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Abstract

Key to effective person re-identification (Re-ID) is mod-

elling discriminative and view-invariant factors of person

appearance at both high and low semantic levels. Recently

developed deep Re-ID models either learn a holistic single

semantic level feature representation and/or require labo-

rious human annotation of these factors as attributes. We

propose Multi-Level Factorisation Net (MLFN), a novel net-

work architecture that factorises the visual appearance of a

person into latent discriminative factors at multiple seman-

tic levels without manual annotation. MLFN is composed

of multiple stacked blocks. Each block contains multiple

factor modules to model latent factors at a specific level,

and factor selection modules that dynamically select the

factor modules to interpret the content of each input im-

age. The outputs of the factor selection modules also pro-

vide a compact latent factor descriptor that is complemen-

tary to the conventional deeply learned features. MLFN

achieves state-of-the-art results on three Re-ID datasets, as

well as compelling results on the general object categorisa-

tion CIFAR-100 dataset.

1. Introduction

Person re-identification (Re-ID) aims to match people

across multiple surveillance cameras with non-overlapping

views. It is challenging because the visual appearance of

a person across different cameras can change drastically

due to many covariates such as illumination, background,

camera view-angle and human pose (see Fig. 1). However,

there exist identity-discriminative but view-invariant visual

appearance characteristics or factors that can be exploited

for person Re-ID. As illustrated in Fig. 1, such factors can

be found at different semantic and abstraction levels, rang-

ing from low-level colour and texture to high-level con-

cepts, such as clothing type and gender. An ideal person

Re-ID model should: (i) automatically learn the space of

multi-level discriminative visual factors that are insensitive

to viewing condition changes, and (ii) recognise and exploit

them when matching testing images (as per human expert
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Figure 1. A person’s appearance can be described by appearance

factors of multiple semantic levels. Modelling the view-invariant

discriminative factors is important for matching people across

views. Each row shows a person captured by two camera views.

operating procedure [33]).

Most recent person Re-ID approaches [42, 38, 24, 32, 27,

25] employ deep neural networks (DNNs) to learn view-

invariant discriminative features. For matching, the fea-

tures are typically extracted from the very top feature layer

of a trained model. A problem thus arises: A DNN com-

prises multiple feature extraction layers stacked one on top

of each other; and it is widely acknowledged [20, 39, 14]

that, when progressing from the bottom to the top layers,

the visual concepts captured by the feature maps tend to be

more abstract and of higher semantic level. However, for

Re-ID purposes, discriminative factors of multiple seman-

tic levels should be ideally preserved in the learned features.

Therefore existing Re-ID models using standard architec-

tures have limited efficacy. These network architectures,

though working very well for the object categorisation task

such as ImageNet classification due to its focus on high-

level semantic features, are not well-suited for the instance-

level recognition task of Re-ID.

A number of recent deep Re-ID models started to model

discriminative factors of multiple levels. Some focused

on learning semantic visual features with additional super-

vision in the form of attributes [32, 35, 26, 15, 31, 41].

The idea is to explicitly define these factors as semantic
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attributes (gender, object carrying, clothing colour/texture,

etc). By combining the Re-ID task with the attribute pre-

diction task, the top layer of the model is expected to bet-

ter capture these factors. However, annotating attributes is

costly and error-prone; and defining exhaustively all the dis-

criminative factors that are well-presented in data using at-

tributes is extremely challenging. Importantly, Re-ID fea-

tures are still only computed from the very top layer of a

network. The others exploited the idea of multi-level fu-

sion either in the form of attention maps computed at multi-

ple intermediate layers of a network [29], or multiple body

parts grouped into different levels [53]. Nevertheless, none

of these models attempted to combine discriminative fea-

ture representations computed from all layers/levels with-

out handcrafted architecture design and/or layer selection.

Furthermore, discriminative factors are either not modelled

explicitly [29], or limited to body parts only [53].

In this paper, we propose a novel DNN architecture

called Multi-Level Factorisation Net (MLFN) (see Fig. 2).

