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Abstract

Due to its computation efficiency and retrieval quality,

hashing has been widely applied to approximate nearest

neighbor search for large-scale image retrieval, while deep

hashing further improves the retrieval quality by end-to-

end representation learning and hash coding. With compact

hash codes, Hamming space retrieval enables the most effi-

cient constant-time search that returns data points within a

given Hamming radius to each query, by hash table lookups

instead of linear scan. However, subject to the weak capa-

bility of concentrating relevant images to be within a small

Hamming ball due to mis-specified loss functions, exist-

ing deep hashing methods may underperform for Hamming

space retrieval. This work presents Deep Cauchy Hashing

(DCH), a novel deep hashing model that generates compact

and concentrated binary hash codes to enable efficient and

effective Hamming space retrieval. The main idea is to de-

sign a pairwise cross-entropy loss based on Cauchy distri-

bution, which penalizes significantly on similar image pairs

with Hamming distance larger than the given Hamming ra-

dius threshold. Comprehensive experiments demonstrate

that DCH can generate highly concentrated hash codes and

yield state-of-the-art Hamming space retrieval performance

on three datasets, NUS-WIDE, CIFAR-10, and MS-COCO.

1. Introduction

In the big data era, large-scale and high-dimensional me-

dia data has been pervasive in search engines and social

networks. To guarantee retrieval quality and computation

efficiency, approximate nearest neighbor (ANN) search has

attracted increasing attention. Parallel to the traditional in-

dexing methods [18] for candidates pruning, another advan-

tageous solution is hashing methods [31] for data compres-

sion, which transform high-dimensional media data into

compact binary codes and generate similar binary codes for

similar data items. This paper will focus on the learning
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to hash methods [31] that build data-dependent hash en-

coding schemes for efficient image retrieval, which have

shown better performance than the data-independent hash-

ing methods, e.g. Locality-Sensitive Hashing (LSH) [10].

Many learning to hash methods have been proposed to

enable efficient ANN search by Hamming ranking of com-

pact hash codes, including both supervised and unsuper-

vised methods [16, 12, 26, 9, 22, 30, 25, 24, 35]. Recently,

deep learning to hash methods [33, 17, 28, 8, 36, 19, 21, 4]

have shown that deep neural networks can enable end-to-

end representation learning and hash coding with nonlinear

hash functions. These deep learning to hash methods have

shown state-of-the-art search performance. In particular,

they prove it crucial to jointly learn similarity-preserving

representations and control quantization error of converting

continuous representations to binary codes [36, 19, 21, 4].

However, most of the existing methods are tailored to

data compression instead of candidates pruning, i.e. they

are designed to maximize retrieval performance based on

linear scan of hash codes. As linear scan is still costly even

using hash codes, we are somewhat deviating from our orig-

inal intention with hashing, that is, to maximize speedup

under acceptable accuracy. With the blossom of powerful

hashing methods for linear scan, we should now turn to the

Hamming space retrieval [9], which enables the most effi-

cient constant-time search. In Hamming space retrieval, we

return data points within a given Hamming radius to each

query, by hash table lookups instead of linear scan. Unfor-

tunately, existing hashing methods generally lack the capa-

bility of concentrating relevant images to be within a small

Hamming ball due to the mis-specified loss functions, thus

they may underperform for Hamming space retrieval.

This work presents Deep Cauchy Hashing (DCH), a

novel deep hashing model that generates concentrated and

compact hash codes to enable efficient and effective Ham-

ming space retrieval. We propose a pairwise cross-entropy

loss based on Cauchy distribution, which penalizes signifi-

cantly on similar image pairs with Hamming distance larger

than the given Hamming radius threshold. We further pro-
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pose a quantization loss based on the Cauchy distribution,

which enables learning nearly lossless hash codes. Both

loss functions can be derived in a Bayesian learning frame-

work and are well-specified to the Hamming space retrieval.

The proposed DCH model can be trained end-to-end by

back-propagation. Extensive experiments demonstrate that

DCH can generate highly concentrated and compact hash

codes and yield state-of-the-art image retrieval performance

on three datasets, NUS-WIDE, CIFAR-10, and MS-COCO.

2. Related Work

Existing hashing methods [2, 16, 12, 26, 22, 30, 25, 11,

34, 35, 24] consist of unsupervised and supervised hashing.

Please refer to [31] for a comprehensive survey.

Unsupervised hashing methods learn hash functions that

encode data to binary codes by training from unlabeled data.

