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Abstract

Relative attribute models can compare images in terms

of all detected properties or attributes, exhaustively predict-

ing which image is fancier, more natural, and so on without

any regard to ordering. However, when humans compare

images, certain differences will naturally stick out and come

to mind first. These most noticeable differences, or promi-

nent differences, are likely to be described first. In addition,

many differences, although present, may not be mentioned

at all. In this work, we introduce and model prominent dif-

ferences, a rich new functionality for comparing images. We

collect instance-level annotations of most noticeable differ-

ences, and build a model trained on relative attribute fea-

tures that predicts prominent differences for unseen pairs.

We test our model on the challenging UT-Zap50K shoes and

LFW10 faces datasets, and outperform an array of baseline

methods. We then demonstrate how our prominence model

improves two vision tasks, image search and description

generation, enabling more natural communication between

people and vision systems.

1. Introduction

Suppose you are asked to compare and contrast two dif-

ferent shoes, shown in Figure 1. You might say that the

left shoe is more formal than the right shoe, then perhaps

state that the left shoe is more shiny and less comfortable

than the right shoe. As soon as you are given the images,

these differences stick out and are most noticeable. How-

ever, consider that the two shoes have a huge number of

differences. For instance, the left shoe is more rugged than

the right shoe, and also darker. Although these other dif-

ferences are certainly present and true, they are much less

noticeable to us, and we would likely mention them later, or

not at all.

In general, when we perform any comparison task on

a pair of images, certain differences stick out as being

most noticeable out of the space of all discernible differ-

ences. These most noticeable differences, or prominent dif-

ferences, stand out and would be described first, while most

other differences are not as noticeable and would typically

not be mentioned in a description.

Figure 1: When we compare images, certain differences stick out over oth-

ers. Although all the attribute statements on the left are true, the prominent

differences in bold stand out and would often be described first, whereas

the others may not even be mentioned.

In this work, we introduce and learn prominent differ-

ences in images, expressing them through relative attributes.

When people compare images, they can describe differ-

ences in their attributes, human-nameable visual proper-

ties of images [9, 14, 20, 24, 26, 34, 43] used to describe

anything from materials (smooth, furry) and parts (has

leg, has glasses) to styles (sporty, formal) and expressions

(smiling, sad). Relative attributes, or attributes that indi-

cate an image’s attribute strength relative to other images,

provide an intuitive and meaningful representation for vi-

sual comparison, and have been widely used for vision

tasks [7,20,29,37,40,41,45–47]. Relative attributes express

comparisons of attribute strength (e.g., image X is smiling

more than Y, but smiling less than Z), and are the natural

vocabulary of our proposed prominent differences.

Prominent differences have many practical applications

in vision. Humans interact with vision systems as both users

and supervisors, and naturally communicate prominence.

For instance, in an interactive search task, where humans

provide comparative feedback (e.g., I would like to see im-

ages like this shoe, but more formal [20]), the attributes that

people elect to comment on are prominent differences. In

zero-shot learning with relative attributes [14, 34], where

humans describe unseen visual categories to a machine

by comparing with seen categories, prominence could en-

hance learning by better understanding these comparisons.

Prominent differences are the properties humans provide

first when making comparisons, and thus directly influence

how humans interpret comparison descriptions. Promi-

nence could also be used to highlight the differences that
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(a) dark hair (>) (b) smiling (<) (c) forehead (>)

(d) colorful (<) (e) fancy (>) (f) formal (<)

Figure 2: Different attributes stand out as prominent for different image

pairs. According to the consensus of seven MTurk judges, even though

2a and 2b both differ in darkness of hair, dark hair sticks out as most

prominent in 2a but not in 2b. The wide color difference makes colorful

prominent in 2d, while in 2f, a combination of properties result in formal

as the prominent difference.

stick out to people between fashion styles, extending recent

work that uses attributes for fashion description [1, 11, 26].

