta augmentation, transfer learning, deep embedding learn-

ing, and meta-learning. Data augmentation method [7, 11]

is the most natural solution for one-shot learning by en-

larging training data via data manufacturing. Transfer

learning approaches [8, 32] aim to recycle the knowledge

learned from previous tasks for one-shot learning. Wang

et al. exploit the generic category agnostic transformation

from small-sample models to the underlying large-sample

models for one-shot learning in [32]. Deep embedding

learning [16, 31] attempts to create a low-dimensional em-

bedding space, where the transformed representations are

more discriminative. [16] learns the deep embedding space

with a siamese network and classifies images by a nearest-

neighbor rule. Later in [31], Matching Network is devel-

oped to transform the support set and testing samples into a

shared embedding space with matching mechanism. Meta-

learning models [4, 25, 27] mainly frame the learning prob-

lem at two levels: the rapid learning to acquire the knowl-

edge within each task and the gradual learning to extract

knowledge learned across all tasks. For instance, [25] pro-

poses an LSTM-based meta-learner model to learn the ex-

act optimization algorithm, which is utilized to train another

neural network classifier in the few-shot regime.

Parameter Prediction in CNNs. Parameter prediction

in CNNs refers to evolve one network to generate the struc-

ture of weights for another network. [28] is one of the early

works that suggests the concept of fast weights in which

one network can produce the changes of context-dependent

weights for a second network. Later in [6], Denil et al.

demonstrate the significant redundancy in the parameteri-

zation of several deep learning models and it is possible to

accurately predict most parameters given only a few weight-

s. Next, a few subsequent works study practical applications

with the fast weights concept, e.g., image question answer-

ing [22] and zero-shot image recognition [18].

Memory Networks. Memory Networks is first proposed

in [33] by augmenting neural networks with an external

memory component which can be easily read and written

through read and write controllers. Later in [30], Memory

Networks is further extended to End-to-end Memory Net-

works, which is trained in an end-to-end manner and re-

quires significantly less supervision compared with original

Memory Networks. Moreover, Chandar et al. explore a for-

m of Hierarchical Memory Networks [5], allowing the read

controller to efficiently access extremely large memories.

Recently, Key-Value Memory Networks [20] stores prior

knowledge in a key-value structured memory before read-

ing them for prediction, making the knowledge to be stored

more flexibly. In this work, we adopt the Key-Value Mem-

ory Networks as the memory module to store the encoded

contextual information specified on the categories into the

key-value structured memory.

In summary, our work belongs to deep embedding learn-

ing method for one-shot learning. However, most of the

above methods in this direction mainly focus on forming

the deep embedding space with the simple objective of

matching-based classification (i.e., to maximize the match-

ing score between unlabelled image and the support images

with the same label). Our work is different that we enhance

the one-shot learning by leveraging memory module to ad-

ditionally integrate the contextual information across sup-

4081



...

...

...

...

...

��݊
 

 �� ,݊ =   ݊,݁� ��݉�݂�
Read Controller

Memory Module

݁� ,݊  

݉��݊ =
݉��݊ + ��݊

||݉��݊ + ��݊ ||2 
 

Write Controller

bi-LSTM

bi-LSTM

Contextual Learner

݉��  

݉��  

Similarity

0.9

-0.5
Label

bi-LSTM

bi-LSTM

bi-LSTM

݉3
�

 

݉2
�

 

݉1
�

 

cn = ∑�� ,݊݉��  

-0.3

-0.8

0.1

݉��  ݉��  ݉2
�

 ݉1
�

 ݉3
�

 

݉1
�

 ݉2
�

 ݉3
�

 ݉��  ݉��  

Memory

Labels �� �� �� 

��� 

���  

Support Set

Images

...
...

...
...

...
...

...
...

... ...

... ...

... ...

Unlabelled Image

...

...
...

Kernel for conv.

Embedding 

...
...

...

...
...

...
...

...
...

