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Abstract

The Generative Adversarial Networks (GANs) have

demonstrated impressive performance for data synthesis,

and are now used in a wide range of computer vision tasks.

In spite of this success, they gained a reputation for be-

ing difficult to train, what results in a time-consuming and

human-involved development process to use them.

We consider an alternative training process, named

SGAN, in which several adversarial “local” pairs of net-

works are trained independently so that a “global” su-

pervising pair of networks can be trained against them.

The goal is to train the global pair with the correspond-

ing ensemble opponent for improved performances in terms

of mode coverage. This approach aims at increasing the

chances that learning will not stop for the global pair, pre-

venting both to be trapped in an unsatisfactory local mini-

mum, or to face oscillations often observed in practice. To

guarantee the latter, the global pair never affects the local

ones.

The rules of SGAN training are thus as follows: the

global generator and discriminator are trained using the

local discriminators and generators, respectively, whereas

the local networks are trained with their fixed local oppo-

nent.

Experimental results on both toy and real-world prob-

lems demonstrate that this approach outperforms standard

training in terms of better mitigating mode collapse, stabil-

ity while converging and that it surprisingly, increases the

convergence speed as well.

1. Introduction

An important research effort has recently focused on

improving the convergence analysis of the Generative Ad-

versarial Networks (GANs) [6]. This family of unsu-

pervised learning algorithms provides powerful generative

models, and have found numerous and diverse applica-

tions [11, 17, 22, 34].

Different from traditional generative models, a GAN

generator represents a mapping G : z 7→ x, such that if

Figure 1: Conceptual illustration of SGAN. There are N+1
pairs, of which the pair (G0, D0) is not trained directly. D0

is trained with Gi, i=1, . . . , N , and G0 is trained with Di,

i=1, . . . , N , as illustrated with the dashed line rectangles.

z follows a known distribution pz , then x follows the distri-

bution pd of the data. Notably, this approach omits an ex-

plicit representation of pg(x), or the ability to apply directly

a maximum-likelihood maximization for training. This is

aligned with the practical need, which is that we do not

need an explicit formulation of pg(x), but rather a mean

to sample from it, preferably in a computationally efficient

manner. The training of the generator involves a discrimi-

native model D : x 7→ y ∈ [0, 1], whose output represents

an estimated probability that x originates from the dataset.

More precisely, the algorithm consists of two training

steps. Given that there is a probability 0.5 that the input

x originates from the dataset and 0.5 that it was generated

by G, the discriminator D is trained to distinguish between

“real” and “fake” inputs, respectively. On the other hand,

G is trained to “fool” D by generating synthetic samples

indistinguishable from the real ones.

Formally, the two competing models play the following

two-player minimax–alternatively zero-sum–game:

min
G

max
D

E
x∼pd

[logD(x)]+ E
z∼pz

[log(1−D(G(z)))]. (1)
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The two models are parametrized differentiable func-

tions G(z; θg) and D(x; θd), implemented with neural net-

works, whose parameters θg and θd are optimized itera-

tively. In functional space, the competing models are guar-

anteed to reach a Nash Equilibrium, in particular under the

assumptions that we optimize directly pg instead of θg and

that the two networks have enough capacity. At this equi-

libria point, D outputs probability 0.5 for any input.

In practice, GANs are difficult to optimize, and practi-

tioners have amassed numerous techniques to improve sta-

bility of the training process [25]. However, the neglected

inherited problems of the neural networks such as the lack

of convexity, the numerical instabilities of some of the in-

volved operations, the limited representation capacity, as

well as the problem of vanishing and exploding gradients

often emerge in practice.

Current state-of-the-art GAN variants [1, 8] eliminate

gradient instabilities, which mitigated the discrepancy be-

tween the theoretical requirement that D should be trained

up to convergence before updating G, and the practical pro-

cedures of vanilla GAN for which this is not the case. These

results are important, as vanishing or exploding gradients

results in G to produce samples of noise.