MLFN learns identity-discriminative and view-invariant vi-

sual factors at multiple semantic levels. The overall net-

work is composed of multiple blocks (each of which may

contain multiple convolutional layers). Each block contains

two components: A set of factor modules (FMs), each of

which is a sub-network of identical architecture designed

to model one factor, and a factor selection module (FSM)

that dynamically selects which subset of FMs in the block

are activated. Training this architecture results in FMs that

specialise in processing different types of factors, and at

different blocks represent factors of different semantic lev-

els. For example, we find empirically that the FMs from

bottom-blocks represent low-level semantic attributes such

as clothing colour, and top-blocks represent high-level se-

mantic attributes such as object carrying and gender (see

Sec. 4.4.2). Importantly, the output vectors of the FSMs at

different blocks provide a compact latent semantic feature

at the corresponding semantic level. To benefit from com-

bining both these multi-level semantic features and conven-

tional deep features, MLFN concatenates the FSM output

vectors of different levels into a Factor Signature (FS) fea-

ture and then fuses it with the final-layer deep feature before

subjecting them to a training loss.

The MLFN architecture is noteworthy in that: (i) A

compact FS is generated by concatenating the FSM out-

put vectors from all blocks, and therefore multi-level fea-

ture fusion is obtained without exploding dimensionality;

(ii) Using the FSM output vectors to predict person identity

via skip connections and fusion provides deep supervision

[21, 14] which ensures that the learned factors are identity-

discriminative, but without introducing a large number of

parameters required for conventional deep supervision. The

proposed architecture can be interpreted in various ways: as

a generalisation of ResNext [44], where the sub-networks
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Figure 2. Illustration of Multi-Level Factorisation Net (MLFN)

Architecture. Best viewed in colour.

within each block can be switched on and off dynamically;

or as a generalisation of mixture-of-expert layers [36] where

multiple rather than solely one expert/sub-network are en-

couraged to be active at a time. More importantly, it ex-

tends both in that it is the selection of which factor modules

or experts are active that provides a compact latent seman-

tic feature, and enables the low-dimensional fusion across

semantic levels and deep supervision.

MLFN is evaluated on three person Re-ID bench-

marks, Market-1501 [55], CUHK03 [23] and DukeMTMC-

reID [56], and achieves state-of-the-art performance on all

of them. Moreover, it is effective on general object categori-

sation tasks as demonstrated on CIFAR-100 [17], showing

its potential beyond person Re-ID.

2. Related Work

Deep Neural Networks for Person Re-ID Most recent

person Re-ID methods train deep DNN models with vari-

ous learning objectives including classification, verification

and triplet ranking losses [42, 38, 24, 32, 27]. Once trained,

these models typically extract visual features from the fi-

nal layer of a network for matching. Since the feature map

of each layer is used as input for the subsequent layer, it

is commonly expected that the extracted features become
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more abstract and of higher semantic level towards the top

layers [20, 39, 14]. It is thus infeasible for the final layer of

the network to capture discriminative visual features of all

semantic levels on its own.

One approach to obtaining an appearance feature con-

taining information from multiple semantic levels is train-

ing it to predict visual attributes [19, 26]. By defining

and annotating diverse attributes at multiple semantic lev-

els, and training to predict them, these models are forced

to encode attribute information using their top-layer fea-

tures [32, 35, 26, 15, 31]. However, most existing meth-

ods require a manual definition of the attribute dictionary

and large scale image-attribute annotation, making this ap-

proach non-scalable. In contrast, MLFN discovers discrim-

inative latent factors with no additional supervision. More-

over, the task of learning multi-level factors is shared by all

network blocks rather than burdening only the final layer.

Another approach is to complement the final layer fea-

ture with features from other layers. A couple of stud-

ies fused representations from multiple levels [53, 29], but

this required extra effort such as body-part detection [53]

or attention mechanisms [29] and handcrafted architecture

and/or layer selection. In contrast, MLFN parsimoniously

fuses information from all levels in the deep network, which

is possible because it provides a compact latent factor repre-

sentation that can be easily aggregated without prohibitive

feature dimensionality. Furthermore, the introduction of

factor module subnets makes MLFN suitable for automated

discovery of latent appearance factors. Note that orthogo-

nal to multi-level factorisation and fusion, multi-scale Re-

ID has also been studied [28, 46] which focuses on fusing

image resolutions rather than semantic feature levels.

