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Abstract

We propose TAL-Net, an improved approach to temporal

action localization in video that is inspired by the Faster R-

CNN object detection framework. TAL-Net addresses three

key shortcomings of existing approaches: (1) we improve

receptive field alignment using a multi-scale architecture

that can accommodate extreme variation in action dura-

tions; (2) we better exploit the temporal context of actions

for both proposal generation and action classification by

appropriately extending receptive fields; and (3) we explic-

itly consider multi-stream feature fusion and demonstrate

that fusing motion late is important. We achieve state-of-

the-art performance for both action proposal and localiza-

tion on THUMOS’14 detection benchmark and competitive

performance on ActivityNet challenge.

1. Introduction

Visual understanding of human actions is a core ca-

pability in building assistive AI systems. The problem

is conventionally studied in the setup of action classifica-

tion [44, 36, 29], where the goal is to perform forced-choice

classification of a temporally trimmed video clip into one of

several action classes. Despite fruitful progress, this classi-

fication setup is unrealistic, because real-world videos are

usually untrimmed and the actions of interest are typically

embedded in a background of irrelevant activities. Recent

research attention has gradually shifted to temporal action

localization in untrimmed video [23, 31, 45], where the task

is to not only identify the action class, but also detect the

start and end time of each action instance. Improvements in

temporal action localization can drive progress on a large

number of important topics ranging from immediate ap-

plications, such as extracting highlights in sports video, to

higher-level tasks, such as automatic video captioning.

Temporal action localization, like object detection, falls

under the umbrella of visual detection problems. While ob-

ject detection aims to produce spatial bounding boxes in

∗Work done in part during an internship at Google Research.

a 2D image, temporal action localization aims to produce

temporal segments in a 1D sequence of frames. As a result,

many approaches to action localization have drawn inspira-

tion from advances in object detection. A successful exam-

ple is the use of region-based detectors [17, 16, 32]. These

methods first generate a collection of class-agnostic region

proposals from the full image, and go through each proposal

to classify its object class. To detect actions, one can follow

this paradigm by first generating segment proposals from

the full video, followed by classifying each proposal.

Among region-based detectors, Faster R-CNN [32] has

been widely adopted in object detection due to its competi-

tive detection accuracy on public benchmarks [27, 12]. The

core idea is to leverage the immense capacity of deep neural

networks (DNNs) to power the two processes of proposal

generation and object classification. Given its success in

object detection in images, there is considerable interest in

employing Faster R-CNN for temporal action localization

in video. However, such a domain shift introduces several

challenges. We review the issues of Faster R-CNN in the

action localization domain, and redesign the architecture to

specifically address them. We focus on the following:

1. How to handle large variations in action durations?

The temporal extent of actions varies dramatically

compared to the size of objects in an image—from a

fraction of a second to minutes. However, Faster R-

CNN evaluates different scales of candidate proposals

(i.e., anchors) based on a shared feature representation,

which may not capture relevant information due to a

misalignment between the temporal scope of the fea-

ture (i.e. receptive field) and the span of the anchor.

We propose to enforce such alignment using a multi-

tower network and dilated temporal convolutions.

2. How to utilize temporal context? The moments pre-

ceding and following an action instance contain criti-

cal information for localization and classification (ar-

guably more so than the spatial context of an object).

A naive application of Faster R-CNN would fail to ex-

ploit this temporal context. We propose to explicitly

encode temporal context by extending the receptive

fields in proposal generation and action classification.

1130



3. How best to fuse multi-stream features? State-of-

the-art action classification results are mostly achieved

by fusing RGB and optical flow based features. How-

ever, there has been limited work in exploring such fea-

ture fusion for Faster R-CNN. We propose a late fusion

scheme and empirically demonstrate its edge over the

common early fusion scheme.