However, oscillations between noisy patterns and sam-

ples starting to look like real data while the algorithm is

converging, as well as failures of capturing pd, are not re-

solved. In addition, in practical applications, it is very diffi-

cult to assess the diversity of the generated samples. “Fake”

samples may look realistic but could be similar to each other

– indicating that the modes of pd have been only partially

“covered” by pg . This is a problem that arises and is re-

ferred as mode collapse. As a result, a golden rule remains

that one does multiple trials of combinations of hyperpa-

rameters, architectural and optimization choices, and vari-

ants of GANs. As under different choices the performances

vary [19], this is followed by tedious and subjective assess-

ments of the quality of the generated samples in order to

select a generator.

As a summary, what made GAN distinctly powerful is

the opponent-wise engagement of two networks belonging

to an already outperforming class of algorithms. Such a

framework–the discriminator being a deep neural network–

allows for time-efficient training of the generative model

and directly formulates what we aim at–to generate sam-

ples that resemble those we have, in contrast to memorizing

these. Intuitively, the more we enforce constraints, either

architectural or functional, the better the coherency of the

learning dynamics. On the other hand, this may result in

reduced sample quality or increased convergence time at

the minimum. A question arises if we can improve train-

ing stability, guarantees of “successful” training, and perfor-

mances, without imposing restrictions on the architectures

of G or D.

We propose a novel way of training a global pair

(G0, D0), such that the optimization process will make use

of the “flow of information” generated by training an en-

semble of N adversarial pairs (G1, D1), . . . , (GN , DN ), as

sketched in Figure 1.

The rules of this game are as follows: G0 and D0 can

solely be trained with {D1, . . . DN} and {G1, . . . GN}, re-

spectively, and local pairs do not have access to outputs or

gradients from G0 and D0.

The most prominent advantages of such a training are:

1. if the training of a particular pair degrades or oscillates,

the global networks continue to learn with higher prob-

ability;

2. it is much more likely that training one pair will fail

than training all of them, hence the choice of not letting

global models to affect the ensemble;

3. if the models’ limited capacity is taken into account i.e.

pg can capture a limited number of modes of pd (which

increases with the number of training iterations), and

under the assumption that each mode of pd has a non-

zero probability of being captured, then the modeled

distribution by the ensemble is closer to pd in some

metric space due to the statistical averaging; and con-

veniently

4. large chunks of the computation can be carried out in

parallel making the time overhead negligible.

In what follows, we first review in § 2 GAN variants we

use in the experimental evaluation of our SGAN algorithm,

which to the best of our knowledge are the current state-

of-the-art methods. We then describe SGAN in detail in

§ 3, and present thorough experimental evaluation in § 4 as

well as in the Appendix. We then present some methods

that although unrelated to the SGAN approach, do propose

a multi-agent structure in § 5.

2. Related work: Variants of the GAN algo-

rithm

Optimizing Eq. 1 amounts to minimizing the Jensen-

Shannon divergence between the data and the model dis-

tribution JS(pd, pg) [6]. More generally, GANs learn pd
by minimizing a particular f-divergence between the real

samples and the generated samples [23].

With a focus on generating images, [25] proposes spe-

cific architectures of the two models, named Deep Convo-

lutional Generative Adversarial Networks–DCGAN. [25]

also enumerates a series of practical guidelines, critical for

the training to succeed. Up to this point, when the archi-

tecture and the hyper-parameters are empirically selected,

DCGAN demonstrates outperforming results both in terms

of quality of generated samples and convergence speed.
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To ensure usable gradient for optimization, the mapping

θd 7→ pd should be differentiable, and to have a non-zero

gradient everywhere. As the JS divergence does not take

into account the Euclidean structure of the space, it may fail

to make the optimization move distributions closer to each

other if they are “too far apart” [1]. Hence, [1] suggests the

use of the Wasserstein distance, which precisely accounts

for the Euclidean structure. Through the Kantorovich Ru-

binstein duality principle [30], this boils down to having a

K-Lipschitz discriminator.