DNNs with Multi-Level Feature Fusion Multi-level fu-

sion architectures have been developed in other computer

vision tasks. In semantic segmentation [30, 6, 8], feature

maps from selected levels are used with shortcut connec-

tions to provide multiple granularities to the segmentation

output. In visual recognition, deep features from a few

selected layers were merged together to improve the final-

layer representation [47, 3, 50, 48]. However, features ex-

tracted from limited and manually-specified layers may not

reflect the optimal choice for complementing the final rep-

resentation. Very few fusion architectures on specific tasks,

e.g., edge detection [45], fuse features from all layers/levels.

These models are usually designed to have limited levels

(e.g., 3 ∼ 5), so their expressibility is limited. Our MLFN

can employ very deep networks and parsimoniously fuses

features from every level (block). This is because multi-

level features are represented by the compact FSM output

vectors rather than the original feature channels, which sig-

nificantly reduces the fused feature dimensionality.

Related CNN Architectures Instead of constructing

each block with holistic modules as in [18, 37, 9], a split-

transform-merge strategy [40] is used to construct the mod-

ularised block architecture in ResNeXt [44]. A group of

sub-network modules with duplicate structures are equally

activated with their outputs summed up. Our MLFN lever-

ages the ResNeXt design pattern, but extends it to include a

dynamic selection of which module subset activates within

each block for each image. This allows MLFN modules to

specialise in processing different latent appearance factors,

and the FSM output vectors to encode a compact descriptor

of detected latent factors at the corresponding level.

Our MLFN architecture is also related to that of Mixture-

of-Expert (MoE) models [13, 51, 1]. In MoEs, a soft-

max activation module aims at identifying a single expert

to process a given input instance. Mixture-of-Experts Layer

(MoEL) models [5, 36] extend flat MoE to a stacked model.

They have been used to separate localisation and classifica-

tion tasks in a two-level MoEL model [5], or to implement

very large neural networks by allowing each node in a clus-

ter to run one expert in one layer of the large network [36].

The proposed MLFN has the following key distinctions to

MoE/MoEL: (1) MLFN dynamically detects multiple latent

factors at each level that explain each input image jointly

(e.g., a person can have both long hair and carry a bag).

Thus MLFN uses sigmoid activated FSMs rather than soft-

max as used in MoE/MoEL, which assumes a single expert

should dominate. (2) MLFN aggregates the FSM output

vectors at all blocks into a Factor Signature (FS) to provide

a single compact discriminative code. That is, while MoEL

dynamically switches which experts process the data but

otherwise only outputs the chosen experts’ opinion about

the data; MLFN uses the information of which set of factor

modules were chosen as a description of the data.

Our Contributions are as follows: (1) MLFN is proposed

to automatically discover discriminative and view-invariant

appearance factors at multiple semantic levels without aux-

iliary supervision. (2) A compact discriminative semantic

representation (FS) is obtained by aggregating FSM output

vectors at all levels of MLFN. (3) Our FS representation is

complementary to the conventional deeply learned features.

Using their fusion as a representation, we obtain state-of-

the-art results on three large person Re-ID benchmarks.

3. Methodology

MLFN Architecture Our MLFN aims to automatically

discover latent discriminative factors at multiple semantic

levels and dynamically identify their presence in each input

image. As shown in Fig. 2, N MLFN blocks are stacked

to model N semantic levels. Let Bn denote the nth block,

n ∈ {1, ..., N} from bottom to top. Within each Bn, there

are two key components: multiple Factor Modules (FMs)

and a Factor Selection Module (FSM). Each FM is a sub-

network with multiple convolutional and pooling layers of

its own, powerful enough to model a latent factor at the cor-
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responding level indexed by n. Each block Bn consists of

Kn FMs with an identical network architecture. For sim-

plicity, only one input image is considered in the follow-

ing formulation. Given the image, the output of the ith,

i ∈ {1, ...,Kn} FM in Bn is denoted as

Mn,i ∈ R
Hn×Wn×Cn , (1)

where Mn,i is a feature map with height Hn, width Wn and

Cn channels.

Each block Bn also contains a FSM that produces a FM

selection vector Sn ∈ R
1×Kn . To handle the case where

multiple discriminative latent factors are required simulta-

neously to explain the visual appearance of the input image,

within each level, Sn is sigmoid activated,

Sn = σ(Ān), (2)

where n ∈ {1, ..., N}, σ(·) is an element-wise sigmoid and

Ān is the pre-activation output of the FSM.