Our contributions are twofold: (1) we introduce the Tempo-

ral Action Localization Network (TAL-Net), which is a new

approach for action localization in video based on Faster R-

CNN; (2) we achieve state-of-the-art performance on both

action proposal and localization on the THUMOS’14 detec-

tion benchmark [21], along with competitive performance

on the ActivityNet dataset [4].

2. Related Work

Action Recognition Action recognition is conventionally

formulated as a classification problem. The input is a

video that has been temporally trimmed to contain a spe-

cific action of interest, and the goal is to classify the action.

Tremendous progress has recently been made due to the in-

troduction of large datasets and the developments on deep

neural networks [36, 29, 42, 47, 6, 13]. However, the as-

sumption of trimmed input limits the application of these

approaches in real scenarios, where the videos are usually

untrimmed and may contain irrelevant backgrounds.

Temporal Action Localization Temporal action localiza-

tion assumes the input to be a long, untrimmed video, and

aims to identify the start and end times as well as the action

label for each action instance in the video. The problem has

recently received significant research attention due to its po-

tential application in video data analysis. Below we review

the relevant work on this problem.

Early approaches address the task by applying temporal

sliding windows followed by SVM classifiers to classify the

action within each window [23, 31, 45, 30, 52]. They typ-

ically extract improved dense trajectory [44] or pre-trained

DNN features, and globally pool these features within each

window to obtain the input for the SVM classifiers. Instead

of global pooling, Yuan et al. [52] proposed a multi-scale

pooling scheme to capture features at multiple resolutions.

However, these approaches might be computationally inef-

ficient, because one needs to apply each action classifier ex-

haustively on windows of different sizes at different tempo-

ral locations throughout the entire video.

Another line of work generates frame-wise or snippet-

wise action labels, and uses these labels to define the tempo-

ral boundaries of actions [28, 37, 9, 25, 53, 19]. One major

challenge here is to enable temporal contextual reasoning

in predicting the individual labels. Lea et al. [25] proposed

novel temporal convolutional architectures to capture long-

range temporal dependencies, while others [28, 37, 9] use

recurrent neural networks. A few other methods add a sep-

arate contextual reasoning stage on top of the frame-wise

or snippet-wise prediction scores to explicitly model action

durations or temporal transitions [33, 53, 19].

Inspired by the recent success of region-based detectors

in object detection [17, 16], many recent approaches adopt

a two-stage, proposal-plus-classification framework [5, 35,

11, 2, 3, 34, 54], i.e. first generating a sparse set of class-

agnostic segment proposals from the input video, followed

by classifying the action categories for each proposal. A

large number of these works focus on improving the seg-

ment proposals [5, 11, 3, 2], while others focus on building

more accurate action classifiers [34, 54]. However, most of

these methods do not afford end-to-end training on either

the proposal or classification stage. Besides, the proposals

are typically selected from sliding windows of predefined

scales [35], where the boundaries are fixed and may result

in imprecise localization if the windows are not dense.

As the latest incarnation of the region-based object de-

tectors, the Faster R-CNN architecture [32] is composed of

end-to-end trainable proposal and classification networks,

and applies region boundary regression in both stages. A

few very recent works have started to apply such archi-

tecture to temporal action localization [14, 8, 15, 49], and

demonstrated competitive detection accuracy. In particular,

the R-C3D network [49] is a classic example that closely

follows the original Faster R-CNN in many design details.

While being a powerful detection paradigm, we argue that

naively applying the Faster R-CNN architecture to temporal

action localization might suffer from a few issues. We pro-

pose to address these issues in this paper. We will also clar-

ify our contributions over other Faster R-CNN based meth-

ods [14, 8, 15, 49] later when we introduce TAL-Net.

In addition to the works reviewed above, there exist other

classes of approaches, such as those based on single-shot

detectors [1, 26] or reinforcement learning [50]. Others

have also studied temporal action localization in a weakly

supervised setting [40, 46], where only video-level action

labels are available for training. Also note that besides tem-

poral action localization, there also exists a large body of

work on spatio-temporal action localization [18, 22, 39],

which is beyond the scope of this paper.