Typical methods include reconstruction error minimization

[27, 12, 14] and graph embedding [32, 23]. Supervised

hashing further explores supervised information (e.g. pair-

wise similarity or relevance feedback) to generate discrimi-

native and compact hash codes [16, 26, 22, 28]. Supervised

Hashing with Kernels (KSH) [22] and Supervised Discrete

Hashing (SDH) [28] generate nonlinear or discrete binary

hash codes by minimizing (maximizing) the Hamming dis-

tances across similar (dissimilar) pairs of data points.

Recently, deep learning to hash methods [33, 17, 28, 8,

36, 1, 21, 4] yield breakthrough results on image retrieval

datasets by blending the power of deep learning [15, 13]. In

particular, DHN [36] is the first end-to-end framework that

jointly preserves pairwise similarity and controls the quan-

tization error. HashNet [4] improves DHN by balancing the

positive and negative pairs in training data, and by continu-

ation technique for lower quantization error, which obtains

state-of-the-art performance on several benchmark datasets.

However, previous deep hashing methods perform un-

satisfactorily for Hamming space retrieval [9], with early

pruning to discard irrelevant data points out of Hamming

Radius 2. The reason for inefficient Hamming space re-

trieval is that their loss functions penalize little when two

similar data points have large Hamming distance. Thus they

cannot concentrate relevant data points to be within Ham-

ming radius 2. We propose a novel cross-entropy loss for

similarity-preserving learning and a novel quantization loss

for controlling hashing quality, both based on the Cauchy

distribution. To our knowledge, this work is the first en-

deavor towards deep hashing for Hamming space retrieval.

3. Deep Cauchy Hashing

In similarity retrieval systems, we are given a training set

of N points {xi}
N
i=1

, each represented by a D-dimensional

feature vector xi ∈ R
D. Some pairs of points xi and

xj are provided with similarity labels sij , where sij = 1

if xi and xj are similar while sij = 0 if xi and xj are

dissimilar. Deep hashing learns a nonlinear hash function

f : x 7→ h ∈ {−1, 1}
K

from input space R
D to Hamming

space {−1, 1}K using deep neural networks, which encodes

each point x into compact K-bit hash code h = f(x) such

that the similarity information conveyed in given pairs S
can be preserved in the compact hash codes. In supervised

hashing, the similarity information S = {sij} can be col-

lected from the semantic labels of data points or relevance

feedback from click-through data in online search engines.

Definition 1 (Hamming Space Retrieval). For binary codes

of K bits, the number of distinct hash buckets to examine

is N (K, r) =
∑r

k=0

(

K
k

)

, where r is the Hamming radius.

N (K, r) grows rapidly with r and when r ≤ 2, it only re-

quires O(1) time for each query to find all r-neighbors.

Hamming space retrieval refers to the retrieval scenario

that directly returns data points within Hamming radius r
to each query, by hash table lookups instead of linear scan.

This paper presents a new Deep Cauchy Hashing (DCH)

to enable efficient Hamming space retrieval in an end-to-

end framework, as shown in Figure 1. The proposed deep

architecture accepts pairwise input images {(xi,xj , sij)}
and processes them through an end-to-end pipeline of deep

representation learning and binary hash coding: (1) a con-

volutional network (CNN) for learning deep representation

of each image xi, (2) a fully-connected hash layer (fch) for

transforming the deep representation into K-bit hash code

hi ∈ {1,−1}
K , (3) a novel Cauchy cross-entropy loss for

similarity-preserving learning in Hamming space, and (4) a

novel Cauchy quantization loss for controlling both the bi-

narization error and the hashing quality in Hamming space.

3.1. Deep Architecture

The architecture for Deep Cauchy Hashing is shown in

Figure 1. We extend from AlexNet [15] with five convolu-

tional layers conv1–conv5 and three fully connected layers

fc6–fc8. We replace the classifier layer fc8 with a new hash

layer fch of K hidden units, which transforms the repre-

sentation of the fc7 layer into K-dimensional continuous

code zi ∈ R
K for each image xi. We obtain hash code

hi through the sign thresholding hi = sgn(zi). However,

since it is hard to optimize the sign function due to ill-posed

gradient, we adopt the hyperbolic tangent (tanh) function to

squash the continuous code zi to be within [−1, 1], which

reduces the gap between the continuous code zi and the bi-

nary hash code hi. To further guarantee the quality of hash

codes for efficient Hamming space retrieval, we preserve

the similarity between the training pairs {(xi,xj , sij) :
sij ∈ S} and control the quantization error, both performed