Thus the factorised representation of an input image at

the nth level can be represented as a tuple:

{Mn,Sn}, (3)

where Mn ∈ R
Hn×Wn×Cn×Kn assembles all Mn,i, i ∈

{1, ...,Kn}. The FSM output vector Sn is used for mod-

ulating outputs Mn from corresponding FMs. Moreover,

shortcut connection is employed by each MLFN block.

Therefore, the output of Bn is

Yn = Mn ×4 Sn +Xn, (4)

where ×4 denotes the mode-4 product of Tensor-matrix

multiplication; Yn ∈ R
Hn×Wn×Cn denotes the output ten-

sor of Bn and Xn is the corresponding input. Xn is from

the output of previous block Yn−1 and the output of an ini-

tial convolutional layer is used as input when n = 1.

Factor Signature In order to complement the final-level

deep representation YN (feature output of BN ) with the fac-

torised representation learned from lower levels, a compact

Factor Signature (FS) representation preserving discrimina-

tive information from all levels is computed. FS aggregates

all FSM output vectors Sn, n ∈ {1, ..., N}. Denoting FS as

Ŝ, we have

Ŝ = [S1, ...,SN ], (5)

where Ŝ ∈ R
1×K , K =

∑N
n=1

Kn represents the feature

dimension of Ŝ. The value of K depends on the architec-

ture of MLFN, i.e., both the total number of blocks N and

the number of FMs Kn in each block. However, it is inde-

pendent of the deep feature dimensions in Yn. Therefore,

Ŝ provides a compact multi-level representation even when

the deep feature dimension Hn × Wn × Cn is large, and

when information from all levels is combined. Usually, K

is in the order of hundreds and it is much smaller than con-

catenating all Yns, which typically results in tens of thou-

sands of dimensions.

Fusion MLFN fuses the deep features YN computed from

the final block BN and the Factor Signature (FS) Ŝ. Con-

cretely, YN and Ŝ are first projected to the same feature

dimension d with projection function T implemented as a

fully connected layer. The final output representation R of

MLFN is computed by averaging the two projected features

as in Eq. 6.

R =
1

2
(φY + φ

Ŝ
),

{

φY = T (YN , d)

φ
Ŝ
= T (Ŝ, d)

(6)

Optimisation The visual appearance of each input is

dynamically factorised into {Mn,Sn} at multiple seman-

tic levels in the corresponding MLFN block Bn, n ∈
{1, ..., N}, as in Eq. 3. Denoting the ith FM in Bn as Fn,i(·)
and its parameters as θn,i, then

Mn,i = Fn,i(Xn;θn,i). (7)

The output feature Yn is computed as in Eq. 4. Assuming

MLFN is subject to a final loss L and the gradient ∂L
∂Yn

can

be acquired. In order to update the parameters θn,i in back-

propagation, the following gradient is computed,

∂L

∂θn,i
=

∂L

∂Yn

∂Yn

∂Fn,i

∂Fn,i

∂θn,i
. (8)

From Eq. 4 and Eq. 7, we have

∂Yn

∂Fn,i

= Sn,i, (9)

where Sn,i is the FSM output corresponding to the ith FM

in Bn. Combining Eq. 8 and Eq. 9, we have

∂L

∂θn,i
= Sn,i

∂L

∂Yn

∂Fn,i

∂θn,i
, (10)

where ∂L
∂Yn

is back propagated from higher levels and
∂Fn,i

∂θn,i

is the gradient of an FM w.r.t its parameters. Sn,i comes

from the corresponding FSM. It dynamically indicates the

contribution of Fn,i in processing an input image.

Sn,i will be close to 1 if the latent factor represented by

Mn,i is identified to be present in the input. In this case,

the impact of this input is fully applied on θn,i to adapt the

corresponding FM. On the contrary, when Sn,i is close to

0, it means the input only holds irrelevant or opposite latent

factors to Mn,i. Therefore, the parameters in the corre-

sponding FM are unchanged when training with this input

as Sn,i ≈ 0 stops the update.
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The factor selection vectors Sn (Eq. 2) play a key role

in MLFN during both training (as analysed above) and in-

ference (providing the factor signature). Learning discrim-

inative FSMs would be hard if trained with gradients back

propagated through many blocks from the top. This is be-

cause the supervision from the loss would be indirect and

weak for the FSMs at the bottom levels. However, because

our final feature output R is computed by fusing the final-

block output YN with the FS Ŝ (Eq. 6), and the FS is gen-

erated by concatenating all FSM output vectors, the super-

vision flows from the loss down to every FSM via direct

shortcut connections (Fig. 2). Thus our FSMs are deeply su-

pervised [21, 14] to ensure that they are discriminative, but

without the increase in parameters that would be required

for deep supervision of conventional deep features.