3. Faster R-CNN

We briefly review the Faster R-CNN detection frame-

work in this section. Faster R-CNN is first proposed to ad-

dress object detection [32], where given an input image, the

goal is to output a set of detection bounding boxes, each

tagged with an object class label. The full pipeline con-

sists of two stages: proposal generation and classification.

First, the input image is processed by a 2D ConvNet to gen-

erate a 2D feature map. Another 2D ConvNet (referred to

as the Region Proposal Network) is then used to generate
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Figure 1: Contrasting the Faster R-CNN architecture for object detection in images [32] (left) and temporal action localization in video [14,

8, 15, 49] (right). Temporal action localization can be viewed as the 1D counterpart of the object detection problem.

a sparse set of class-agnostic region proposals, by classify-

ing a group of scale varying anchor boxes centered at each

pixel location of the feature map. The boundaries of the

proposals are also adjusted with respect to the anchor boxes

through regression. Second, for each region proposal, fea-

tures within the region are first pooled into a fixed size fea-

ture map (i.e. RoI pooling [16]). Using the pooled feature, a

DNN classifier then computes the object class probabilities

and simultaneously regresses the detection boundaries for

each object class. Fig. 1 (left) illustrates the full pipeline.

The framework is conventionally trained by alternating be-

tween the training of the first and second stage [32].

Faster R-CNN naturally extends to temporal action lo-

calization [14, 8, 49]. Recall that object detection aims to

detect 2D spatial regions, whereas in temporal action local-

ization, the goal is to detect 1D temporal segments, each

represented by a start and an end time. Temporal action lo-

calization can thus be viewed as the 1D counterpart of ob-

ject detection. A typical Faster R-CNN pipeline for tempo-

ral action localization is illustrated in Fig. 1 (right). Similar

to object detection, it consists of two stages. First, given a

sequence of frames, we extract a 1D feature map, typically

via a 2D or 3D ConvNet. The feature map is then passed to

a 1D ConvNet 1 (referred to as the Segment Proposal Net-

work) to classify a group of scale varying anchor segments

at each temporal location, and also regress their boundaries.

This returns a sparse set of class-agnostic segment propos-

als. Second, for each segment proposal, we compute the

action class probabilities and further regress the segment

boundaries, by first applying a 1D RoI pooling (termed “SoI

pooling”) layer followed by a DNN classifier.

4. TAL-Net

TAL-Net follows the Faster R-CNN detection paradigm

for temporal action localization (Fig. 1 right) but features

1“1D convolution” & “temporal convolution” are used interchangeably.

three novel architectural changes (Sec. 4.1 to 4.3).

4.1. Receptive Field Alignment

Recall that in proposal generation, we generate a sparse

set of class-agnostic proposals by classifying a group of

scale varying anchors at each location in the feature map. In

object detection [32], this is achieved by applying a small

ConvNet on top of the feature map, followed by a 1 × 1
convolutional layers with K filters, where K is the number

of scales. Each filter will classify the anchor of a particu-

lar scale. This reveals an important limitation: the anchor

classifiers at each location share the same receptive field.

Such design may be reasonable for object detection, but

may not generalize well to temporal action localization, be-

cause the temporal length of actions can vary more drasti-

cally compared to the spatial size of objects, e.g. in THU-

MOS’14 [21], the action lengths range from less than a sec-

ond to more than a minute. To ensure a high recall, the

applied anchor segments thus need to have a wide range of

scales (Fig. 2 left). However, if the receptive field is set too

small (i.e. temporally short), the extracted feature may not

contain sufficient information when classifying large (i.e.

temporally long) anchors, while if it is set too large, the ex-

tracted feature may be dominated by irrelevant information

when classifying small anchors.