...
... �  

Figure 1. The overview of Memory Matching Networks (MM-Net) for one-shot image recognition (better viewed in color). Given a support

set consisting of a single or few labelled examples per category, a deep CNNs is exploited to learn rich image representations, followed

by a memory module to compress and generalize the input support set into slots in the memory via a write controller. A read controller

in memory module further enhances the representation (embedding) learning of images in the support set by holistically exploiting the

memory across all the categories. Meanwhile, a contextual learner, i.e., bi-LSTM, is adopted to explore the contextual relations between

categories by encoding the memory slots in a sequential manner for predicting the parameters of CNNs, whose outputs are regarded as

embeddings of unlabelled images. The dot product between the embeddings of a given unlabelled image and each image in the support set is

computed as the similarity and the label of the nearest one is assigned to this unlabelled image. The training of our MM-Net exactly matches

the inference. In addition, the memory is an uniform medium which could convert different size of support sets into common memory

slots, making it flexible to train an unified model with a mixed strategy for performing inference on any one-shot learning scenarios.

port samples into the deep embedding architectures. It is

worth noting that [31] also involves contextual information

for one-shot learning. Ours is fundamentally different in the

way that all the CNNs in [31] need to be learnt at training

stage, as opposed to directly predicting the parameters of

CNNs for unlabelled image based on the contextual infor-

mation encoded in the memory slots of this work, which is

better-suited for one-shot learning during inference on un-

seen categories.

3. One-Shot Image Recognition

The basic idea of Memory Matching Networks (MM-

Net) for one-shot learning is to construct an embedding s-

pace where the unseen objects can be rapidly recognized

from a few labelled images (support set). MM-Net first-

ly utilizes a memory module to encode and generalize the

whole support set into memory slots, which are endowed

with the contextual information specified on the categories.

The training of MM-Net is then performed by contextually

embedding the whole support set with the memory across

all the categories via read controller. Meanwhile, a contex-

tual learner is devised to predict the parameters of CNNs

for embedding unlabelled image conditioned on the contex-

tual relations between categories. Both of the embeddings

of support set and unlabelled image are further leveraged

to retrieve the label of unlabelled image through matching

mechanism in the embedding space. Our MM-Net is trained

in a learning to learn manner and can be adapted flexibly for

recognizing any new objects by only feed-forwarding the

support set. An overview of MM-Net is shown in Figure 1.

3.1. Problem Formulation

Suppose we have a small support set with N image-label

pairs S = {(xn, yn)}
N
n=1 from C object classes, where each

class contains few or even one single image. In the standard

setting of one-shot learning, our ultimate target is to rec-

ognize a class from a single labelled image. Hence, given

an unlabelled image x̂, we aim to predict its class ŷ with

the prior knowledge mined from the support set S , which is

defined as

ŷ = argmax
yn∈C

P (yn|x̂,S) , (1)

where P (yn|x̂,S) is the probability of classifying x̂ with

the class yn conditioned on S and C is the set of class la-

bels. Inspired by the recent success of Matching Networks

in one-shot learning [31], we formulate our one-shot objec-

t recognition model in a non-parametric manner based on

matching mechanism which retrieves the class label of un-

labelled image by comparing the matching scores with all

the labelled images (support set) in the learnt embedding

space. Accordingly, the probability of classifying x̂ with

the class label yn we exploit here can be interpreted as the

matching score between x̂ and the support sample xn with

label yn, which is measured as the dot product between their

embedded representations

P (yn|x̂,S) = f(x̂|S)⊤ · g (xn|S) , (2)
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where f (·) and g (·) are two deep embedding functions for

unlabelled image x̂ and support image xn given the whole

support set S , respectively. Please note that derived from

the idea of Memory Networks [33], we leverage a memory

module to explicitly generalize the whole support set into

memory slots, which are endowed with the contextual in-

formation among support set S and can be further integrated

into the learning of both f (·) and g (·).

3.2. Encoding Support Set with Memory Module

Inspired from the recent success of Recurrent Neural

Networks (RNNs) for sentence modeling in machine trans-

lation [1] and image/video captioning [23, 34], one natural

way to model the contextual relationship across the support

samples in support set S is to adopt the RNNs based models

as in [25, 31], whose latent state is treated as the memory.