From a purely practical standpoint, this means that

strongly regularizing the discriminator prevents the gradi-

ent from vanishing through it, and helps the optimization

of the generator by providing it with a long-range influence

that translates into a non-zero gradient.

In WGAN [1] the Lipschitz continuity is forced through

weight clipping, which may make the optimization of D

harder–as it makes the gradient with respect to D’s param-

eters vanish–and often leads to degrading the overall con-

vergence. It was later proposed to enforce the Lipschitz

constraint smoothly by adding a term in the loss which pe-

nalizes gradients whose norm is higher than one–WGAN-

GP [8].

Motivated by game theory principles, [13] derives com-

bined solution of vanilla GAN and WGAN with gradient

penalty. In particular, the authors aim at smoothing the

value function via regularization by minimizing the regret

over the training period, so as to mitigate the existence of

the multiple saddle points. Finally, while building on vanilla

GAN, the proposed algorithm named DRAGAN–Deep Re-

gret Analytic GAN–forces the constraint on the gradients of

D(x) solely in local regions around real samples.

3. Method

Structure. We use a set G = {G1, . . . GN} of N gen-

erators, a set D = {D1 . . . DN} of N discriminators, and

a global generator-discriminator pair (G0, D0), as sketched

in Figure 1.

Summary of a simplified-SGAN implementation. The

pairs (Gn, Dn), n = 1, . . . N are trained individually in a

standard approach. In parallel to their training, D0 is opti-

mized to detect samples generated by any of the local gen-

erators G1, . . . , GN , and similarly G0 is optimized to fool

all of the local discriminators D1, . . . , DN .

Note that, to satisfy the theoretical analyses of minimiz-

ing the Wasserstein distance and the Jensen-Shannon diver-

gence for WGAN and GAN, respectively, the above proce-

dure of training implies that each {D1 . . . DN} should be

trained with G0 at each iteration of SGAN. Solely by fol-

lowing such a procedure G0 follows the principles of the

GAN framework [6], which trains it with gradients “mean-

ingful” for it.

Algorithm 1: Pseudocode for SGAN.

Input : Xinf , N , I, ID
1 G, D = init(N );

2 G0, D0 = init(1)

3 for i ∈ {1 . . . I} do

4 for n ∈ {1 . . . N} do

5 for j ∈ {1 . . . ID} do

6 zeroGradients(D[n]);
7 backprop(G[n],D[n],Xinf );

8 updateParameters(D[n]);

9 end

10 zeroGradients(G[n]);
11 backprop(G[n],D[n],Xinf );

12 updateParameters(G[n]);

13 end

14 Dmsg = copy(D);

15 for n ∈ {1 . . . N} do

16 for j ∈ {1 . . . ID} do

17 zeroGradients(Dmsg[n]);
18 backprop(G0,D

msg[n],Xinf );

19 updateParameters(Dmsg[n]);

20 end

21 end

22 zeroGradients(G0);

23 for n ∈ {1 . . . N} do

24 backprop(G0,D
msg[n],Xinf );

25 end

26 updateParameters(G0);

27 zeroGradients(D0);

28 for n ∈ {1 . . . N} do

29 backprop(G[n], D0,Xinf );

30 end

31 updateParameters(D0);

32 end

Output: G0, D0

Introducing “messengers” discriminators for improved

guarantees. To prevent that one of the network pairs

“influences” the ensemble, and thus keep the guaran-

tees of successful training, we propose to train G0

against herein referred as “messengers” discriminators

D
msg
1

, . . . , D
msg
N , which at re-created at every iteration as

clones of D1, . . . , DN , optimized against G0.