in the Hamming space. Towards this goal, this paper pro-

poses two novel loss functions based on the long-tailed

Cauchy distribution: a pairwise Cauchy cross-entropy loss
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Figure 1. The architecture of the proposed Deep Cauchy Hashing (DCH), which is comprised of four key components: (1) a convolutional

network (CNN) for learning deep representation of each image xi, (2) a fully-connected hash layer (fch) for transforming the deep repre-

sentation into K-bit hash code hi ∈ {1,−1}K , (3) a novel Cauchy cross-entropy loss for similarity-preserving learning in the Hamming

space, and (4) a novel Cauchy quantization loss for controlling both the binarization error and the hash code quality. Best viewed in color.

and a pointwise Cauchy quantization loss, both derived in

the Maximum a Posteriori (MAP) estimation framework.

3.2. Bayesian Learning Framework

In this paper, we propose a Bayesian learning framework

to perform deep hashing from similarity data by jointly pre-

serving similarity of pairwise images and controlling the

quantization error. Given training images with pairwise

similarity labels as {(xi,xj , sij) : sij ∈ S}, the logarithm

Maximum a Posteriori (MAP) estimation of the hash codes

H = [h1, . . . ,hN ] for N training images can be defined as

logP (H|S) ∝ logP (S|H)P (H)

=
∑

sij∈S
wij logP (sij |hi,hj) +

N
∑

i=1

logP (hi)

(1)

where P (S|H) =
∏

sij∈S [P (sij |hi,hj)]
wij is the

weighted likelihood function [6], and wij is the weight for

each training pair (xi,xj , sij), which tackles the data im-

balance problem by weighting training pairs according to

the importance of misclassifying that pair. Since similarity

label can only be sij = 1 or sij = 0, to account for the data

imbalance between similar and dissimilar pairs, we propose

wij =

{

|S| / |S1| , sij = 1

|S| / |S0| , sij = 0
(2)

where S1 = {sij ∈ S : sij = 1} is the set of similar pairs

and S0 = {sij ∈ S : sij = 0} is the set of dissimilar pairs.

For each pair, P (sij |hi,hj) is the conditional probability

of similarity label sij given a pair of hash codes hi and hj ,

which can be naturally defined by the Bernoulli distribution,

P (sij |hi,hj) =

{

σ (d (hi,hj)) , sij = 1

1− σ (d (hi,hj)) , sij = 0

= σ(d (hi,hj))
sij (1− σ (d (hi,hj)))

1−sij

(3)

where d (hi,hj) denotes the Hamming distance between

hash codes hi and hj , and σ is a well-defined probability

function to be elaborated in the next subsection.

Similar to binary-class logistic regression for pointwise

data, we see in Equation (3) that the smaller the Hamming

distance d (hi,hj) is, the larger the conditional probability

P (1|hi,hj) will be, implying that the image pair xi and xj

should be classified as similar; otherwise, the larger the con-

ditional probability P (0|hi,hj) will be, implying that the

image pair should be classified as dissimilar. Hence, Equa-

tion (3) is a reasonable extension of the binary-class logistic

regression to the pairwise classification scenario, which is a

natural solution to the binary similarity labels sij ∈ {0, 1}.

3.3. Cauchy Hash Learning

With the Bayesian learning framework, any valid prob-

ability function σ and distance function d can be used to

instantiate a specific hashing model. Previous state-of-the-

art deep hashing methods, such as DHN [36] and HashNet

[4], usually adopt generalized sigmoid function σ (x) =
1/(1 + e−αx) as the probability function. However, we dis-

cover a key misspecification problem of the generalized sig-

moid function as illustrated in Figure 2. We can observe that

the probability of generalized sigmoid function (by varying

α) stays high when the Hamming distance between hash

codes is much larger than 2 and only starts to decrease ob-

viously when the Hamming distance becomes close to K/2.