Modeling prominent differences is challenging due to

several key reasons. First, there is a large variety of reasons

why an attribute stands out as prominent for any image pair.

For instance, large differences in attribute strength can play

a role (Figure 2d), as well as absence of other significant dif-

ferences (Figure 2a) and unusual occurrences (Figure 2c).

In general, complex interactions between the attributes of

two images cause certain differences to stand out. Second,

humans use a large and diverse vocabulary when expressing

prominence, which a model should support. Finally, promi-

nent differences are observed between individual images.

As we will show, simply predicting prominence based on

the prior frequency of usage for the attribute words is not

sufficient. Thus, prominent differences must be modeled at

the image instance level.

In this work, we propose to model prominent differ-

ences. We collect a novel dataset of prominent difference

annotations, propose a model based on relative attribute

features learned with deep spatial transformer networks or

large margin rankers, and evaluate on two unique and chal-

lenging domains: the UT-Zap50K shoes dataset [46] and

the LFW10 faces dataset [38]. We show that our model

significantly outperforms an array of baselines for predict-

ing prominent differences, including an adaptation of the

state-of-the-art binary attribute dominance approach [43].

Finally, we demonstrate how our prominence model can be

used to enhance two vision applications: interactive image

search and description generation.

2. Related Work

Attributes Attributes are semantic and machine-

understandable properties (e.g., smiling, shiny) that are used

by people to describe images [1–4,6–9,11,14,17,19,20,23,

24, 26, 27, 29, 34, 35, 37–39, 43, 46, 47]. Attributes serve as

expressive mid-level features for recognition [24, 27, 35].

Attributes have also been used as a vocabulary for learn-

ing unseen visual categories, known as zero-shot learn-

ing [14, 25, 34, 43]. Attributes are well suited for applica-

tions in fashion, where they have been used to forecast style

popularity [1], organize outfits by style [11], and drive in-

teractive search [49]. Recently, deep convolutional neural

networks (CNNs) have shown improved attribute prediction

accuracy over previous approaches in various fields such as

faces [27] and fashion [26]. In contrast to previous work,

which focuses on detecting the presence of attributes in im-

ages, we learn which particular attribute differences stick

out when comparing images.

Relative Attributes Relative attributes, first introduced

in [34], represent an image’s attribute strength with re-

spect to other images [7, 10, 20, 29, 37, 40, 41, 45–48], and

are a richer representation than binary presence/absence.

Relative attributes enable visual comparisons between im-

ages (e.g., the left shoe is more sporty than the right), and

have been used to discern fine-grained differences [46, 47]

and predict image virality [7]. Recently, deep CNNs have

been used to both predict relative attributes [40, 41, 45]

as well as generate synthetic images of varying attribute

strengths [44,48]. However, no prior work considers which

relative attributes stand out, or what relative attributes hu-

mans tend to use in speech. Our work introduces prominent

differences, a novel functionality representing most notice-

able differences in the vocabulary of relative attributes.

Importance of Objects and Attributes Different con-

cepts of visual importance have used attributes [2,8,42,43].

Attributes have been used to learn object importance (de-

fined in [42] as the likelihood an object is named first),

which can be used to help rank image aesthetics [8, 18].

As opposed to objects, we consider the separate concept of

prominent differences, which are selected from a vocabu-

lary of linguistic properties.

Turakhia and Parikh [43] introduce the related concept

of binary attribute dominance, measuring which binary at-

tributes (e.g., is 4 legged, not smiling) stand out more for

different object categories. Our work is distinct: we learn

which relative differences stick out between two images,

while [43] learns which binary attributes are more appar-

ent by category. For instance, given the category of sneak-

ers, [43] may detect general trends of sporty and comfort-

able; however, our prominence approach captures impor-

tant differences between image instances, such as one spe-

cific shoe being prominently more rugged than another. We

later extend binary attribute dominance and compare with

our approach (cf. Section 5.2).

