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Abstract

In this paper, we study the face attribute learning prob-

lem by considering the identity information and attribute

relationships simultaneously. In particular, we first in-

troduce a Partially Shared Multi-task Convolutional Neu-

ral Network (PS-MCNN), in which four Task Specific Net-

works (TSNets) and one Shared Network (SNet) are con-

nected by Partially Shared (PS) structures to learn better

shared and task specific representations. To utilize iden-

tity information to further boost the performance, we intro-

duce a local learning constraint which minimizes the dif-

ference between the representations of each sample and its

local geometric neighbours with the same identity. Con-

sequently, we present a local constraint regularized multi-

task network, called Partially Shared Multi-task Convolu-

tional Neural Network with Local Constraint (PS-MCNN-

LC), where PS structure and local constraint are integrated

together to help the framework learn better attribute repre-

sentations. The experimental results on CelebA and LFWA

demonstrate the promise of the proposed methods.

1. Introduction

Face attribute learning [26, 1, 2, 30, 37, 8, 18, 9] has at-

tracted much attention in many real-world applications such

as face identification and verification [33, 23, 32, 34, 27]. It

aims to learn mid-level representations as the abstraction

between the low-level features and the high-level labels.

However, large-scale face attribute learning is still a very

challenging problem as the faces captured in the wild are

usually influenced by the variations of the factors such as

illumination, pose, and expression.

Motivated by the success of convolutional neural net-

work (CNN) [16, 35, 31, 6, 24, 10, 11], the deep CNN rep-

resentations have been widely employed for face attribute

learning. For example, Razavian et al. exploit a face
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recognition network to extract facial features and then train

SVMs for attribute classification [30]. Further, Hand and

Chellappa consider exploiting the attribute correlations to

construct reliable deep architecture for attribute classifica-

tion [9]. In particular, Multi-task deep CNN (MCNN) is in-

troduced by sharing the lower layers of network for all the

attributes and sharing the higher layers for closely related

attributes through a split structure. Based on the assumption

that many attributes are strongly correlated, MCNN divides

all the 40 attributes into nine attribute groups so that simi-

lar attributes are within a group and high-level features are

independently learned for each group.

Although MCNN has become the state-of-the-art per-

formance by exploiting the complementary information for

attributes, the interactions among different groups are re-

stricted since they are independent after the split. The

shared information vanishing among groups emerges when

it reaches the high-level layers of MCNN. Consequently, it

is difficult for attribute groups to effectively utilize the at-

tribute relatedness from the beginning of the network to its

end to boost the overall performance. From a perspective of

multi-task learning, it is necessary to learn shared features

among groups (tasks) throughout the network to model the

sophisticated attribute relationships. Further, MCNN ig-

nores the samples’ identity information which implies their

inter-dependence and encodes local geometric structure. As

such local structure usually helps feature learning, the exist-

ing attribute learning methods that ignore the identity infor-

mation may not be appropriate.

In this paper we investigate the multi-task face attribute

learning problem with a new perspective of considering

identity information and attribute relationships simultane-

ously. We hypothesize that combining identity information

and task relationship modeling enables us to develop more

accurate multi-task attribute learning algorithms. Our hy-

pothesis is based on two insights: (1) efficient interactions

among different attribute groups (tasks) help lead to more

accurate attribute relationship modeling; and (2) informa-

tive identity labels further help boost the performance by

4290



modeling local geometric structure for attribute learning.

First, we propose a novel Partially Shared Multi-task

Convolutional Neural Network (PS-MCNN) in which task

relation is captured by a Shared Network (SNet) and vari-

ability across different tasks is captured by Task Specific

Networks (TSNets). Similar to MCNN, all the attributes

are split into several groups according to spatial information

and then the classification learning of each group can be re-

garded as an individual task. The key idea of PS-MCNN

lies in sharing a common network for all the groups to learn

shared features, and constructing group specific network for

each group from the beginning of the architecture to its

end to learn task specific features, which makes it differ-

ent from the existing MCNN that learns shared features at

low-level layers while learns task specific features at high-

level ones. This way of multi-task learning helps effectively

exploit the complementary information from different tasks

while maximally preserving the specific information of spe-

cific tasks. Figure 1 gives two structure examples to show

respective strategies for PS-MCNN and MCNN.