To address this issue, we propose to align each anchor’s

receptive field with its temporal span. This is achieved by

two key enablers: a multi-tower network and dilated tem-

poral convolutions. Given a 1D feature map, our Segment

Proposal Network is composed of a collection of K tem-

poral ConvNets, each responsible for classifying the anchor

segments of a particular scale (Fig. 2 right). Most impor-

tantly, each temporal ConvNet is carefully designed such

that its receptive field size coincides with the associated an-

chor scale. At the end of each ConvNet, we apply two par-

allel convolutional layers with kernel size 1 for anchor clas-

sification and boundary regression, respectively.
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Figure 2: Left: The limitation of sharing the receptive field across different anchor scales in temporal action localization. Right: The

multi-tower architecture of our Segment Proposal Network. Each anchor scale has an associated network with aligned receptive field.
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poral convolutions.

The next question is: how do we design temporal Con-

vNets with a controllable receptive field size s? Suppose

we use temporal convolutional filters with kernel size 3 as

a building block. One way to increase s is simply stacking

the convolutional layers: s = 2L + 1 if we stack L layers.

However, given a target receptive field size s, the required

number of layers L will then grow linearly with s, which

can easily increase the number of parameters and make the

network prone to overfitting. One solution is to apply pool-

ing layers: if we add a pooling layer with kernel size 2 af-

ter each convolutional layer, the receptive field size is then

given by s = 2(L+1) − 1. While now L grows logarith-

mically with s, the added pooling layers will exponentially

reduce the resolution of the output feature map, which may

sacrifice localization precision in detection tasks.

To avoid overgrowing the model while maintaining the

resolution, we propose to use dilated temporal convolutions.

Dilated convolutions [7, 51] act like regular convolutions,

except that one subsamples pixels in the input feature map

instead of taking adjacent ones when multiplied with a con-

volution kernel. This technique has been successfully ap-

plied to 2D ConvNets [7, 51] and 1D ConvNets [25] to ex-

pand the receptive field without loss of resolution. In our

Segment Proposal Network, each temporal ConvNet con-

sists of only two dilated convolutional layers (Fig. 3). To

attain a target receptive field size s, we can explicitly com-

pute the required dilation rate (i.e. subsampling rate) rl for

layer l by r1 = s/6 and r2 = (s/6) × 2. We also smooth

the input before subsampling by adding a max pooling layer

with kernel size s/6 before the first convolutional layer.

Contributions beyond [8, 14, 15, 49] Xu et al. [49] fol-

lowed the original Faster R-CNN and thus their anchors at

each pixel location still shared the receptive field. Both Gao

et al. [14, 15] and Dai et al. [8] aligned each anchor’s recep-

tive field with its span. However, Gao et al. [14, 15] average

pooled the features within the span of each anchor, whereas

we use temporal convolutions to extract structure-sensitive

features. Our approach is similar in spirit to Dai et al. [8],

which sampled a fixed number of features within the span of

each anchor; we approach this using dilated convolutions.

4.2. Context Feature Extraction

Temporal context information (i.e. what happens imme-

diately before and after an action instance) is a critical sig-

nal for temporal action localization for two reasons. First,

it enables more accurate localization of the action bound-

aries. For example, seeing a person standing still on the far

end of a diving board is a strong signal that he will soon

start a “diving” action. Second, it provides strong semantic

cues for identifying the action class within the boundaries.

For example, seeing a javelin flying in the air indicates that

a person just finished a “javelin throw”, not “pole vault”.

As a result, it is critical to encode the temporal context fea-

tures in the action localization pipeline. Below we detail

our approach to explicitly exploit context features in both

the proposal generation and action classification stage.

In proposal generation, we showed the receptive field for

classifying an anchor can be matched with the anchor’s span

(Sec. 4.1). However, this only extracts the features within
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the anchor, and overlooks the contexts before and after it.