MLFN for Person Re-ID The training procedure of

MLFN for Person Re-ID follows the standard identity clas-

sification paradigm [42, 53, 38] where each person’s iden-

tity is treated as a distinct class for recognition. A final

fully connected layer is added above the representation R

that projects it to a dimension matching the number of train-

ing classes (identities), and the cross-entropy loss is used.

MLFN is then end-to-end trained. It discovers latent factors

with no supervision other than person identity labels for the

final classification loss. During testing, appearance repre-

sentations R (Eq. 6) are extracted from gallery and probe

images, and the L2 distance is used for matching.

4. Experiments

4.1. Datasets and Settings

Datasets Three person Re-ID benchmarks, Market-

1501 [55], CUHK03 [23] and DukeMTMC-reID [56] are

used for evaluation. Market-1501 [55] has 12,936 training

and 19,732 testing images with 1,501 identities in total from

6 cameras. Deformable Part Model (DPM) [7] is used as the

person detector. We follow the standard training and eval-

uation protocols in [55] where 751 identities are used for

training and the remaining 750 for testing. CUHK03 [23]

consists of 13,164 images of 1,467 people. Both manually

labelled and DPM detected person bounding boxes are pro-

vided. We adopt two experimental settings on this dataset.

The first setting, denoted as CUHK03 Setting 1, is the 20

random train/test splits used in [23] which selects 100 iden-

tities for testing and training with the rest. Results on the

more challenging yet more realistic detected person bound-

ing boxes are reported under this setting. The other setting,

denoted as CUHK03 Setting 2, was proposed in [57]. It is

more challenging than Setting 1 with less training data. In

particular, 767 identities are used for training and the re-

maining 700 identities for testing. DukeMTMC-reID [56]

is the Person Re-ID subset of the Duke Dataset [34]. There

are 16,522 training images of 702 identities, 2,228 query

images and 17,661 gallery images of the other 702 iden-

tities. Manually labelled pedestrian bounding boxes are

provided. Our experimental protocol follows that of [56].

In addition to the Re-ID datasets, an object category clas-

sification dataset, CIFAR-100 [17], is used to show that

our MLFN can also be applied to other general recogni-

tion problems. CIFAR-100 [17] has 60K images with 100

classes with 600 images in each class. 50K images are used

for training and the remaining for testing.

Evaluation metrics We use the Cumulated Matching

Characteristics (CMC) curve to evaluate the performance

of Re-ID methods. Due to space limitation and for easier

comparison with published results, we only report the cu-

mulated matching accuracy at selected ranks in tables rather

than plotting the actual curves. Note that we also use mean

average precision (mAP) as suggested in [55] to evaluate

the performance. For CIFAR100, the error rate is used.

MLFN Architecture Details For Person Re-ID tasks,

sixteen blocks (N = 16) are stacked in MLFN. Within each

building block, 32 FMs are aggregated as in [44]. Corre-

spondingly, a 32-D FSM output vector is generated within

each MLFN block. As a result, the FS dimension K = 512
(32 FMs ×16 blocks). The final feature dimension of R,

d is set to 1024. For the object categorisation task CIFAR-

100 [17], we reduced the MLFN depth in order to fit the

memory limitation of a single GPU. The number of blocks

is reduced to 9 which results in K = 288. More discussion

on parameter selection can be found in the Supplementary

Material.

Data Augmentation The input image size is fixed to

256 × 128 for all person Re-ID experiments. Left-right

flip augmentation is used during training. For CIFAR-100,

training images are augmented as in [9]. No data augmen-

tation is used for testing.

Optimisation Settings All person Re-ID models are

fine-tuned on ImageNet [4] pre-trained networks. The

Adam [16] optimiser is used with a mini-batch size of 64.