However, such kind of memory is typically too small and

not compartmentalized enough to accurately remember the

previous knowledge, let alone the contextual information

across diverse object classes with few or even one single

image per class. Taking the inspiration from Memory Net-

works [33] which manipulates a large external memory that

can be flexibly read and written to, we design a memory

module to encode the contextual information within support

set into the memory through write controller.

Memory. The memory in our memory module is de-

noted asM = {(mk
i ,m

v
i )}

M
i=1 consisting of M key-value

pairs, where each memory slot is composed of a memory

key mk
i and the corresponding memory value mv

i . Here

the memory key mk
i ∈ R

Dm denotes the Dm-dimensional

memory representation of the i-th memory slot and the

memory value mv
i is an integer representing the class label

of the i-th memory slot.

Write controller. Given the support set S , the memo-

ry module is utilized to encode the sequence of N support

images into M memory slots with write controller, aim-

ing to distill the intrinsic characteristics of classes. Thus,

we devise the memory updating strategy in our write con-

troller as a dynamic feature aggregation problem to exploit

both the intrinsic universal characteristic of each class be-

yond individual samples and the remarkable diversity with-

in each class. The core issue for this design is about whether

the write controller should jointly aggregate visually sim-

ilar support samples into one memory slot by sequential-

ly updating the corresponding memory key or individually

seek one new memory slot to store the distinctive samples.

The former one is triggered when the input support sample

shares the same class label/memory value with the visually

similar memory key, otherwise the later one is adopted.

The vector formulas for the memory updating strategy

in write controller are given below. At n-th time step, the

current input support image xn and its class label yn are

written into memory slots to update the previous memory

Mn−1 via write controller, producing memoryMn. In par-

ticular, let zn ∈ R
Dz denote the Dz-dimensional visual fea-

ture of the support image xn. One transformation matrices

Tz ∈ R
Dm×Dz is firstly employed to project the support

image zn into the mapping zkn in memory key space:

z
k
n = Tzzn. (3)

Next, for the input support image, we mine its nearest

neighbor (i.e., the most visually similar memory key) from

previous memory Mn−1 with respect to dot product sim-

ilarity between its representation in memory key space zkn
and each memory key mk

i . Here we denote in as the index

of xn’s nearest neighbor in memory Mn−1. The memo-

ry updating is then conducted in a different way depending

on whether the memory value of xn’s nearest neighbor mv
in

is exactly matched with the xn’s class label yn or not. If

mv
in

= yn, we only update the memory key mk
in

by inte-

grating it with zkn and then normalizing it:

m
k
in =

(

m
k
in + z

k
n

)/

||mk
in + z

k
n||2. (4)

Otherwise, when mv
in
6= yn, we store the key-value pair

(zkn, yn) in the next new memory slot. Note that if there is

no available memory slot left, the memory key mk
in

is up-

dated as in Eq.(4). After encoding the whole support set S
into memory via write controller, the final memoryMN is

endowed with the contextual information within support set.

Please note that we denote the two deep embedding func-

tions f(x̂|S) and g(xn|S) as f(x̂|MN ) and g(xn|MN ) in

the following sections, respectively.

3.3. Contextual Embedding for Support Set

The most typical way to transform images from the sup-

port set into the embedding space is to embed each sample

independently through a shared deep embedding architec-

ture g(xn) in discriminative learning, while the holistical

contextual information within support set is not fully ex-

ploited. Here we develop a contextual embedding function

for support set g (xn|MN ) to embed xn conditioned on the

memoryMN via read controller of memory module, with

the intuition that the holistical contextual information en-

dowed in the memory across all the categories can guide g
to produce more discriminative representation of xn.