To ensure the context features are used for anchor classi-

fication and boundary regression, the receptive field must

cover the context regions. Suppose the anchor is of scale s,

we enforce the receptive field to also cover the two segments

of length s/2 immediately before and after the anchor. This

can be achieved by doubling the dilation rate of the convo-

lutional layers, i.e. r1 = (s/6)× 2 and r2 = (s/6)× 2× 2,

as illustrated in Fig. 4. Consequently, we also double the

kernel size of the initial max pooling layer to (s/6)× 2.

In action classification, we perform SoI pooling (i.e. 1D

RoI pooling) to extract a fixed size feature map for each ob-

tained proposal. We illustrate the mechanism of SoI pooling

with output size 7 in Fig. 5 (top). Note that as in the origi-

nal design of RoI pooling [16, 32], pooling is applied to the

region strictly within the proposal, which includes no tem-

poral contexts. We propose to extend the input extent of SoI
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Figure 6: The late fusion scheme for the two-stream Faster R-

CNN framework.

pooling. As shown in Fig. 5 (bottom), for a proposal of size

s, the extent of our SoI pooling covers not only the proposal

segment, but also the two segments of size s/2 immediately

before and after the proposal, similar to the classification

of anchors. After SoI pooling, we add one fully-connected

layer, followed by a final fully-connected layer, which clas-

sifies the action and regresses the boundaries.

Contributions beyond [8, 14, 15, 49] Xu et al. [49] did

not exploit any context features in either proposal genera-

tion or action classification. Dai et al. [8] included context

features when generating proposals, but used only the fea-

tures within the proposal in action classification. Gao et

al. exploited context features in either proposal generation

only [15] or both stages [14]. However, they average-pooled

the features within the context regions, while we use tem-

poral convolutions and SoI pooling to encode the temporal

structure of the features.

4.3. Late Feature Fusion

In action classification, most of the state-of-the-art meth-

ods [36, 29, 47, 6, 13] rely on a two-stream architecture,

which parallelly processes two types of input—RGB frames

and pre-computed optical flow—and later fuses their fea-

tures to generate the final classification scores. We hypothe-

size such two-stream input and feature fusion may also play

an important role in temporal action localization. There-

fore we propose a late fusion scheme for the two-stream

Faster R-CNN framework. Conceptually, this is equivalent

to performing the conventional late fusion in both the pro-

posal generation and action classification stage (Fig. 6). We

first extract two 1D feature maps from RGB frames and

stacked optical flow, respectively, using two different net-

works. We process each feature map by a distinct Segment
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Proposal Network, which parallelly generates the logits for

anchor classification and boundary regression. We use the

element-wise average of the logits from the two networks

as the final logits to generate proposals. For each proposal,

we perform SoI pooling parallelly on both feature maps,

and apply a distinct DNN classifier on each output. Finally,

the logits for action classification and boundary regression

from both DNN classifiers are element-wisely averaged to

generate the final detection output.

Note that a more straightforward way to fuse two fea-

tures is through an early fusion scheme: we concatenate the

two 1D feature maps in the feature dimension, and apply

the same pipeline as before (Sec. 4.1 and 4.2). We show

by experiments that the aforementioned late fusion scheme

outperforms the early fusion scheme.

Contributions beyond [8, 14, 15, 49] Xu et al. [49] only

used a single-stream feature (C3D). Both Dai et al. and Gao

et al. used two-stream features, but either did not perform

fusion [15] or only tried the early fusion scheme [8, 14].

5. Experiments

Dataset We perform ablation studies and state-of-the-art

comparisons on the temporal action detection benchmark

of THUMOS’14 [21]. The dataset contains videos from 20

sports action classes. Since the training set contains only

trimmed videos with no temporal annotations, we use the

200 untrimmed videos (3,007 action instances) in the vali-

dation set to train our model. The test set consists of 213

videos (3,358 action instances). Each video is on average

more than 3 minutes long, and contains on average more

than 15 action instances, making the task particularly chal-

lenging. Besides THUMOS’14, we separately report our

results on ActivityNet v1.3 [4] at the end of the section.