This implies that previous deep hashing methods cannot

pull the Hamming distance between the hash codes of simi-

lar data points to be smaller than 2, because the probabilities

for different Hamming distances smaller than K/2 are not

discriminative enough. This is a severe disadvantage of the

existing hashing methods, which makes efficient Hamming

space retrieval impossible. Note that, a well-specified loss

function for Hamming space retrieval should penalize sig-

nificantly for similar points with Hamming distance greater

than 2, while prior methods are misspecified for this goal.
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Figure 2. The values of Probability (a) and Loss (b) with respect to

Hamming Distance between the hash codes of similar data points

(sij = 1). Probability (Loss) based on generalized sigmoid func-

tion is very large (small) even for Hamming distance much larger

than 2, which is ill-specified for Hamming ball retrieval. As a de-

sired property, Probability based on Cauchy distribution is large

only for smaller Hamming distance; loss based on Cauchy distri-

bution significantly penalizes for Hamming distance larger than 2.

To tackle the above misspecification problem of sigmoid

function, we propose a novel probability function based on

the Cauchy distribution with many desired properties as

σ (d (hi,hj)) =
γ

γ + d (hi,hj)
, (4)

where γ is the scale parameter of the Cauchy distribution,

and the normalization constant 1

π
√
γ

is omitted for clarity,

since it will not influence the final model. In Figure 2, we

can observe that the probability of the proposed Cauchy dis-

tribution decreases very fast when the Hamming distance

is small, resulting in that the similar points will be pulled

to be within small Hamming radius. The decaying speed

of the probability will be even faster by using a smaller γ,

which imposes more force to concentrate similar points to

be within small Hamming radius. Hence, the scale parame-

ter γ is very important to control the tradeoff levels between

precision and recall. By simply varying γ, we can support

diverse Hamming space retrieval scenarios with different

Hamming radiuses to give different pruning rates.

Since discrete optimization of Equation (1) with binary

constraints hi ∈ {−1, 1}
K is very challenging, continuous

relaxation is applied to the binary constraints for ease of

optimization, as adopted by most previous hashing methods

[31, 36]. To control the quantization error ‖hi − sgn(hi)‖
caused by continuous relaxation and to learn high-quality

hash codes, we propose a novel prior for each hash code hi

based on a symmetric variant of the Cauchy distribution as

P (hi) =
γ

γ + d (|hi| ,1)
, (5)

where γ is the scale parameter of the symmetric Cauchy

distribution, and 1 ∈ R
K is the vector of ones.

By using the continuous relaxation, we need to replace

the Hamming distance with its best approximation on con-

tinuous codes. For a pair of binary hash codes hi and hj ,

there exists a nice relationship between their Hamming dis-

tance d(hi,hj) and the normalized Euclidean distance as

d (hi,hj) =
K

4

∥

∥

∥

∥

hi

‖hi‖
−

hj

‖hj‖

∥

∥

∥

∥

2

2

=
K

2
(1− cos (hi,hj)) .

(6)

Hence this paper adopts d (hi,hj) =
K
2
(1− cos (hi,hj)).

After using the continuous relaxation to ease the optimiza-

tion, the normalized Euclidean distance compares each pair

of continuous codes on a unit sphere, while the Hamming

distance compares each pair of hash codes on a unit hyper-

cube. More intuitively, the unit sphere is always a circum-

scribed sphere of the hypercube. As a desirable result, by

mitigating the diversity of code lengths, the normalized Eu-

clidean distance on continuous codes is always the upper

bound of the Hamming distance on hash codes.

By taking Equations (3) and (5) into the MAP estima-

tion framework in Equation (1), we obtain the optimization

problem of the proposed Deep Cauchy Hashing (DCH) as

min
Θ

L+ λQ, (7)

where λ is a hyper-parameter to trade-off the Cauchy cross-

entropy loss L and the Cauchy quantization loss Q, and

Θ denotes the set of network parameters to be optimized.

Specifically, the Cauchy cross-entropy loss L is derived as

L =
∑

sij∈S

wij

(

sij log
d (hi,hj)

γ
+ log

(

1 +
γ

d (hi,hj)

))

,

(8)

and similarly, the Cauchy quantization loss is derived as

Q =

N
∑

i=1

log

(

1 +
d (|hi| ,1)

γ

)

, (9)

where d(·, ·) is either the Hamming distance between the

hash codes or the normalized Euclidean distance between

the continuous codes. Since the quantization error will be

controlled by the proposed Cauchy quantization loss in the

joint optimization problem (7), for ease of optimization, we

can use continuous relaxation for the hash codes hi during

training (only for training, not for testing).