We empirically observed that this strategy helps consec-

utive steps to be more coherent, and improves drastically the

convergence. It is worth noting that, despite the increased

complexity in terms of obtaining the theoretical analyses,

such an approach is practically convenient since it allows

for training G0 in parallel to the local pairs.

3.1. Description of SGAN

More formally, let Xinf be a sampling operator over

the dataset, which provides mini-batches of i.i.d. samples

x∼pd.
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Let backprop be a function that given a pair G and D,

buffers the updates of the networks’ parameters, updatePa-

rameters that actually updates the parameters using these

buffers, and zeroGradients resets these buffers. Also, let

init be a function that initializes a given number of pairs

of G and D. Let N be the number of pairs to be used.

The algorithm iterates for a given number of iterations I ,

and depending on the used GAN variant, each discrimina-

tor network is updated either once or several times, hence

the ID input parameter.

At each iteration, foremost the local models are being

updated (lines 4 - 12).

Then, to obtain meaningful gradients for G0, without af-

fecting the local models, we first make a copy of the lat-

ter (line 14) into the “messenger discriminators” Dmsg , and

update them against G0 (lines 15 - 21). We then update G0

jointly versus all of the discriminators (lines 22 - 26).

As D0 does not affect generators it is trained with, it is

directly updated jointly versus all of the local generators

(lines 27 - 31).

Note that for clarity in Alg. 1 we present SGAN sequen-

tially. However, each iteration of the training can be paral-

lelized since G0 is trained with a copy of D, and the local

pairs can be trained independently. In addition, Alg. 1 can

be used with different GAN variants.

SGAN can also be implemented with weight-sharing

(see § 4.1) since low-level features can be learned jointly

across the networks. This motivates the training of D0 in

Alg. 1. In addition, whether the discriminator can be made

use of is not a closed topic. In fact, a recent work answers

in the affirmative [15].

4. Experiments

Datasets. As toy problems in R2 we used (i) mixtures of

M Gaussians (M -GMM) whose means are regularly posi-

tioned either on a circle or a grid, with M = 8, 10, or 25,

and (ii) the classical Swiss Roll toy dataset [20]. In the

former case, we manually generate such datasets, by using

a mixture of M Gaussians with modes that are uniformly

distributed in a circle or in a grid. With such an evaluation,

we follow related works–for e.g [8, 13, 29] since GANs in

prior work often failed to converge even on such simplistic

datasets [21].

To assess SGAN or real world applications, we used:

1. small scale datasets: CIFAR10 [14, chapter 3], STL-

10 [2], MNIST [16], as well as the recent FASHION-

MNIST [32];

2. large scale datasets: CelebA [18], LSUN [33] using its

“bedroom” class, and ImageNet [26]; as well as

3. large language corpus of text in English, known as One

Billion Word Benchmark [12].

Methods. As WGAN with gradient penalty [8] outper-

formed WGAN with weight clipping [1] in our experiments,

herein as “WGAN” we refer to the former. Regarding

vanilla GAN, instead of minimizing log (1−D(G(z))), we

train G to maximize log (D(G(z))), as it is recommended

in [6], and done in practice [6, 25]. For conciseness, let

us adopt the following notation regarding SGAN: we prefix

the type of GAN with N -S, where N is the number of lo-

cal pairs being used. For example, SGAN with 5 WGAN

local pairs and one global WGAN pair would be denoted as

5-S-WGAN.

Implementation. For experiments on toy datasets, we

used separate 2×(N+1) neural networks. Regarding exper-

iments on real-world datasets, we experimented with two

implementations: using separate networks, as well as shar-

ing parameters. In the latter case, we used approximately

half of the parameters to be shared among the generators,

and analogously same quantity among the discriminators.

For further details on our implementation, see Appendix.

As a deep learning framework we used PyTorch [24].