Furthermore, we incorporate identity information into

PS-MCNN to improve the performance of multi-task face

attribute learning. To achieve this goal, a simple approach

is to treat identity as an additional face attribute. How-

ever, face identity and attribute information have different

properties. For example, an attribute is an actual evidence

that represents a specific identity and usually acts as a kind

of mid-level description. Thus, this approach ignores such

characteristic and fails to combine attribute and identity in-

formation seamlessly.

To incorporate the identity information into multi-task

attribute learning effectively, we introduce local learning

constraint which minimizes the difference between the rep-

resentations of each sample and its local geometric neigh-

bours with the same identity. Such constraint helps samples

with the same identity have more attribute similarity. Con-

sequently, we propose a Local Constraint Loss (LCLoss)

and combine it with PS-MCNN to obtain Partially Shared

Multi-task Convolutional Neural Network with Local Con-

straint (PS-MCNN-LC).

We conduct extensive evaluations to investigate the per-

formances of PS-MCNN and PS-MCNN-LC. The experi-

mental results on CelebA and LFWA show the superior per-

formances of both networks over the competing models.

2. Partially Shared Network for Face Attribute

Learning

2.1. Split structure

Multi-task learning [29, 19, 13, 20, 25, 38, 21, 5] aims at

learning multiple tasks simultaneously. It assumes that re-

lated tasks interact with each other so that they can make us-

age of complementary information from each other to boost

the overall performance. This is especially true for face at-

tribute learning with deep architectures as there is a hierar-

chy of attributes. A common strategy of multi-task attribute

learning is to use the split structure as shown in the right of

Figure 1, which shares low-level features for all the tasks

while high-level features are specifically learned for each

task after the bifurcation. Though this structure has been

used widely in deep learning methods [9, 21], it has two

main drawbacks: (1) it needs intensive experiments to find

the optimal split point, especially for deep networks; and

(2) more importantly, interactions among different tasks at

high-level layers are restricted since there are no shared lay-

ers after the bifurcation.

Figure 1. Partially Shared structure and split structure.

2.2. Partially shared structure

To overcome the above limitations of the split struc-

ture, we propose a novel network structure called Partially

Shared (PS) structure for multi-task learning. PS structure

consists of two types of networks: Task Specific Network

(TSNet) and Shared Network (SNet). TSNet focuses on

learning features for a specific task, while SNet learns in-

formative representations which are shared for each task.

SNet interacts with each TSNet through a simple connectiv-

ity pattern: to ensure maximum information flow between

layers of SNet and TSNet, we connect the layers of TSNet

with the layers of SNet. Each layer of SNet obtains addi-

tional inputs from the previous layers of TSNet and passes

on its own feature-maps to the next layers of shared and task

specific networks. As shown in Figure 1, the information

flow can be formulated as follows:

featt
′

1 = [featt1, feat
t

s
], featt+1

1 = Ht+1(featt
′

1 ),

featt
′

2 = [featt2, feat
t

s
], featt+1

2 = Ht+1(featt
′

2 ),

featt
′

s
= [featt1, feat

t

2, feat
t

s
], featt+1

s
= Ht+1(featt

′

s
),

where Ht+1(·) represents a sequence of operations:

Conv-BN-ReLU. Different from the split structure, where
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Figure 2. Architecture of PS-MCNN.

featt+1

i
, i ∈ {1, 2} is computed based on featt

s
, PS struc-

ture learns featt+1

i
based on both task specific features

featt
i

and shared features featt
s
. Besides, the shared fea-

tures, featt+1
s

, is directly related to all the features at depth

t, which enables SNet to extract informatively shared fea-

tures.