Based on the MAP estimation in Equation (7), we can

enable statistically optimal learning of compact hash codes

by jointly preserving the pairwise similarity and control-

ling the quantization error. Finally, we can obtain K-bit bi-

nary codes by simple sign thresholding h← sgn(h), where

sgn(h) is the sign function on vectors that for i = 1, . . . ,K,

sgn(hi) = 1 if hi > 0, otherwise sgn(hi) = −1. It is worth

noting that, since we have minimized the quantization error

in (7) during training, this final binarization step will incur

very small loss of retrieval quality as validated empirically.
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4. Experiments

We evaluate the efficacy of the proposed DCH approach

with several state-of-the-art shallow and deep hashing meth-

ods on three benchmark datasets. Codes and configurations

will be available at: https://github.com/thuml.

4.1. Setup

NUS-WIDE [5] is a benchmark dataset that contains

269,648 images from Flickr.com. Each image is man-

ually annotated by some of the 81 ground truth concepts

(categories) for evaluating retrieval models. We follow sim-

ilar experimental protocols in [36, 4], and randomly sam-

ple 5,000 images as the query points, with the remaining

images used as the database and randomly sample 10,000

images from the database as the training points.

MS-COCO [20] is a popular dataset for image recog-

nition, segmentation and captioning. The current release

contains 82,783 training images and 40,504 validation im-

ages, where each image is labeled by some of the 80 seman-

tic concepts. We randomly sample 5,000 images as query

points, with the rest used as the database, and randomly

sample 10,000 images from the database for training.

CIFAR-10 is a standard dataset with 60,000 images in

10 classes. We follow protocol in [36, 3] to randomly select

100 images per class as query set, 500 images per class as

training set, and the rest images are used as the database.

Following standard protocol as in [33, 17, 36, 4], the sim-

ilarity information for hash learning and for ground-truth

evaluation is constructed from image labels: if two images

i and j share at least one label, they are similar and sij = 1;

otherwise, they are dissimilar and sij = 0. Note that, al-

though we use the image labels to construct the similarity

information, the proposed approach DCH can learn hash

codes when only the similarity information is available. By

constructing the training data in this way, the ratio between

the number of dissimilar pairs and the number of similar

pairs is roughly 10, 5, and 1 for CIFAR-10, NUS-WIDE,

and MS-COCO, respectively. These datasets exhibit the

data imbalance phenomenon and can be used to evaluate

different hashing methods under data imbalance scenario.

We compare the retrieval performance of DCH with

eight classical or state-of-the-art hashing methods: super-

vised shallow methods ITQ-CCA [12], BRE [16], KSH

[22], and SDH [28], and supervised deep methods CNNH

[33], DNNH [17], DHN [36], and HashNet [4].

We follow standard evaluation methods for Hamming

space retrieval [9], which consists of two consecutive steps:

(1) Pruning, to return data points within Hamming radius 2

for each query using hash table lookups; (2) Scanning, to

re-rank the returned data points in ascending order of their

distances to each query using continuous codes. To evalu-

ate the effectiveness of Hamming space retrieval, we report

three standard evaluation metrics to measure the quality of

the data points within Hamming radius 2: Mean Average

Precision within Hamming Radius 2 (MAP@H≤2), Preci-

sion curves within Hamming Radius 2 (P@H≤2), and Re-

call curves within Hamming Radius 2 (R@H≤2).

Due to the potentially best efficiency, the search based on

pruning followed by re-ranking is widely-deployed in large-

scale online retrieval systems such as search engines. And

the continuous representations before the sign function are

always adopted for the re-ranking step. In the MAP@H≤2

evaluation metric, we compute the Mean Average Precision

for the re-ranked list of the data points pruned by Ham-

ming radius 2, which can measure the search quality. More

specifically, given a set of queries, we first compute the Av-

erage Precision (AP) of each query as

AP@T =

∑T

t=1
P (t) δ (t)

∑T

t′=1
δ (t′)

, (10)

where T is the number of top-returned data points within

Hamming radius 2, P (t) denotes the precision of top t re-

trieved results, and δ(t) = 1 if the t-th retrieved result is

a true neighbor of the query, otherwise δ(t) = 0. Then

MAP@H≤2 is computed as the mean of average precisions

for all queries. The larger the MAP@H≤2, the better the

search quality for the data points within Hamming radius 2.

For shallow hashing methods, we use as image features

the 4096-dimensional DeCAF7 features [7]. For deep hash-

ing methods, we use raw images as the input. We adopt

the AlexNet architecture [15] for all deep hashing methods,

and implement DCH based on the TensorFlow framework.