Evaluation Metrics We consider two tasks: action pro-

posal and action localization. For action proposal, we cal-

culate Average Recall (AR) at different Average Number of

Proposals per Video (AN) using the public code provided

by [11]. AR is defined by the average of all recall values

using tIoU thresholds from 0.5 to 1 with a step size of 0.05.

For action localization, we report mean Average Precision

(mAP) using different tIoU thresholds.

Features To extract the feature maps, we first train a two-

stream ”Inflated 3D ConvNet” (I3D) model [6] on the Ki-

netics action classification dataset [24]. The I3D model

builds upon state-of-the-art image classification architec-

tures (i.e. Inception-v1 [41]), but inflates their filters and

pooling kernels into 3D, leading to very deep, naturally spa-

tiotemporal classifiers. The model takes as input a stack of

64 RGB/optical flow frames, performs spatio-temporal con-

volutions, and extracts a 1024-dimensional feature as the

output of an average pooling layer. We extract both RGB

and optical flow frames at 10 frames per second (fps) as

input to the I3D model. To compute optical flow, we use

a FlowNet [10] model trained on artificially generated data

followed by fine-tuning on the Kinetics dataset using an un-

supervised loss [43]. After training on Kinetics we fix the

model and extract the 1024-dimensional output of the av-

erage pooling layer by stacking every 16 RGB/optical flow

frames in the frame sequence. The input to our action local-

ization model is thus two 1024-dimensional feature maps—

for RGB and optical flow—sampled at 0.625 fps from the

input videos.

Implementation Details Our implementation is based

on the TensorFlow Object Detection API [20]. In pro-

posal generation, we apply anchors of the following scales:

{1, 2, 3, 4, 5, 6, 8, 11, 16}, i.e. K = 9. We set the number

of filters to 256 for all convolutional and fully-connected

layers in the Segment Proposal Network and the DNN clas-

sifier. We add a convolutional layer with kernel size 1 to

reduce the feature dimension to 256 before the Segment

Proposal Network and after the SoI pooling layer. We ap-

ply Non-Maximum Suppression (NMS) with tIoU threshold

0.7 on the proposal output and keep the top 300 proposals

for action classification. The same NMS is applied to the

final detection output for each action class separately. The

training of TAL-Net largely follows the Faster R-CNN im-

plementation in [20]. We provide the details in the supple-

mentary material.

Receptive Field Alignment We validate the design for re-

ceptive field alignment by comparing four baselines: (1) a

single-tower network with no temporal convolutions (Sin-

gle), where each anchor is classified solely based on the

feature at its center location; (2) a single-tower network

with non-dilated temporal convolutions (Single+TConv),

which represents the default Faster R-CNN architecture; (3)

a multi-tower network with non-dilated temporal convolu-

tions (Multi+TConv); (4) a multi-tower network with di-

lated temporal convolutions (Multi+Dilated, the proposed

architecture). All temporal ConvNets have two layers, both

with kernel size 3. Here we consider only a single-steam

feature (i.e. RGB or flow) and evaluate the generated pro-

posal with AR-AN. The results are reported in Tab. 1 (top

for RGB and bottom for flow). The trend is consistent on

both features: Single performs the worst, since it relies

only on the context at the center location; Single+TConv

and Multi+TConv both perform better than Single, but still,

suffer from irrelevant context due to misaligned receptive

fields; Multi-Dilated outperforms the others, as the recep-

tive fields are properly aligned with the span of anchors.