Read controller. Technically, for each support image xn

and its embedded representation zkn in memory key space,

we firstly measure the dot product similarity ai,n between

zkn and each memory key mk
i followed by a softmax func-

tion, and then retrieve the aggregated memory vector cn by

calculating the sum of each memory key weighted by ai,n:

ai,n = Softmax(zkn
⊤

·mk
i ), cn =

∑M

i=1

ai,nm
k
i , (5)

where Softmax(vi) = evi/
∑

j e
vj . The above memory

retrieval process is conducted by read controller. Besides, a
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shortcut connection is additionally constructed between the

input and output of read controller, making the optimization

more easier. Thus, the final output representation of xn via

contextual embedding is measured as:

g(xn|MN ) = Tccn + zn ∈ R
Dz , (6)

where Tc ∈ R
Dz×Dm is the transformation matrix for map-

ping the aggregated memory cn into the embedding space

and Dz is the embedding space dimension.

3.4. Contextual Embedding for Unlabelled Images

The standard deep embedding function f(x̂;W ) in dis-

criminative learning consists of stacks of convolutional lay-

ers that are parameterized by matrix W in general. The op-

timization of parameters W often requires enormous train-

ing data and a lengthy iterative process to generalize well

on unseen samples. However, in the extreme case with

only a single labelled example of each class, it is insuffi-

cient to train the deep embedding architecture and direct-

ly fine-tuning this architecture often results in poor perfor-

mance on the recognition of new category. To address the

aforementioned challenges for one-shot learning, we devise

a novel contextual embedding architecture f(x̂;W |MN )
for unlabelled image by incorporating the contextual re-

lations between categories mined from memory MN into

the deep embedding function. In particular, the parameters

W of this contextual embedding architecture are learnt in a

feed-forward manner conditioned on memoryMN without

backpropagation, obviating the need of fine-tuning to adapt

to the new category.

Contextual Learner. A novel deep architecture, named

as contextual learner, is especially designed to synthesis

the parameters W of contextual embedding architecture

f(x̂;W |MN ) depending on the memory MN of support

set. Specifically, we denote the output parameters W ∈
R

Dw for contextual learner as

W = ω(MN ;W ′), (7)

where ω (·) is the encoding function of contextual learner

that transforms the memoryMN into the target parameter-

s W and W ′ are the parameters of contextual learner ω(·).
Inspired by the success of bidirectional LSTM (bi-LSTM)

[29] in several inherently sequential tasks (e.g., machine

translation [1], speech recognition [2, 10] and video gen-

eration [24]), we leverage bi-LSTM to contextually encode

the memory MN in a sequential manner. In particular ,

bi-LSTM consisting of forward and backward LSTMs [13],

which read the memory slots of MN in its natural order

(from mk
1 to mk

M ) and the reverse order (from mk
M to mk

1),

respectively. The encoded representation
←→
h ∈ R

Dr for

memory MN is achieved by directly summating the final

hidden states of two LSTMs, where Dr denotes the dimen-

sion of LSTM hidden state. The output parameters W are

calculated as
W = Tp

←→
h , (8)

where Tp ∈ R
Dw×Dr is the transformation matrix. Ac-

cordingly, by synthesizing the parameters of contextual em-

bedding with our contextual learner, the contextual relations

between categories are elegantly integrated into this deep

embedding architecture f(x̂;W |MN ) for the unlabelled

image, which encourages the transformed representation to

be more discriminative for image recognition.

Factorized Architectures. When designing the specif-

ic architecture of the contextual embedding for unlabelled

images, the traditional convolutional layer is modified with

factorized design [4] for significantly reducing the number

of parameters within convolutional filters, making parame-

ter prediction with contextual learner more feasible.