We fine-tune convolutional layers conv1–conv5 and fully-

connected layers fc6–fc7 copied from the AlexNet model

pre-trained on ImageNet and train the last layer, all through

back-propagation. As the last layer is trained from scratch,

we set its learning rate to be 10 times that of the lower lay-

ers. We use mini-batch stochastic gradient descent (SGD)

with 0.9 momentum and cross-validate the learning rate

from 10−5 to 10−2 with a multiplicative step-size 10
1

2 . We

fix the mini-batch size of images as 256 and the weight de-

cay parameter as 0.0005. We select the model parameters

of DCH, λ and γ, by cross-validation. We also select the

parameters of each comparison method by cross-validation.

4.2. Results

The Mean Average Precision of Re-ranking within Ham-

ming Radius 2 (MAP@H≤2) results of all comparison

methods are listed in Table 1. Results show that DCH sub-

stantially outperforms all comparison methods, in that DCH

can perform high-quality pruning within Hamming radius 2

in the first step, enabling efficient re-ranking in the second

step. Specifically, compared to SDH, the best shallow hash-

ing method with deep features as input, DCH achieves ab-

solute increases of 14.4%, 13.3% and 21.9% in average
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Table 1. Mean Average Precision of Re-ranking within Hamming Radius 2 (MAP@H≤2) for Different Bits on Three Benchmark Datasets

Method
NUS-WIDE MS-COCO CIFAR-10

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

ITQ-CCA [12] 0.5706 0.4397 0.0825 0.0051 0.5949 0.5612 0.0585 0.0105 0.4258 0.4652 0.4774 0.4932

BRE [16] 0.5502 0.5422 0.4128 0.2202 0.5625 0.5498 0.4214 0.4014 0.4216 0.4519 0.4002 0.3438

KSH [22] 0.5185 0.5659 0.4102 0.0608 0.5797 0.5532 0.2338 0.0216 0.4368 0.4585 0.4012 0.3819

SDH [28] 0.6681 0.6824 0.5979 0.4679 0.6449 0.6766 0.5226 0.5108 0.5620 0.6428 0.6069 0.5012

CNNH [33] 0.5843 0.5989 0.5734 0.5729 0.5602 0.5685 0.5376 0.5058 0.5512 0.5468 0.5454 0.5364

DNNH [17] 0.6191 0.6216 0.5902 0.5626 0.5771 0.6023 0.5235 0.5013 0.5703 0.5985 0.6421 0.6118

DHN [36] 0.6901 0.7021 0.6685 0.5664 0.6749 0.6680 0.5151 0.4186 0.6929 0.6445 0.5835 0.5883

HashNet [4] 0.6944 0.7147 0.6736 0.6190 0.6851 0.6900 0.5589 0.5344 0.7476 0.7776 0.6399 0.6259

DCH 0.7401 0.7720 0.7685 0.7124 0.7010 0.7576 0.7251 0.7013 0.7901 0.7979 0.8071 0.7936
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Figure 3. The Precision curves within Hamming Radius 2 (P@H≤2) of DCH and comparison methods on the three benchmark datasets.
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Figure 4. The Recall curves within Hamming Radius 2 (R@H≤2) of DCH and comparison methods on the three benchmark datasets.

MAP@H≤2 with different code lengths on NUS-WIDE,

MS-COCO and CIFAR-10, respectively. DCH outperforms

HashNet, the state-of-the-art deep hashing method, by large

margins of 7.3%, 10.4% and 9.9% in average MAP@H≤2

with different code lengths on three benchmark datasets.

The MAP@H≤2 results reveal some interesting insights.

(1) Shallow hashing methods cannot learn discriminative

deep features and compact hash codes through end-to-end

framework, which explains the fact that they are surpassed

by deep hashing methods. (2) Deep hashing methods DHN

and HashNet learn less lossy hash codes by preserving

the similarity information and controlling the quantization

error, which also significantly outperform deep methods

CNNH and DNNH without reducing the quantization error.

The proposed DCH model improves substantially from

the state-of-the-art HashNet by two important perspectives:

(1) DCH preserves similarity relationships based on Cauchy

distribution, which can achieve better pruning performance

within Hamming radius 2; (2) DCH learns the novel Cauchy

cross-entropy loss and Cauchy quantization loss based on

normalized distance, which can better approximate the

Hamming distance to learn nearly lossless hash codes.