2.3. Partially shared multitask convolutional neu
ral network

Based on the proposed PS structure, we introduce a novel

Partially Shared Multi-task Convolutional Neural Network

(PS-MCNN) for face attribute learning. Similar to MCNN,

we split all the 40 attributes into four attribute groups in-

cluding Upper, Middle, Lower, and Whole Image according

to their corresponding locations. Then the attributes classi-

fication of each group can be considered as an individual

attribute learning task. The detailed group configuration is

listed bellow.

Upper Group: Arched Eyebrows, Bags Under Eyes,

Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Bushy

Eyebrows, Eyeglasses, Gray Hair, Narrow Eyes, Receding

Hairline, Wearing Hat.

Middle Group: Big Nose, High Cheekbones, Pointy

Nose, Rosy Cheeks, Sideburns, Wearing Earrings.

Lower Group: Big Lips, Double Chin, Goatee, Mus-

tache, Mouth Slightly Open, No Beard, Wearing Lipstick,

Wearing Necklace, Wearing Necktie.

Whole Image Group: 5 o’Clock Shadow, Attractive,

Blurry, Chubby, Heavy Makeup, Male, Oval Face, Pale

Skin, Straight Hair, Smiling, Wavy Hair, Young.

Figure 2 shows the architecture of PS-MCNN, where

four TSNets are exploited for four respective attribute

groups to learn task specific features and one SNet is con-

structed for shared representation learning. Meanwhile,

TSNets and SNet are connected via the PS structures at each

depth for better interactions between different tasks.

2.4. Design decisions

To fully utilize the effectiveness of PS-MCNN when ap-

plying it to a specific task such as face attribute learning,

there are two important factors that need further explo-

ration.

Network Initializations: Since PS-MCNN consists of

five individual networks, as shown in Figure 2, there are

many available initialization policies. For example, we can

choose the same initialization for TSNets and SNet or we

can train all the networks from scratch. It needs experiments

to make the optimal choice for the face attribute learning

scenario.

The Number of Channels of SNet: The number of

channels of SNet determines the fraction of shared repre-

sentations for each TSNet. There are two extreme situa-

tions. When the number of shared channels becomes zero,

SNet disappears and PS-MCNN degenerates to four inde-

pendent TSNets. On the other hand, when the fraction of

shared channels becomes one, all the features are shared
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features and PS-MCNN only includes an SNet.

3. Partially Shared Network with Local Con-

straint for Face Attribute Learning

Since the identity information usually exists in the train-

ing data in face attribute learning, we take advantage of this

information to improve the attribute classification perfor-

mance. In this section, we first introduce local learning

constraint. Then we combine it with PS-MCNN to solve

the problem of face attribute learning.

3.1. Local learning constraint

According to [7, 3], learning a good representation in a

global way might not be a good strategy because it usu-

ally fails to consider the local geometric structure in the

data. Therefore, if we can encode the geometric structure

in a simple way and fuse it into the process of represen-

tation learning, then it would be more effective to find the

appropriate embedding functions. In fact, it is common for

face verification methods [33, 4, 28, 36, 17] to adopt a lo-

cal constraint loss such as Contrastive Loss [33] or Triple

Loss [28] besides the global classification loss. In addition,

we also find that face attribute labels are highly similar for

the same identity. It implies that attributes have certain lo-

cal geometric structure through identity correlation, which

is complementary to the traditional global attribute learning.

To achieve the goal of local learning, we propose a local

learning constraint by first defining samples with the same

identity as the geometric neighbours and then constraining

the attribute representations of geometric neighbors to be

close to each other. Consequently, samples with the same

identity will have more attribute similarity. We formulate

the loss function of the local learning constraint as bellow,

referred to as LCLoss:

LCLoss =
1

N(N − 1)

N
∑

i=1

N
∑

j=i+1

wi,j ||feat
t
si − feattsj ||

2
2,

wi,j =

{

1, if sample i and sample j have the same identity

0, otherwise
.