3.5. Training Procedure

After obtaining the embedded representations of both

unlabelled image and the whole support set, we follow

the prior works [25, 31] to train our model for the widely

adopted task of one-shot learning: the C-way k-shot image

recognition task, i.e., classifying a disjoint set of unlabelled

images given a set of C unseen classes with only k labelled

images per class. Specifically, for each batch in the train-

ing stage, we firstly sample C categories uniformly from all

training categories with k examples per category, forming

the labelled support set S . The corresponding unlabelled

images set B are randomly sampled from the rest data be-

longing to the C categories in training set. Hence, given the

support set S and input unlabelled images set B, the soft-

max loss is then formulated as:

L(S,B) = −

∑

x̂∈B

∑

(xn,yn)∈S

I(ŷ=yn) log
eP (yn|x̂,S)

∑
(xt,yt)∈S

eP (yt|x̂,S)
, (9)

where ŷ ∈ C represents the class label of x̂ and P (yn|x̂,S)
denotes the probability of classifying x̂ with the class la-

bel of xn as in Eq.(2). The indicator function Icondition = 1
if condition is true; otherwise Icondition = 0. By minimiz-

ing the softmax loss over a training batch, our MM-Net is

trained to recognize the correct class labels of all the images

in B conditioned on the support set S . Accordingly, in the

test stage, given the support set S ′ containing C categories

never seen during training, our model can rapidly predic-

t the class label for an unlabelled image through matching

mechanism, without any fine-tuning on the novel categories

due to its non-parametric property.

Mixed training strategy. In the above mentioned train-

ing procedure, each training batch is constructed with the

uniform setting which exactly matches the test setting (C-

way k-shot), targeting for mimicking the test situation for

one-shot learning. However, such matching mechanism in-

dicates that the learnt model is only suitable for the pre-

fixed C-way k-shot test scenario, making it difficult to gen-
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eralize to other C ′-way k′-shot task (where C ′ 6= C or

k′ 6= k). Accordingly, to enhance the generalization of

the one-shot learning model, we devise a mixed training

strategy by constructing each training batch with different

number of shots and categories to learn an unified archi-

tecture for performing inference on any one-shot learning

scenarios. Please note that the memory could be regarded

as an uniform medium which converts different size of sup-

port sets into common memory slots. As a result, the mixed

training strategy can be applied to learn an unified model

irrespective of the number of shots and categories.

4. Experiment

We evaluate and compare our MM-Net with state-of-the-

art approaches on two datasets, i.e., Omniglot [17] and mi-

niImageNet [25]. The former is the most popular one-shot

image recognition benchmark of handwritten characters and

the latter is a recently released subset of ImageNet [26].

4.1. Datasets

Omniglot. Omniglot contains 32,460 images of hand-

written characters. It consists of 1,623 different characters

within 50 alphabets ranging from well-established interna-

tional languages like Latin and Korean to lesser-known lo-

cal dialects. Each character was hand drawn by 20 different

people via Amazon’s Mechanical Turk, leading to 20 im-

ages per character. We follow the most common split in

[31], taking 1,200 characters for training and the rest 423

for testing. Moreover, the same data preprocessing in [31]

is adopted, i.e., each image is resized to 28× 28 pixels and

rotated by multiples of 90 degrees as data augmentation.

miniImageNet. The miniImageNet dataset is a recent

collection of ImageNet for one-shot image recognition. It is

composed of 100 classes randomly selected from ImageNet

[26] and each class contains 600 images with the size of

84 × 84 pixels. Following the widely used setting in prior

work [25], we take 64 classes for training, 16 for validation

and 20 for testing, respectively.

4.2. Experimental Settings

Evaluation Metrics. All of our experiments revolve

around the same basic task: the C-way k-shot image recog-

nition task. In the test stage, we randomly select a support

set consisting of C novel classes with k labelled images per

class from the test categories and then measure the classi-

fication accuracy of the disjoint unlabelled images (15 im-

ages per class) for evaluation. To make the evaluation more

convincing, we repeat such evaluation procedures 500 times

for each setting and report the final mean accuracy for each

setting. Moreover, the 95% Confidence Intervals (CIs) of

the mean accuracy is also present, which statistically de-

scribes the uncertainty inherent in performance estimation

like standard deviation. The smaller the confidence interval,

the more precise the mean accuracy performance.

Network Architectures and Parameter Settings. For

fair comparison with other baselines, we adopt a widely

adopted CNNs in [25, 31] as the embedding function for

support set g (·), consisting of four convolutional layers.