The performance of Precision within Hamming Radius

2 (P@H≤2) is very important for Hamming space retrieval,

since it only requires O(1) time for each query and enables

really efficient pruning. As shown in Figure 3, DCH of-

ten achieves the highest P@H≤2 results on all three bench-

mark datasets with regard to different code lengths. This

validates that DCH can learn compacter hash codes than all

comparison methods and can enable more efficient and ac-

curate Hamming space retrieval. With longer hash codes,

the Hamming space will become more sparse and fewer
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Table 2. Mean Average Precision of Re-ranking within Hamming Radius 2 (MAP@H≤2) of DCH and Its Variants on Three Datasets

Method
NUS-WIDE MS-COCO CIFAR-10

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

DCH 0.7401 0.7720 0.7685 0.7124 0.7010 0.7576 0.7251 0.7013 0.7901 0.7979 0.8071 0.7936

DCH-Q 0.7086 0.7458 0.7432 0.7028 0.6785 0.7238 0.6982 0.6913 0.7645 0.7789 0.7858 0.7832

DCH-C 0.6997 0.7205 0.6874 0.6328 0.6767 0.6972 0.5801 0.5536 0.7513 0.7628 0.6819 0.6627

DCH-E 0.7178 0.7511 0.7302 0.6982 0.6826 0.7128 0.6803 0.6735 0.7598 0.7739 0.7495 0.7287

data points will fall in the Hamming ball within radius 2.

This is why most previous hashing methods achieve worse

retrieval performance with longer code lengths. It is worth

noting that DCH achieves a relatively mild decrease or even

an increase in accuracy by longer code lengths, validating

that DCH can effectively concentrate hash codes of simi-

lar data points together to be within the Hamming radius 2,

which significantly benefit Hamming space retrieval.

The performance of Recall within Hamming Radius 2

(R@H≤2) is crucial for Hamming space retrieval, since it

is likely that all data points will be pruned out due to the

highly sparse Hamming space. As shown in Figure 4, DCH

achieves the highest R@H≤2 results on all three datasets

w.r.t different code lengths, which is very encouraging. This

validates that DCH can concentrate more relevant points to

be within the Hamming ball of radius 2 than all the com-

parison methods. As the Hamming space will become more

sparse when using longer hash codes, most hashing base-

lines incur serious performance drop on R@H≤2. Since the

relationships between data pairs on multi-label datasets are

more complex than that on single-label datasets, the perfor-

mance drop becomes more serious on multi-label datasets

such as NUS-WIDE and MS-COCO. By introducing the

novel Cauchy cross-entropy loss and Cauchy quantization

loss, even on multi-label datasets, the proposed DCH incurs

very small performance drop on R@H≤2 as the hash codes

become longer, showing that DCH can concentrate more

relevant points to be within Hamming radius 2 even using

longer code lengths. The ability to use longer codes gives a

flexible to tradeoff between accuracy and efficiency, a flexi-

bility that is often impossible for previous hashing methods.

4.3. Discussion

4.3.1 Ablation Study

We investigate three DCH variants: (1) DCH-Q is a DCH

variant without using the new Cauchy quantization loss (9),

in other words λ=0; (2) DCH-C is a DCH variant replac-

ing the Cauchy cross-entropy loss with the popular sigmoid

cross-entropy loss [36, 4]; (3) DCH-E is a DCH variant

replacing the normalized Euclidean distance (6) with the

Euclidean distance as d (hi,hj) = 1

4
‖hi − hj‖

2

2
. The

MAP@H≤2 results w.r.t. different code lengths on all three

benchmark datasets are reported in Table 2.

Cauchy Cross-Entropy Loss. DCH outperforms DCH-

C by very large margins of 6.3%, 9.4% and 8.3% in average

MAP@H≤2 with different code lengths on NUS-WIDE,

MS-COCO and CIFAR-10, respectively. The Cauchy cross-

entropy loss (8) is based on the Cauchy distribution, which

can keep more relevant points to be within small Hamming

radius to enable effective Hamming space retrieval, whereas

the sigmoid cross-entropy loss cannot achieve this desired

property. Also, DCH outperforms DCH-E by large margins

of 2.4%, 3.4% and 4.4% in average MAP@H≤2 with dif-

ferent code lengths on three datasets. In real search engines,

normalized distance is widely used to mitigate the diversity

of vector lengths and improve the retrieval quality, which

has not been integrated with the cross-entropy loss [31].

Cauchy Quantization Loss. DCH outperforms DCH-

Q by 2.3%, 2.3%, and 1.9% in average MAP@H≤2 with

different code lengths on three benchmarks, respectively.