Metrics. A serious limitation to improve GANs is the lack

of a proper means of evaluating them [19]. When deal-

ing with images, most commonly used measure is the In-

ception score (IS) [27]. This metric feeds a pre-trained

model named Inception [28] with generated images and

measures the Kullback–Leibler divergence between the pre-

dicted conditional label distribution and the actual class

probability distribution. The mode collapse failure is re-

flected by the mode’s class being less frequent, making the

conditional label distribution more deterministic.

Using real data images of ImageNet, LSUN-bedroom,

CIFAR10, and CelebA, we obtain the following Inception

scores: 46.99 (3.547), 2.37 (0.082), 10.38 (0.502), 2.50

(0.082), respectively. The high variance across the datasets,

suggests that training the model on the dataset at hand

may improve the estimate. Hence, we adopt it as is for

CIFAR10–as it turned into a standard GAN metric, whereas

for MNIST we use a classifier specifically trained on this

dataset. In the former case, we use the original implementa-

tion of it [27] and a sample of pg of size 50·103, whereas for

the latter we use our own implementation in PyTorch [24].

The Fréchet Inception Distance (FID) [9] also relies

on the Inception model [28], but uses it to embed sam-

ples into a “good” feature space. It consists of first esti-

mating the mean µg and µd, and covariances Cg and Cd,

respectively for pg and pd in that feature space, and com-

puting DFID(pd, pg) ≈ d2((µd, Cd), (µg, Cg)) = ||µd −

µg||
2

2
+Tr(Cd + Cg − 2(CdCg)

1

2 ), where d2 denotes the

Fréchet Distance.

For experiments on MNIST, using a separately trained

classifier, we also plot the entropy of the generated sam-
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(a) Real data (10-GMM) (b) Discriminator output (c) S-Discriminator output (d) Not-covered modes (%)

Figure 2: Figures (a-c) depict a toy experiment with vanilla GAN. Figure (d) depicts the percentage of not covered modes

(y-axis) by the generators, as more pairs are used (x-axis). See text for details, § 4.1.

ples’ mode distribution, as well as the total variation be-

tween the class distribution of the generated samples and a

uniform one. For toy experiments on mixtures of Gaussians,

we also used the log-likelihood of the generated samples.

For more results and details on our implementation, see

the Appendix.

4.1. Experimental results on toy datasets

Independently trained ensemble of GANs. To motivate

the idea of favoring information from the independent en-

semble to train a single pair, we conduct the following ex-

periment. We train in parallel few pairs of networks, as well

as two additional pairs: (i) SGAN–trained with the local in-

dependent pairs, as well as (ii) GAN–a regularly trained

pair. In addition to training these two pairs with equal fre-

quency, we used the identical real-data and noise samples.

Figure 2 depicts vanilla-GAN experiment on the 10-

GMM dataset (Figure 2a). We recall that the only differ-

ence between the two discriminators is that the GAN dis-

criminator is trained with fake samples from his tied single

opponent (Figure 2b), whereas the one of SGAN is trained

with fake samples from the ensemble (Figure 2c).

Figure 2d depicts that the probability that a mode will not

be covered (y-axis) by the ensemble, at a random iteration,

goes down exponentially with the number of pairs (x-axis).

For this experiment, we used the 8-GMM toy dataset and

the vanilla-GAN algorithm.

Performance of the global pair in SGAN. In Figure 3

we use WGANs, where each network is a multilayer per-

ceptron (MLP) of 4 fully connected layers (see App. 1). The

first column depicts the 10 local pairs: generators’ samples

and discriminators’ contours (level sets) are displayed in

varying and transparent colors, respectively. The rightmost

column depicts the 10-S-WGAN pair (trained with the net-

works of the first column): samples from G0 are drawn in

green, whereas the illustrated contours are from D0. We ob-

serve that S-WGAN exhibits higher stability and faster con-

vergence speed. Figure 3 also depicts samples from a gen-

Figure 3: (10-S-)WGAN on (top to bottom row): circle 8-

GMM, grid 25-GMM, Swiss Roll (best seen in color). Real

data-points are shown in orange. The level sets of the out-

put of the discriminator(s) are shown with yellow to purple

contours which denote low and high, respectively. See § 4.1.

erator updated N -fold times more (middle column), what

indicates that an SGAN generator is comparable with these.