3.2. Partially shared multitask convolutional neu
ral network with local constraint

We combine the local learning constraint and PS-MCNN

as shown in Figure 3 and compute LCLoss on the con-

catenated features of the final layers to constrain all the

four groups. Consequently, a Partially Shared Multi-task

Convolutional Neural Network with Local Constraint (PS-

MCNN-LC) is proposed and its objective function can be

formulated as follows:

Obj =

4∑

i=1

ALossi + λ× LCLoss,

Figure 3. The architecture of PS-MCNN-LC, which shares the ar-

chitecture of PS-MCNN but is different at the loss function.

where ALossi is the attribute loss of the i-th TSNet and λ
is the weight of LCLoss. In the formulation, LCLoss plays

as a local learning regularization and helps PS-MCNN-LC

model local geometric structure. The regularization param-

eter λ controls the strength of the local learning constraint.

For example, when λ becomes nearly zero, the LCLoss has

limited impact on attribute learning. On the other hand, if

λ becomes too large, PS-MCNN-LC pays more attention to

identity learning and the attribute prediction performance

may be harmed.

4. Ablative Analysis

We discuss design decisions in Sec. 4.1 and Sec. 4.2

to fix the model hyper parameters. Then, based on the fixed

model, the effectiveness of PS architecture is verified in Sec.

4.3 from two aspects. Finally complexity analysis are per-

formed in Sec. 4.4. The experimental details of ablation

studies are listed as bellow.

Datasets: CelebA dataset [18], is split into training set

(160k images), validation set (20k images) and test set (20k
images) according to the suggested configuration. For a

better comparison, we also test the performance on LFWA

dataset [12].

Network Architecture: Both PS-MCNN and PS-

MCNN-LC consist of 5 networks with the same architecture

including four TSNets and one SNet. The detailed parame-

ters are listed in Table 1. Note that Table 1 shows the num-

ber of channels of TSNets, while the number of channels of

SNet will be discussed independently in Sec. 4.2

4.1. Network initializations

We have tried three configurations for network initializa-

tions: (1) SNet and TSNets are pretrained on face recogni-

tion task on the training set of CelebA, referred to as FR;

(2) SNet and TSNets are trained from scratch; (3) SNet

is pretrained on face recognition task while each TSNet is

pretrained on the attribute prediction task within the group

on CelebA, referred to as TS. As illustrated in Table 2,

configuration (3) performs the best, since FR initialization
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Table 1. Network architecture of TNets in PS-MCNN. SNet also

shares this structure but differs on the number of the channels.

Note that batch normalization [14] and ReLU [22] are adopted

after each convolution layer and fully-connected layer.

Layer

Name

Output

Size

Layer

Parameters

Conv1 192× 160 3× 3× 32
Pooling1 96× 80 2× 2 MAX

Conv2 96× 80 3× 3× 64
Pooling2 48× 40 2× 2 MAX

Conv3 48× 40 3× 3× 128
Pooling3 24× 20 2× 2 MAX

Conv4 24× 20 3× 3× 256
Pooling4 12× 10 2× 2 MAX

Conv5 12× 10 3× 3× 128
Pooling5 6× 5 2× 2 MAX

fc6 – 512

fc7 – 512

Table 2. Performances of PS-MCNN under different network ini-

tializations.

Init.

Groups
Upp. Mid. Low. Who. Ave.

SNet(FR)

+TSNets(FR)
6.21 10.15 7.04 9.22 7.89

Scratch 6.02 9.99 6.60 8.72 7.62

SNet(FR)

+TSNets(TS)
5.98 9.87 6.64 8.64 7.51

helps SNet extract better shared representations while TS

initialization encourages TSNets to preserve more task spe-

cific features. However, when FR initializations are applied

to both SNet and TSNets, TSNets pay more attention to

identity-related areas while the attributes corresponding to

the other areas are not well learned [30].