These results validate that the novel Cauchy quantization

loss (9) can enhance the pruning efficiency and improve the

pruning and re-ranking results within Hamming radius 2.

4.3.2 Sensitivity Study

In Hamming space retrieval, a key aspect is to control the

tradeoff between precision and recall as well as efficiency

w.r.t. different Hamming radiuses. As aforementioned, the

time cost for Hamming pruning through hash table lookups

is N (K, r) =
∑r

k=0

(

K
k

)

, where r is the Hamming radius.

Hence N(K, r) ∝ Kr, and we can only tolerate smaller

Hamming radius, typically r ≤ 10. In other words, we

cannot use large Hamming radius for higher recall. In this

paper, we introduce the Cauchy distribution parameter γ to

fully tradeoff precision and recall, with sensitivity study of

γ in terms of precision and recall shown in Figure 5.

Figure 5(a) shows the precision curves w.r.t. different

values of γ for practical Hamming radiuses r = [0, . . . , 4].
Figure 5(b) shows the precision curves w.r.t. different Ham-

ming radiuses for typical values of γ = [2, . . . , 500], which

is an alternative view of Figure 5(a). As can be seen, larger

(smaller) Hamming radius requires larger (smaller) value

of γ to guarantee the highest precision, which is consistent

with the theoretical analysis. Although larger Hamming ra-

dius leads to higher precision when larger γ is used, the

pruning cost will be exponentially enlarged as O(Kr).
Figure 5(c) shows the recall curves w.r.t. different Ham-

ming radiuses for typical values of γ = [2, . . . , 500]. As can

be seen, larger (smaller) Hamming radius leads to higher

(lower) recall, which is consistent with the theoretical anal-
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Figure 5. Sensitivity study for DCH using 64-bit hash codes on NUS-WIDE dataset: (a) Precision curves w.r.t. γ for different Hamming

radiuses, (b) Precision curves w.r.t. Hamming radiuses for different γ, and (c) Recall curves w.r.t. Hamming radiuses for different γ.
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Figure 6. The t-SNE visualization of hash codes on CIFAR-10.

ysis. A very interesting observation is that, smaller (larger)

γ leads to larger (smaller) recall. As analyzed before, γ con-

trols the power of concentrating relevant data points within

smaller Hamming balls, and smaller γ leads to larger con-

centration power. Again, although larger Hamming radius

leads to higher recall when smaller γ is used, the pruning

cost will be exponentially enlarged as O(Kr).

Therefore, DCH provides with the powerful flexibility to

tradeoff precision and recall as well the pruning efficiency.

In practice, we usually decide the Hamming radius first

based on the efficiency requirement, and typically r = 2.

Then we tradeoff the precision and recall solely based on γ.

As seen from Figure 5, γ = 5 is the best choice for Ham-

ming radius r = 2. Besides the optimal value, we can vary

γ ∈ [2, 50] to achieve both satisfactory precision and recall.

4.3.3 Visualization Study

Visualization of Hash Codes by t-SNE. Figure 6 shows

the t-SNE visualization [29] of the hash codes learned by

DCH and the best deep hashing baseline HashNet [4] on

CIFAR-10 dataset. We can observe that the hash codes gen-

erated by DCH show clear discriminative structures where

the hash codes in different categories are well separated,

while the hash codes generated by HashNet do not show

such clear structures. This verifies that by introducing the

Cauchy distribution for hashing, the hash codes generated

through DCH are more discriminative than that generated

by HashNet, enabling more effective image retrieval.
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Figure 7. The top 10 images returned by DCH and HashNet.

Top 10 Results. In Figure 7, we visualize the top 10

returned images of DCH and the best deep hashing baseline

HashNet [4] for three query images on NUS-WIDE, MS-

COCO and CIFAR-10, respectively. It shows that DCH can

yield much more relevant and user-desired retrieval results.

5. Conclusion

This paper establishes efficient and effective Hamming

space retrieval with constant-time search complexity. The

proposed Deep Cauchy Hashing (DCH) approach generates

compact and concentrated hash codes by jointly optimiz-

ing a novel Cauchy cross-entropy loss and a Cauchy quan-

tization loss in a single Bayesian learning framework. The

overall model can be trained end-to-end with well-specified

loss functions. Extensive experiments show that DCH can

yield state-of-the-art Hamming space retrieval performance

on three datasets, NUS-WIDE, CIFAR-10, and MS-COCO.
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