Each convolutional layer is devised with a 3 × 3 convolu-

tion with 64 filters followed by batch normalization, a Re-

LU non-linearity and a 2 × 2 max-pooling. Accordingly,

the final output embedding space dimension Dz is 64 on

Omniglot and 1,600 on miniImageNet, respectively. The

contextual embedding for unlabelled image f (·) is similar

to g (·) except that the last convolution layer is develope-

d with factorized design and its parameters are predicted

based on the contextual memory of support set. For the

memory module, the dimension of each memory key Dm is

set as 512. For contextual learner, we set the size of hidden

layer in bi-LSTM as 512. Our MM-Net is trained by Adam

[15] optimizer. The initial learning rate is set as 0.001 and

we decrease it to 50% every 20,000 iterations. The batch

size is set as 16 and 4 for Omniglot and miniImageNet.

4.3. Compared Approaches

To empirically verify the merit of our MM-Net model,

we compare with the following state-of-the-art methods: (1)

Siamese Networks (SN) [16] optimizes siamese networks

with weighted L1 loss of distinct input pairs for one-shot

learning. (2) Matching Networks (MN) [31] performs one-

shot learning with matching mechanism in the embedding

space, which is further developed into fully-contextual em-

bedding version (MN-FCE) by utilizing bi-LSTM to con-

textually embed samples. (3) Memory-Augmented Neu-

ral Networks (MANN) [27] devises a memory-augmented

neural network to rapidly assimilate new data for one-shot

learning. (4) Model-Agnostic Meta-Learning (MAML) [9]

learns easily adaptable model parameters through gradient

descent in a meta-learning fashion. (5) Meta-Learner LST-

M (ML-LSTM) [25] designs a LSTM-based meta-learner to

learn an update rule for optimizing the network. (6) Siamese

with Memory (SM) [14] presents a life-long memory mod-

ule to remember past training samples and makes predic-

tions based on stored previous samples. (7) Meta-Networks

(Meta-N) [21] takes the loss gradient as meta information to

rapidly generate the parameters of classification networks.

(8) Memory Matching Networks (MM-Net) is the propos-

al in this paper. Moreover, a slightly different version of

this run is named as MM-Net−, which is trained without

the mixed training strategy.

4.4. Results on Omniglot

Table 1 shows the performances of different models on

Omniglot dataset. Overall, the results across 1-shot and

5-shot learning on 5 and 20 categories consistently indi-
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Table 1. Mean accuracy (%) ± CIs (%) of our MM-Net and other

state-of-the-art methods on Omniglot dataset.

Model
5-way Accuracy 20-way Accuracy

1-shot 5-shot 1-shot 5-shot

SN [16] 97.3 98.4 88.2 97.0

MN [31] 98.1 98.9 93.8 98.5

MANN [27] 82.8 94.9 — —

SM [14] 98.4 99.6 95.0 98.6

Meta-N [21] 98.95 — 97.00 —

MAML [9] 98.7± 0.4 99.9 ± 0.1 95.8± 0.3 98.9 ± 0.2

MM-Net 99.28 ± 0.08 99.77 ± 0.04 97.16 ± 0.10 98.93 ± 0.05

cate that our proposed MM-Net achieves superior perfor-

mances against other state-of-the-art techniques including

deep embedding models (SN, MN, SM) and meta-learning

approaches (MANN, Meta-N, MAML). In particular, the

5-way and 20-way accuracy of our MM-Net can achieve

99.28% and 97.16% on 1-shot learning, making the ab-

solute improvement over the best competitor Meta-N by

0.33% and 0.16%, respectively, which is generally consid-

ered as a significant progress on this dataset. As expected,

the 5-way and 20-way accuracies are boosted up to 99.77%

and 98.93% respectively when provided 5 labelled images

(5 shot) from each category. SN, which simply achieves the

deep embedding space through pairwise learning, is still ef-

fective in 5-way task. However, the accuracy is decreased

sharply when searching nearest neighbor in the embedding

space in 20-way 1-shot scenario. Furthermore, MN, MAN-

N, SM, Meta-N, MAML, and MM-Net lead to a large per-

formance boost over SN, whose training strategy does not

match the inference. The results basically indicate the ad-

vantage of bridging the discrepancy between how the model

is trained and exploited at test time. SM by augmenting C-

NNs with a life-long memory module to exploit the contex-

tual memory among previous labelled samples for one-shot

learning, improves MN, but the performances are still low-

er than our MM-Net. This confirms the effectiveness of the

contextual learner for directly synthesizing the parameters

of CNNs, obviating adapting the embedding to novel class-

es with fine-tuning.