4.2. Number of channels of SNet

We have tried six different numbers of channels as shown

in Table 3. There are two extreme situations: (1) number of

channels of SNet is zero and PS-MCNN degenerates to four

TSNets, which is called Inde. Group; and (2) there are only

shared representations but no task specific features result-

ing in PS-MCNN to be a single SNet, which is referred to

as SNet in Table 3. The performances of the two extreme

situations are significantly worse than those of regular PS-

MCNNs. Since the former has no shared features and the

latter has no task specific features, both of the situations are

not suitable for modeling attribute relationships.

Table 3. Performances of PS-MCNNs with SNets of different

numbers of channels (w.r.t. the number of TSNets in Table 1).

Num.

Groups
Upp. Mid. Low. Who. Ave.

Inde. Group 7.23 11.42 7.83 10.08 8.84

1/8 6.28 10.00 7.14 9.01 7.91

1/4 6.16 10.00 7.01 8.87 7.77

1/2 6.22 9.96 7.07 8.80 7.81

1 6.24 9.95 7.02 8.84 7.82

SNet 7.51 11.73 7.99 10.25 9.07

4.3. Effectiveness of PS Architecture

To eliminate the influence of other factors of the net-

work (e.g., attribute grouping), we train a PS-MCNN and

an Inde. Group (4 independent TSNets) on 4 closely related

attributes (Chubby, Double Chine, Mustache, No Beard),

each of which corresponds to a TSNet. We refer them as

Inde. Group (single) and PS-MCNN (single) respectively

in Table 4. By comparing the error rates of Inde. Group

(single) and PS-MCNN (single), we see that without at-

tribute grouping, the performance gain is still significant.

Therefore, the main performance gain does come from the

proposed partially shared structure instead of other factors.

Table 4. Error rates on the 4 closely related attributes.

Method Chubby Double Chin Mustache No Beard

Inde. Group

(single)
4.58 3.82 3.28 3.95

PS-MCNN

(single)
2.99 2.47 2.11 2.77

Further, PS architecture requires SNet to connect to

TSNets at every layer so that it enhances the information

exchange between attribute groups as much as possible. We

also investigate other possible designs to reduce the param-

eters of SNet. In particular, we provide the experimental re-

sults on PS-MCNN with a reduced SNet in Table 5, which

fuses and broadcasts feature from TSNets every two layers.

As we see from Table 5, the overall performance of such

designed model drops due to the reduction of information

exchange between different attribute groups. Therefore, the

current design of SNet is suitable for releasing the potential

ability of PS structure.

Table 5. Error rates on PS-MCNNs with different designs of SNets.

Method Upp. Mid. Low. Who. Ave.

Original 5.98 9.87 6.64 8.64 7.51
Reduced 6.15 10.21 6.97 9.02 7.80
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4.4. Complexity Analysis

We analyze the computational cost of MCNN [9] and

PS-MCNN with the floating-point operations (FLOPs) in

the number of multiply-adds, which is commonly used in

previous works [10, 11]. Though the actual runtime may

be influenced by other factors including coding quality and

GPU bandwidth, such cost analysis provides an estima-

tion of the speed upper bound. As shown in Table 6, PS-

MCNN consumes about 22% less FLOPs than MCNN and

has only 1/20 parameters of MCNN. Therefore, PS-MCNN

is a much more practical network. We clarify the design dif-

ferences between PS-MCNN and MCNN below.

Table 6. Complexity analysis on MCNN and PS-MCNN. For the

analysis of MCNN, we refer to the setups of [9].

Method
Input Size

w × h

No. Param.