Context Feature Extraction We first validate our design

for context feature extraction in proposal generation. Tab. 2

compares the generated proposals before and after incorpo-

rating context features (top for RGB and bottom for flow).
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AN 10 20 50 100 200

Single 9.4 15.3 25.3 33.9 41.3

Single + TConv 12.9 20.0 30.3 37.6 44.0

Multi + TConv 13.4 20.6 31.1 38.1 43.7

Multi + Dilated 14.0 21.7 31.9 38.8 44.7

Single 11.0 18.0 28.9 36.8 43.6

Single + TConv 15.1 23.2 33.7 40.0 44.7

Multi + TConv 15.7 24.0 35.0 41.1 46.2

Multi + Dilated 16.3 25.4 35.8 42.3 47.5

Table 1: Results for receptive field alignment on proposal gener-

ation in AR (%). Top: RGB stream. Bottom: Flow stream.

AN 10 20 50 100 200

Multi + Dilated 14.0 21.7 31.9 38.8 44.7

Multi + Dilated + Context 15.1 22.2 32.3 39.9 46.8

Multi + Dilated 16.3 25.4 35.8 42.3 47.5

Multi + Dilated + Context 17.4 26.5 36.5 43.3 48.6

Table 2: Results for incorporating context features in proposal

generation in AR (%). Top: RGB stream. Bottom: Flow stream.

tIoU 0.1 0.3 0.5 0.7 0.9

SoI Pooling 44.9 38.4 28.5 13.0 0.6

SoI Pooling + Context 49.3 42.6 31.9 14.2 0.6

SoI Pooling 49.8 45.7 37.4 18.8 0.7

SoI Pooling + Context 54.3 48.8 38.2 18.6 0.9

Table 3: Results for incorporating context features in action clas-

sification in mAP (%). Top: RGB stream. Bottom: Flow stream.

tIoU 0.1 0.3 0.5 0.7 0.9

RGB 49.3 42.6 31.9 14.2 0.6

Flow 54.3 48.8 38.2 18.6 0.9

Early Fusion 60.5 52.8 40.8 19.3 0.8

Late Fusion 59.8 53.2 42.8 20.8 0.9

Table 4: Results for late feature fusion in mAP (%).

We achieve higher AR on both streams after the context fea-

tures are included. Next, given better proposals, we evalu-

ate context feature extraction in action classification. Tab. 3

compares the action localization results before and after in-

corporating context features (top for RGB and bottom for

flow). Similarly, we achieve higher mAP nearly at all AN

values on both streams after including the context features.

Late Feature Fusion Tab. 4 reports the action localiza-

tion results of the two single-stream networks and the early

and late fusion schemes. First, the flow based feature out-

performs the RGB based feature, which coheres with the

common observations in action classification [36, 47, 6, 13].

Second, the fused features outperform the two single-stream

features, suggesting the RGB and flow features complement

each other. Finally, the late fusion scheme outperforms the

early fusion scheme except at tIoU threshold 0.1, validating
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Figure 7: Our action proposal result in AR-AN (%) on THU-

MOS’14 comparing with other state-of-the-art methods.

tIoU 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Karaman et al. [23] 4.6 3.4 2.4 1.4 0.9 – –