Figure 4 depicts 10-S-WGAN experiment on the 8-

GMM toy dataset. At each iteration, after training the lo-

cal pairs, the global generator is trained with the local dis-

criminators, samples of which are displayed on the left and

right columns, respectively. We observe that in the earlier

iterations samples from the global generator may lie in R2

regions distinct from the real data samples. Nonetheless, it

converges notably quicker, and through the early iterations,

its generated samples lie in regions which often do not inter-

sect with those of the local generators (jointly) at the same

iteration.
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Figure 4: 10-S-WGAN on the 8-GMM toy dataset (best

seen in color). Samples from pd are displayed in orange.

Each row is a particular iteration (top to bottom): 5th, 10th,

100th, and 400th iteration. Samples from the local gener-

ators and the global one are illustrated on the left (in sepa-

rate colors) and right (in green), respectively. The displayed

contours represent the level sets of D and Dmsg–illustrated

on the left and right, respectively, where yellow is low and

purple is high.

Value of N . Figure 5 depicts the log-likelihood on 8-

GMM for different values of N , where “simplified-SGAN”

denotes the SGAN variant without the messengers discrim-

inators (see § 3). We observe that increasing N helps, but

that the trade-off performance gain versus computation re-

sources starts to saturate compared to the gain obtained of

SGAN relative to regular training.

4.2. Experimental results on realworld datasets

In Figures 6 and 8 we show experimental results on im-

age datasets. In the latter, samples are taken at a random
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Figure 5: Log-likelihood on 8-GMM toy dataset (see § 4.1).

iteration, prior to final convergence, so as the difference in

the quality of the samples is clearer. Figure 7 depicts quan-

titative results on CIFAR10 using the Inception Score (Fig-

ure 7a) and the Fréchet Inception Distance (Figure 7b), un-

der identical hyperparameter setup and architecture choice

(see App. 2 for details on our implementation).

In Table 1 we show fake samples of the global generators

of S-WGAN on the One Billion Word Benchmark dataset.

The output of a standard WGAN training is a single char-

acter (white space) for all of the first 660 iterations, what

indicates slower than N -fold convergence speed compared

to an N-S-Generator. In addition, it is interesting to observe

similar behavior as on toy datasets: at the first iteration (first

row in Table 1) the SGAN generators are pushed far from

the modes of the real data samples, as they generate non-

commonly used letters.

Figure 9 depicts samples taken from each generator in

5-S-DCGAN at the 100·103-th iteration, as well as samples

from the generator of a separately trained DCGAN pair

at 100·103-th and 500·103-th iterations. Besides that the

global generator of SGAN shows no visible mode collapse

for the human eye (compared to samples taken from the rest

of the generators), we also observed that its performance did

not oscillate through the iterations.

5. Related work: Multi-network GAN methods

Independently, Boosted Generative Models [7] and Ada-

GAN [29] propose the iterative boosting algorithm to solve

the mode collapse problem. At each step, a new component

is added into a mixture of models, by updating the samples’

weights, while using the vanilla GAN algorithm.

With the similar motivation of increasing the mode cov-

erage [5] and [10] propose to instead train multiple gener-

ators versus a single discriminator.
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Figure 6: Results on MNIST using (5-S-) GAN/WGAN/DRAGAN (best seen in color).
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Figure 7: Results on CIFAR10 (best seen in color).

Table 1: Output snippets of the global generators trained on

the One Billion Word Benchmark. The top to bottom rows

depict the 1-st, 100-th and the 200-th iteration. See § 4.2.
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In [5] the discriminator is trained against N generators

which share parameters in all layers except the last one, and

it outputs probability estimate for N+1 classes representing

whether the input is a real sample, or by whom of the gen-

erators it originates. To enforce diversity between the gen-

erated samples, a penalty term is added with a user-defined

similarity based function.