Initial learning rate is set to 0.00035 for all Re-ID datasets

except CUHK03 setting 2 [57] with 0.0005. Similarly,

Training iterations are 100k for all Re-ID datasets except

CUHK03 setting 2 [57] for which it is 75k. For CIFAR,

the initial learning rate is set to 0.1 with a decay factor 0.1

at every 100 epochs and Nesterov momentum of 0.9. SGD

optimisation is used with a 256 mini-batch size on a K80

GPU for 307 epochs training.

4.2. Person Re­ID Results

Results on Market-1501 Comparisons between MLFN

and 14 state-of-the-art methods on Market-1501 [55] are

shown in Table 1. SQ and MQ correspond to the single

and multiple query setting respectively [55]. The results

show that our MLFN achieves the best performance on all

evaluation criteria under both settings. It is noted that: (1)

The gaps between our results and those of the two models
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SQ MQ

R1 mAP R1 mAP

Spindle [53] 76.9 - - -

HP-net [29] 76.9 - - -

OIM [43] 82.1 - - -

Re-rank [57] 77.1 63.6 - -

DPA [54] 81.0 63.4 - -

SVDNet [38] 82.3 62.1 - -

DaF [49] 82.3 72.4 - -

ACRN [35] 83.6 62.6 - -

Context [22] 80.3 57.5 86.8 66.7

JLML [24] 83.9 64.4 89.7 74.5

LSRO [56] 84.0 66.1 88.4 76.1

SSM [2] 82.2 68.8 88.2 76.2

DML∗ [52] 87.7 68.8 91.7 77.1

DPFL [46] 88.6 72.6 92.2 80.4

MLFN 90.0 74.3 92.3 82.4

Table 1. Results (%) on Market-1501. ∗: Arxiv paper. −: not

reported.

[53, 29] that attempt to fuse multi-level features are signifi-

cant: 13.1% R1 accuracy improvement under SQ. This sug-

gests that our fusion architecture with deep supervision is

more effective than the handcrafted architectures with man-

ual layer selection in [53, 29], which require extra effort

but may lead to suboptimal solutions. (2) The best model

that uses attribute annotation [35] also yields inferior re-

sults (SQ 83.6 vs 90.0 for R1 and 62.6 vs 74.3 for mAP),

despite the fact that more supervision was used. This indi-

cates that the automatically discovered latent factors at mul-

tiple levels in MLFN provides a more discriminative repre-

sentation. (3) The closest competitor, DPFL uses multiple

network branches to model image input scaled to different

resolutions, which is orthogonal to our approach and can be

easily combined to improve our performance further.

Results on CUHK03 Table 2 shows results on CUHK03

Setting 1 when detected person bounding boxes are used

for both training and testing. MLFN achieves the best re-

sult, 82.8%, under this setting. Note that DGD [42], Spin-

dle Net [53] and HP-net [53] were trained with the JSTL

setting [42] where additional data in the form of six Re-ID

datasets were used. They also used mixed labelled and de-

tected bounding boxes for both training and test. Following

the multi-bounding box setting, even without using auxil-

iary training data as in JSTL, the accuracy of MLFN jumps

from 82.8% to 89.2%. Similarly, LSRO [56] used external

Re-ID datasets for training, thus gaining an advantage.

The results in Table 3 correspond to CUHK03 Setting

2, which is a harder and newer setting with less reported

results. Clear gaps are now shown between MLFN and

DPFL [46]: The rank 1 (R1) performance of MLFN is more

than 11% higher using either labelled or detected person im-

ages. This result suggests that the advantage of MLFN is

R1

DGD♯ [42] 75.3∗

Spindle♯ [53] 88.5∗

HP-net♯ [29] 91.8∗

LSRO† [56] 84.6

OIM [43] 77.5

JLML [24] 80.6

SVDNet [38] 81.8

DPFL [46] 82.0

MLFN 82.8/89.2∗

Table 2. Results (%) on CUHK03 Setting 1 [23]. ♯ indicates us-

ing external Re-ID data (JSTL setting [42]). Results with ∗ are

obtained with the same setting in [42]. † indicates GAN images

generated from the Market-1501 dataset are used.

Labelled Detected

R1 mAP R1 mAP

DaF [49] 27.5 31.5 26.4 30.0

Re-rank [57] 38.1 40.3 34.7 37.4

SVDNet [38] 40.9 37.8 41.5 37.3

DPFL [46] 43.0 40.5 40.7 37.0

MLFN 54.7 49.2 52.8 47.8
Table 3. Results (%) on CUHK03 Setting 2.