×10
6

No. FLOPs

×10
9 Trunk Depth

MCNN 227× 227 320 8.6 5
PS-MCNN 192× 160 16 6.7 7

MCNN adopts 7 × 7 and 5 × 5 kernels for the first two

convolutional layers individually, which leads to a large

number of FLOPs. It directly feeds 14 × 14 × 500 fea-

ture maps to the fully-connected layer for each group lead-

ing to a large number of parameters. On the contrary, PS-

MCNN uses 3 × 3 kernels throughout the network and in-

puts 6×5×128 feature maps to the fully-connected layers.

Therefore, though PS-MCNN has 5 subnetworks, each is

carefully designed to reduce the numbers of parameters and

FLOPs while maximizing its learning capacity by adding

more layers.

5. Experiments

We now present experiments with PS-MCNN and PS-

MCNN-LC for face attribute learning. We use the same

datasets and network architectures as discussed in Sec. 4.

Detailed configurations of PS-MCNN and PS-MCNN-LC

are described as follows.

Training Setups: We use aligned images of CelebA

dataset with a 64 batch size for training. We set the initial

learning rate as 0.001 and decrease it two times during train-

ing. All the networks are trained on the Caffe [15] platform

with the standard mini-batch SGD method [16].

In particular, we first train SNet with only identity loss

on CelebA. Then, we remove the last fully connected layer

of SNet and link it to the 4 TSNets. Finally, the whole PS-

MCNN is trained with attribute classification loss.

Network Configurations: According to Table 2 and

Table 3, we choose 1/4 channels of TSNets for SNet while

initializing the four TSNets with TS initialization configu-

ration and SNet with FR initialization configuration.

5.1. Baselines

We compare PS-MCNN and PS-MCNN-LC with three

strong baselines. LNets+ANet [18] is the first deep learning

method for face attribute learning. MCNN [9] is the best

state-of-the-art method, which adopts a split architecture in

the network. For better comparison, we also report per-

formance of four independent TSNets, referred to as Inde.

Group. Results are reported in Table 7.

5.2. Comparisons with baselines

According to Table 7, PS-MCNN achieves an average er-

ror rate of 7.78%, better than all the competing methods. In

particular, compared with MCNN, the best state-of-the-art

method, the error rate on CelebA is reduced by 11.0 percent.

After adopting the LCLoss, the error rate is further reduced

by 19.8 percent. The performance on LFWA is also signifi-

cantly improved.

Comparison with LNets+ANet: PS-MCNN outper-

forms LNets+ANet by more than 30 percent. We attribute it

to the naive architecture of ANet, which shares all features

until the last fully-connected layer. Therefore, ANet pays

very limited attention to task specific feature learning.

Comparison with MCNN: MCNN uses the split struc-

ture, where lower layers are shared with all the attributes

while higher layers are specifically learned for groups.

Therefore, the lower layers only learn shared features while

the higher layers only learn task specific features. On the

contrary, PS-MCNN aims to learn shared features in all lay-

ers while preserving the task specific features as well. As a

result, PS-MCNN is able to model better attribute relation-

ships to improve the classification performance.

Comparison with Inde. Group: We compare Inde.

Group with PS-MCNN to verify the necessity of SNet. As

illustrated in Table 7, the error rate of Inde. Group is 1.07%

and 1.83% higher on average than those of PS-MCNN and

PS-MCNN-LC, respectively. We attribute this to the ab-

sence of shared features. Learning complementarily shared

representations for all the tasks is essential to improving the

generalization performance for multi-task learning. In par-

ticular, both PS-MCNN and PS-MCNN-LC construct a sin-

gle network SNet to achieve this goal. By learning shared

features throughout the networks, PS-MCNN encourages

the four tasks to boost the performance by utilizing the fea-

tures from each other.

To better understand the influence of the number of the

shared feature channels, we show feature maps of the conv2

layer of two samples in Table 8. With the SNet, Upper

Group puts more weights on the other areas besides the up-

per region so as Lower Group, which helps each task utilize

information from the other groups to model better attribute

relationships. For example, Male in Whole Image Group

and No Beard in Lower group are strongly correlated. The

SNet is able to help model these attribute relationships to
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Table 7. Prediction error rates on CelebA and LFWA of different methods.
CelebA LFWA

Attr.