Oneata et al. [31] 36.6 33.6 27.0 20.8 14.4 – –

Wang et al. [45] 18.2 17.0 14.0 11.7 8.3 – –

Caba Heilbron et al. [5] – – – – 13.5 – –

Richard and Gall [33] 39.7 35.7 30.0 23.2 15.2 – –

Shou et al. [35] 47.7 43.5 36.3 28.7 19.0 10.3 5.3

Yeung et al. [50] 48.9 44.0 36.0 26.4 17.1 – –

Yuan et al. [52] 51.4 42.6 33.6 26.1 18.8 – –

Escorcia et al. [11] – – – – 13.9 – –

Buch et al. [2] – – 37.8 – 23.0 – –

Shou et al. [34] – – 40.1 29.4 23.3 13.1 7.9

Yuan et al. [53] 51.0 45.2 36.5 27.8 17.8 – –

Buch et al. [1] – – 45.7 – 29.2 – 9.6

Gao et al. [14] 60.1 56.7 50.1 41.3 31.0 19.1 9.9

Hou et al. [19] 51.3 – 43.7 – 22.0 – –

Dai et al. [8] – – – 33.3 25.6 15.9 9.0

Gao et al. [15] 54.0 50.9 44.1 34.9 25.6 – –

Xu et al. [49] 54.5 51.5 44.8 35.6 28.9 – –

Zhao et al. [54] 66.0 59.4 51.9 41.0 29.8 – –

Ours 59.8 57.1 53.2 48.5 42.8 33.8 20.8

Table 5: Action localization mAP (%) on THUMOS’14.

our proposed design.

State-of-the-Art Comparisons We compare TAL-Net

with state-of-the-art methods on both action proposal and

localization. Fig. 7 shows the AR-AN curves for action pro-

posal. TAL-Net outperforms all other methods in the low

AN region, suggesting our top proposals have higher qual-

ity. Although our AR saturates earlier as AN increases, this

is because we extract features at a much lower frequency

(i.e. 0.625 fps) due to the high computational demand of

the I3D models. This reduces the density of anchors and

lowers the upper bound of the recall. Tab. 5 compares the

mAP for action localization. TAL-Net achieves the highest

mAP when the tIoU threshold is greater than 0.2, suggesting

it can localize the boundaries more accurately. We particu-

larly highlight our result at tIoU threshold 0.5, where TAL-

Net outperforms the state-of-the-art by 11.8% mAP (42.8%
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Figure 8: Qualitative examples of the top localized actions on THUMOS’14. Each consists of a sequence of frames sampled from a full

test video, the ground-truth (blue) and predicted (green) action segments and class labels, and a temporal axis showing the time in seconds.

versus 31.0% from Gao et al. [14]).

Qualitative Results Fig. 8 shows qualitative examples of

the top localized actions on THUMOS’14. Each consists

of a sequence of frames sampled from a full test video, the

ground-truth (blue) and predicted (green) action segments

and class labels, and a temporal axis showing the time in

seconds. In the top example, our method accurately local-

izes both instances in the video. In the middle example, the

action classes are correctly classified, but the start of the

leftmost prediction is inaccurate, due to subtle differences

between preparation and the start of the action. In the bot-

tom, “ThrowDiscus” is misclassified due to similar context.

Results on ActivityNet Tab. 6 shows our action local-

ization results on the ActivityNet v1.3 validation set along

with other recent published results. TAL-Net outperforms

other Faster R-CNN based methods at tIoU threshold 0.5

(38.23% vs. 36.44% from Dai et al. [8] and 26.80% from

Xu et al. [49]). Note that THUMOS’14 is a better dataset

for evaluating action localization than ActivityNet, as the

former has more action instances per video and each video

contains a larger portion of background activity: on av-

erage, the THUMOS’14 training set has 15 instances per

video and each video has 71% background, while the Ac-

tivityNet training set has only 1.5 instances per video and

tIoU 0.5 0.75 0.95 Average

Singh and Cuzzolin [38] 34.47 – – –

Wang and Tao [48] 43.65 – – –

Shou et al. [34] 45.30 26.00 0.20 23.80

Dai et al. [8] 36.44 21.15 3.90 –

Xu et al. [49] 26.80 – – 12.70

Ours 38.23 18.30 1.30 20.22

Table 6: Action localization mAP (%) on ActivityNet v1.3 (val).

each video has only 36% background.

6. Conclusion

We introduce TAL-Net, an improved approach to tempo-

ral action localization in video that is inspired by the Faster

RCNN object detection framework. TAL-Net features three

novel architectural changes that address three key shortcom-

ings of existing approaches: (1) receptive field alignment;

(2) context feature extraction; and (3) late feature fusion.

We achieve state-ofthe-art performance for both action pro-

posal and localization on THUMOS14 detection benchmark

and competitive performance on ActivityNet challenge.
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