R1 mAP

LSRO [56] 67.7 47.1

OIM [43] 68.1 -

APR∗ [26] 70.7 51.9

ACRN [35] 72.6 52.0

SVDNet [38] 76.7 56.8

DPFL [46] 79.2 60.6

MLFN 81.0 62.8

Table 4. Results (%) on DukeMTMC-reID. ∗: Arxiv paper.

more pronounced given less training data. Similar perfor-

mance jumps are also observed using the mAP metric.

Results on DukeMTMC-reID Person Re-ID results on

DukeMTMC-reID [56] are given in Table 4. This dataset

is challenging because the person bounding box size varies

drastically across different camera views, which naturally

suits the multi-scale Re-ID models such as DPFL [46]. The

results show that MLFN is 1.8% and 2.2% higher than the

prior state-of-the-art DPFL [46] on R1 and mAP metrics

respectively. This indicates that even without explicitly ex-

tracting features from input images scaled to different res-

olutions, by fusing features from multiple levels (blocks in

MLFN), it can cope with large scale changes to some extent.

4.3. Object Categorisation Results

We next evaluate whether our MLFN is applicable to

more general object categorisation tasks by experimenting

on CIFAR-100. The results are shown in Table 5. For

direct comparison we reproduce results with ResNet [10]

2114



and ResNeXt [44] of similar depth and model size to our

MLFN1. The improved result over ResNeXt shows that our

dynamic factor module selection and factor signature fea-

ture bring clear benefit. MLFN also beats DualNet [11], an-

other representative recent ResNet-based model that fuses

two complementary ResNet branches as in an ensemble,

thus doubling in model size. Note that for distinguishing

different object categories, e.g., dog and bird, low-level fac-

tors such as colour and texture are often less useful as for in-

stance classification problems such as person Re-ID. How-

ever, this result suggests that discriminative latent factors

still exist in multiple levels for object categorisation and can

be discovered and exploited by our MLFN.

Error Rates (%)

DualNet [11] 27.57

ResNet [10] 30.21

ResNeXt [44] 29.03

MLFN 27.21
Table 5. Results on CIFAR-100 datasets.

4.4. Further Analysis

4.4.1 Ablation Study

Recall that our MLFN discovers multiple discriminative la-

tent factors at each semantic level, by aggregating FMs with

identical structures within each block Bn. The FSM output

vectors Sn enable dynamic factorisation of an input image

into distinctive latent attributes, and these are aggregated

over all blocks into a compact FS feature (Ŝ) for fusion

(Eq. 6) with the conventional (final-block) deep feature YN

to produce the final representation R. To validate the con-

tributions of each component, we compare: MLFN: Full

model. MLFN-Fusion: MLFN using dynamic factor se-

lection, but without fusion of the FS feature. ResNeXt:

When the FSMs are removed so all FMs are always active,

our model becomes ResNeXt [44]. ResNet: When the sub-

networks at each level of ResNeXt are replaced with one

larger holistic residual module, we obtain ResNet [10].

A comparison of these models on all three person Re-

ID datasets is shown in Table 6. We can see that MLFN

is consistently better than the stripped-down versions on

all datasets, and each new component contributed to the fi-

nal performance: The margin between MLFN and MLFN-

Fusion shows the importance of including the latent fac-

tor descriptor FS in the person representation and suggests

that the FS feature is complement to the final-block feature

YN , and the margin between MLFN−Fusion and ResNeXt

shows the benefit of dynamic module selection.

1The results in Table 5 still have a gap to the state-of-the-art results such

as [12, 44]. The latter were obtained with much larger networks. Those

models and batch sizes are beyond the GPU resources at our disposal.

4.4.2 Analysis on Latent Factors

Recall that a key idea of MLFN is to extract the factor signa-

ture Ŝ by aggregating FSM outputs of all blocks and using

it as

Efficacy of Re-ID with Factor Signature Alone For

solely FS-based matching, we train a binary SVM based on

the absolute difference of paired FS to predict whether they

belong to the same person or not. SVM scores of testing

pairs are then computed for recognition. The corresponding

results on Market-1501 are reported in Table 7. It shows

that, compared with the results in Table 1, the result of FS

only is already comparable with the state-of-the-art.