Meth. LNets

+ANet
MCNN

Inde.

Group

PS

-MCNN

PS-MCNN

-LC

LNets

+ANet
MCNN

Inde.

Group

PS

-MCNN

PS-MCNN

-LC

5 Shadow 9 5.59 5.52 4.17 3.40 16 22.30 13.42 20.41 21.83

Arch. Eyebrows 21 16.50 16.33 15.39 14.23 18 14.10 16.92 16.51 16.47

Attractive 19 17.06 17.42 16.59 15.61 17 19.56 16.30 16.67 18.16

Bags Un. Eyes 21 15.02 14.94 13.85 12.71 17 16.49 11.60 14.77 13.26

Bald 2 1.13 1.10 0.67 0.59 12 8.01 11.89 7.61 7.40

Bangs 5 3.96 4.06 2.90 2.00 12 10.01 10.85 9.24 8.55

Big Lips 32 29.80 28.90 28.53 26.87 25 20.79 22.23 20.00 17.30

Big Nose 22 15.50 15.51 14.42 13.60 19 15.33 14.92 13.85 13.52

Black Hair 12 10.13 10.41 9.54 8.34 10 7.65 10.46 7.24 7.04

Blond Hair 5 4.03 4.61 2.97 2.07 3 3.55 3.76 3.60 1.49

Blurry 6 3.92 4.16 2.77 2.00 26 14.70 14.92 13.49 12.80

Brown Hair 20 11.01 11.24 9.82 8.97 23 19.06 18.76 17.55 18.13

Bushy Eyebrows 10 7.20 8.32 6.40 5.49 18 14.89 14.92 13.73 14.28

Chubby 8 4.34 4.33 2.78 2.34 27 23.10 22.08 21.27 21.89

Double Chin 8 3.59 3.49 2.26 1.71 22 18.83 18.20 17.38 13.30

Eyeglasses 1 0.37 0.44 0.21 0.15 5 8.78 7.43 7.44 7.22

Goatee 5 2.70 2.77 2.34 2.26 22 17.48 18.86 16.11 15.89

Gray Hair 3 1.80 2.23 1.56 1.34 16 10.96 14.91 10.15 8.96

Heavy Makeup 10 8.66 8.40 7.26 6.69 5 4.16 6.30 3.69 3.40

H. Cheekbones 13 12.45 12.64 11.43 10.50 13 11.75 14.15 10.94 11.23

Male 2 1.84 1.86 1.28 1.19 6 6.34 5.79 5.78 4.82

Mouth S. O. 8 6.26 6.23 5.02 4.01 18 16.53 16.57 15.29 15.40

Mustache 5 3.07 3.07 1.77 1.44 8 6.47 6.98 6.02 5.53

Narrow Eyes 19 12.84 12.81 11.86 10.93 19 17.63 16.83 16.16 16.49

No Beard 5 3.89 3.65 2.36 1.97 21 17.87 18.09 16.38 17.99

Oval Face 34 24.19 24.17 23.37 22.57 26 22.62 22.49 21.25 22.10

Pale Skin 8 2.98 2.92 1.76 1.16 6 6.59 11.68 6.14 5.03

Pointy Nose 28 22.53 22.81 21.90 20.68 22 12.48 15.06 11.57 12.48

Receed. Hairline 11 6.19 6.41 4.62 4.15 15 13.74 13.35 12.70 12.50

Rosy Cheeks 10 4.87 5.38 3.55 3.08 22 12.48 16.30 10.85 11.19

Sideburns 4 2.18 2.23 1.87 1.78 23 17.27 21.63 15.89 15.58

Smiling 8 7.34 7.65 6.27 5.15 9 8.25 8.98 7.39 7.30

Straight Hair 27 16.61 16.59 15.44 14.04 24 21.28 20.73 19.70 20.35

Wavy Hair 20 16.08 16.78 15.12 13.61 24 18.04 22.49 17.09 16.65

Wear. Earings 18 9.68 9.94 8.14 7.34 6 5.29 6.38 4.62 4.46

Wear. Hat 1 0.96 0.93 0.67 0.57 12 9.80 9.47 9.13 8.79

Wear. Lipstick 7 6.05 6.01 5.10 4.30 5 5.11 7.25 4.50 4.30

Wear. Necklace 29 13.18 12.97 12.22 11.02 12 10.34 10.43 9.22 9.08

Wear. Necktie 7 5.47 3.42 2.26 1.48 21 19.50 19.36 17.94 17.82

Young 13 11.52 11.20 10.51 9.46 14 14.63 14.39 13.23 13.12

Ave. 13 8.75 8.85
7.78

± 0.15

7.02

± 0.25
16 13.73 14.11

12.88

± 0.18

12.64

± 0.23

get a higher performance.

The Effectiveness of LCLoss: PS-MCNN-LC outper-

forms PS-MCNN significantly on CelebA dataset because

LCLoss captures the local geometric structure based on the

identity information. The parameter λ reflects the strength

of local learning constraint. Different λ values can lead to