(a) G1 (b) G2 (c) G3 (d) G4 (e) G5 (f) G0

Figure 8: 5-SGAN. In the top to bottom rows we use

DCGAN on CelebA, DRAGAN on ImageNet, WGAN on

MNIST and DCGAN on LSUN, respectively. Each of the

above samples are taken at the earlier iterations, in par-

ticular at the 100-th, 500-th, 500-th and the 1000-th itera-

tion, respectively for each row. In columns (a-e) we show

samples from the local generators, whereas in (f) from the

global generator. We used separate networks and real data

space of 32×32.

Similarly, [10] proposes multiple generators that share

parameters versus single discriminator whose output is fake

versus real, as well as training an additional model that clas-

sifies by whom of the generators a given fake input was

generated. The output of the classifier is used in an addi-

tional penalty term that forces diversity between the gener-

ators. [3] proposes utilizing multiple discriminators versus

one generator, in aim to stabilize the training.

[4] proposes multiple generators versus single discrimi-

nator, where the generators communicate through two types

of messages. Namely, there are both co-operation and com-

peting objectives. The former ensures the other generator to
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Global generator Local generator #1

Local generator #2 Local generator #3

Local generator #4 Local generator #5

DCGAN, 100·103 iteration DCGAN, 500·103 iteration

Figure 9: Samples of the generators of 5-S-DCGAN on

the STL-10 dataset at the 100·103-th iteration (rows 1−3),

as well as separately trained DCGAN at the 100·103 and

100·103-th iteration (bottom row).

generate images better than itself, and the latter encourages

each generator to generate better samples than its counter-

part. Motivated by the observed oscillations, in [31] a so-

called “self-ensembles” is proposed. Non-traditionally, this

self-ensemble is built out of copies of the generator taken

from a different iteration while training a single pair.

Hence, SGAN depicts different structures and solutions

to the problem of training GANs. Regarding the former,

none of the above methods utilizes explicitly multiple pairs

trained independently. Instead, most commonly a structure

of one-to-many is used, either for the generator or for the

discriminator. Compared to AdaGAN, SGAN is applicable

to any GAN variant, runs in parallel, and produces a single

generator. Concerning the latter, SGAN uses “supervising”

models and prevents an influence of one pair towards all.

6. Discussion

We proposed a general framework dubbed SGAN for

training GANs, applicable to any variant of this algorithm.

It consists of training several adversarial pairs of networks

independently and uses them to train a global pair that com-

bines the multiple learned representations.

A key idea in our approach is maintaining the statistical

independence between the individual pairs, by preventing

any flow of information between them, in particular through

the global pairs it aims at training eventually. Maintaining

this makes the probability of a failure to go down exponen-

tially with the number of pairs involved in the process.

The motivations of such a training methodology origi-

nate from the discrepancy between the theoretical justifica-

tions being derived in functional space, and the fact that we

optimize the parameters of the deep neural networks [6].

More precisely, training the generator finally produced by

SGAN in such a way aims at addressing if the limited repre-

sentational capacity (more prominent at the early iterations)

affects the trajectories taken during the optimization proce-

dure, which could itself be an important factor causing the

training difficulties. The presented empirical evaluation in-

dicates that it is indeed the case, as it was shown that such

a training follows different trajectories and that for realistic

datasets, it eliminates oscillations observed with a standard

training under an identical set-up.

Experimental results on diverse datasets demonstrate

systematic improvements upon classical algorithms as well

as increased stability of the framework regarding real-world

applications. Furthermore, SGAN is convenient for many

applications, as it produces a single generator.

Some future extensions of SGAN include improving the

covering behavior by forcing diversity between the local

pairs and re-casting the analysis in the context of multi-

player game theory.
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