Discovered Latent Factors are Predictive of Attributes

What do the discovered latent factors represent? We hy-

pothesise that despite not being trained with any manually

annotated attributes, FS (Ŝ) is identifying latent data-driven

attributes present in the data; these latent attribute may over-

lap or correlate with human-defined semantic attributes. To

validate this, SVMs are then trained based on Ŝ only to pre-

dict ground-truth manually annotated attributes in Market-

1051 and DukeMTMC-reID. Results based on the final rep-

resentation R from MLFN are also reported. Finally, these

are compared to APR [26], which is end-to-end trained

based on attribute supervision.

On Market-1051, MLFN-Ŝ and APR [26] obtain the

same performance of 85.33%. MLFN-R further improves

to 87.50%. On DukeMTMC-reID, 82.30% and 83.58% are

achieved by MLFN-Ŝ and MLFN-R respectively, which

are better than APR’s 80.12%. These results thus show that

our low-dimensional MLFN-Ŝ alone can be more effective

in attribution prediction than APR. Remind that MLFN is

trained without annotated attributes while APR network is

designed for supervised attribute learning. This shows that

our architecture is well suited for extracting semantic at-

tribute related information automatically. More analysis of

the relations between FS and Attributes can be found in the

Supplementary Material.

What is Learned To visualise the latent discriminative

appearance factors learned by MLFN, we rank each ele-

ment of the FSM output vector, denoted as Sn,i, with all

testing samples in Market-1501 [55] as inputs. Person im-

ages with the highest and lowest twenty values of each Sn,i

are recorded. Figure 3 shows four example sets of such im-

ages from different element i, i ∈ {1, ..,Kn} and blocks

n, n ∈ {1, ..., N}. Clear visual semantics can be seen from

both the highest and lowest FSM output value image clus-

ters in each group. And as expected, as the block index

number n increases, the semantic level of the latent factors

captured at the corresponding blocks gets higher, i.e., they

evolve from colour and texture related factors to clothes

style and gender related ones. This is achieved despite that

no attribute supervision is used in training MLFN. It is also

interesting to note that visual characteristics conveyed by
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Datasets Market-1501 CUHK03 Duke

Methods
SQ MQ Labelled Detected

R1 mAP
R1 mAP R1 mAP R1 mAP R1 mAP

ResNet [10] 84.3 66.0 89.6 76.1 41.7 37.9 43.5 38.6 71.6 48.6

ResNeXt [44] 88.0 69.8 91.3 79.0 43.8 38.7 43.1 38.0 75.7 54.1

MLFN-Fusion 87.9 70.8 91.7 80.2 47.1 42.5 47.1 41.0 78.7 58.4

MLFN 90.0 74.3 92.3 82.4 54.7 49.2 52.8 47.8 81.0 62.8
Table 6. Ablation Results on three Person Re-ID datasets. CUHK03 results were obtained under Setting 2.

Bottom

Top

S2,29

S7,31

S10,23

S15,29

Figure 3. Four groups of images corresponding to highest (first row) and lowest (second row) values of four FSM outputs Sn,i, from bottom

to top level respectively. Best viewed in colour.

SQ MQ

R1 mAP R1 mAP

Ŝ 81.0 58.9 88.0 68.8

Table 7. Market-1501 [55] Re-ID performance (%) with Ŝ (FS)

only.

images with the highest FSM output values are comple-

mentary or opposite to those of lowest ones from the same

group. For example, highest value images in S2,29 contain

green colour, while lowest value images contain the com-

plementary colour red. High value in S7,31 encodes cold

colours while low value encodes warm colours. Highest

values in S10,23 reflect textures while lowest ones mean

large untextured colour blocks are detected. Images of men

select with high confidence S15,29, while images of females

depress its value.

5. Conclusion

We proposed MLFN, a novel CNN architecture that

learns to discover and dynamically identify discriminative

latent factors in input images for person Re-ID. The factors

computed at different levels of the network correspond to la-

tent attributes of different semantic levels. When the selec-

tions of the factors are used as a feature and fused with the

conventional deep feature, a powerful view-invariant person

representation is obtained. MLFN obtains state-of-the-art

results on three largest Re-ID datasets, and shows promis-

ing results on a more general object categorisation task.
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