dramatically different performances of PS-MCNN-LC ac-

cording to Table 9. In particular, when λ becomes nearly

zero, the LCLoss has limited impact on attribute learning so

that PS-MCNN-LC performs similarly to PS-MCNN. On

the other hand, if λ becomes too large, PS-MCNN-LC pays

more attention to identity learning and the attribute predic-

tion performance is inevitably harmed.

Overall, the current setup of identity constraint is a sim-
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Table 8. Feature maps with and without SNet. Upper Inde. or Lower Inde. refers to the feature maps without SNet while Upper or Lower

refers to the results with an SNet having 1/4 channels of a TSNet.

Input Img. Upper Inde. Upper (1/4) Lower Inde. Lower (1/4)

Table 9. PS-MCNN performances under different λ.

λ
Groups

Upp. Mid. Low. Who. Ave.

0 6.16 10.00 7.01 8.87 7.77

10−4 5.78 9.60 6.46 8.49 7.39

10−3 5.52 9.42 6.12 8.05 7.00

10−2 5.45 9.49 6.19 7.95 7.04

10−1 6.12 9.96 7.01 8.92 7.81

ple and effective way of modeling the attribute similarity of

the samples with the same identity. Further, such univer-

sal identity constraint may be not effective all the time and

more flexible schemes need to be investigated.

To better illustrate the influences of LCLoss, we show

group feature cosine similarities on the fc7 layer for 400k
same identity image pairs under different λ in Figure 4.

Though the average similarities of the four groups vary, the

similarities increase as λ increases. However, the same per-

son may have several different attribute labels. When a large

λ forces the features of different images of the same person

becoming highly similar, PS-MCNN-LC fails to learn the

attribute label variety for the same identity, which harms the

final performance as indicated in Table 9. Therefore, it is a

tradeoff choosing an appropriate λ when considering both

attribute label consistency and attribute label variety for the

different samples with the same identity.

6. Conclusion

In this paper, we investigate the face attribute learning

problem by considering the identity information and at-

tribute relationship modeling simultaneously. In particu-

lar, we first introduce a PS-MCNN, in which four TSNets

and one SNet are connected by PS structures to learn bet-

Figure 4. Inner person feature similarity under different λ of four

groups. The larger the λ, the more similar the features of the same

identity.

ter shared and task specific features. To utilize identity in-

formation, we introduce an LCLoss which minimizes the

difference between the features of each sample and its lo-

cal geometric neighbours with the same identity. Conse-

quently, we present a PS-MCNN-LC, where the PS struc-

ture and local constraint are integrated together to help the

framework learn better attribute features. The experimental

results on CelebA and LFWA demonstrate the promise of

the proposed methods.
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