4.5. Results on miniImageNet

The performance comparisons on miniImageNet are

summarized in Table 2. Our MM-Net performs consistent-

ly better than other baselines. In particular, the 5-way ac-

curacies of 1-shot and 5-shot learning can reach 53.37%

and 66.97%, respectively, which is to-date the highest per-

formance reported on miniImageNet, making the absolute

improvement over MAML by 4.67% and 3.86%. MN-FCE

exhibits better performance than MN, by further taking con-

textual information within support set into account for em-

bedding learning of images. ML-LSTM and MAML which

learns an update rule to fine-tune the CNNs or the easily

adaptable parameters of CNNs could be generally consid-

Table 2. Mean accuracy (%) ± CIs (%) of our MM-Net and other

state-of-the-art methods on miniImageNet dataset.

Model
5-way Accuracy

1-shot 5-shot

MN [31] 43.40± 0.78 51.09± 0.71

MN-FCE [31] 43.56± 0.84 55.31± 0.73

ML-LSTM [25] 43.44± 0.77 60.60± 0.71

MAML [9] 48.70± 1.84 63.11± 0.92

Meta-N [21] 49.21± 0.96 —

MM-Net− 52.74± 0.45 65.82± 0.37

MM-Net 53.37 ± 0.48 66.97 ± 0.35

Table 3. Mean accuracy (%) of MM-Net by varying train-

ing strategies for 5-way k-shot image recognition task (k ∈
{1, 2, 3, 4, 5}) on miniImageNet.

Train
Test

1-shot 2-shot 3-shot 4-shot 5-shot

1-shot 52.74 57.53 59.31 60.02 60.33

2-shot 52.68 59.14 62.11 63.39 63.92

3-shot 51.67 58.48 62.21 64.03 65.40

4-shot 51.44 58.56 62.12 64.48 65.77

5-shot 51.09 58.03 61.80 64.14 65.82

Mixed k-shot 52.83 59.88 63.31 65.32 66.71

Mixed C-way k-shot 53.37 59.93 63.35 65.49 66.97

ered as extensions of MN in a meta-learning fashion, re-

sulting in better performance. There is a performance gap

between Meta-N and our MM-Net−. Though both runs in-

volve the parameters prediction of CNNs, they are funda-

mental different in the way of parameters prediction. Meta-

N predicts the parameters of the classification networks for

unlabelled images based on the loss gradient of support set,

while our MM-Net− leverages contextual information in

memory to jointly predict the parameters of CNNs for unla-

belled images and contextually encode support images. As

indicated by our results, MM-Net− is benefited from the

memory-augmented CNNs for both support set and unla-

belled images, and leads to apparent improvements. In ad-

dition, MM-Net by additionally leveraging the mixed train-

ing strategy outperforms MM-Net−.

4.6. Experimental Analysis

We further analyze the effect of training strategy, the hid-

den state size of bi-LSTM in contextual learner, the image

representation embedding visualization, and the similarity

matrix over test images for 5-way k-shot image recognition

task on miniImageNet Dataset.

Training strategy. We first present the analysis to

demonstrate the generalization of our MM-Net by employ-

ing mixed training strategy for various test scenarios. Ta-

ble 3 details the performance comparisons between several

training strategies (i.e., uniform and mixed training strate-

gies) with respect to different test tasks (i.e., 1, 2, 3, 4 and

5-shot). Overall, for each test scenario, there is a clear per-

formance gap between all the five uniform training strate-
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