Image Saliency Works modeling saliency (e.g., [13, 16,

33]) have used attributes to predict what regions people tend

to look at in images. Although saliency may have an influ-

ence on prominence, it refers to low-level regions in single
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images, whereas prominence is a linguistic, pairwise con-

cept, and the result of a combination of mid-level cues.

Image Search Image search has benefited from

attribute-based approaches [20,39,43,47]. Attribute queries

have been used in search [39], and improvements have been

made using binary attribute ordering [43]. We use rela-

tive attribute ordering, and apply to the interactive Whittle-

Search [20, 21]. Whereas previous work solicits richer user

feedback for WhittleSearch [47], we leverage the implicit

prominence choices users make to obtain better results with

no additional human input or interface changes.

Describing Images As semantic properties, attributes

are well-suited for visual description [9,17,23,31,34,37,43].

Recent work uses attributes to generate binary attribute de-

scriptions [9, 23, 43]. Attributes have been used to generate

referring expressions [17, 31], phrases identifying specific

objects in an image. In comparison, our work focuses on

attribute differences, which could be used to improve re-

ferring expressions. Works have generated image descrip-

tions using relative attribute comparisons [34,37]. However,

these methods list exhaustive statements in arbitrary order;

we improve these by focusing on differences that are promi-

nent and natural to state.

3. Approach

First, we present an overview of relative attribute models

(Section 3.1). Next, we introduce our approach for model-

ing prominent differences (Section 3.2). Finally, we detail

how we gather our prominence datasets (Section 3.3).

3.1. Background: Relative Attribute Models

Relative attributes are semantic visual properties that

represent the strength of an attribute in an image relative

to other images [34]. While binary attributes represent just

the presence or absence of a property (e.g., is smiling, is

not smiling), relative attributes rank images based on their

attribute strength scores (see Figure 3), and are thus well

suited for visual comparison.

We now describe a general framework for relative at-

tribute rankers. Suppose we have a set of images I =
{i}, along with a vocabulary of M relative attributes

A = {am}Mm=1. Let xi ∈ R
D represent the image’s

D-dimensional descriptor, which could be comprised of

GIST [32], color, part descriptors, CNN features, or just

raw pixels. Given an image pair yij = (xi, xj), the goal of

the ranker is to determine if one image contains more of am
than the other, or if both images have similar strengths of

am.

Relative attribute models use sets of labeled image pairs

for supervised learning [10,29,34,40,41,45]. The model is

given a set of ordered pairs Om = {(i, j)} and a set of un-

ordered pairs Sm = {(i, j)} such that (i, j) ∈ Om =⇒ i >

less sporty more sporty

less smiling more smiling

Figure 3: Relative attributes can rank images across a range of strengths.

j, i.e., i contains more of am that j, and (i, j) ∈ Sm =⇒
i ∼ j, i.e., i and j have similar strengths of am.

Relative attribute models learn a ranking function

Rm(xi) for each attribute am to best satisfy the constraints:

∀(i, j) ∈ Om : Rm(xi) > Rm(xj) (1)

∀(i, j) ∈ Sm : Rm(xi) = Rm(xj). (2)

Different learning objectives are used to quantify con-

straint satisfaction, such as a wide margin classification ob-

jective [34] for an SVM [15] ranker, or a RankNet objec-

tive [5, 40, 41, 45] for a deep CNN ranker. We experiment

with both such models in our implementation.

Ranking SVM Ranking SVM rankers optimize

R
(svm)
m (xi) = wT

mxi to preserve ordering while maximiz-

ing distance between closest points when projected onto

wm. wm ∈ R
D is the weight vector to be learned, and

is linear here; nonlinear models are also possible using ker-

nels. Ranking SVMs have seen wide use for relative at-

tributes [7, 10, 20, 29, 34, 46].

CNN Ranker Deep CNN based rankers have emerged

as a strong alternative for predicting relative attributes [40,

41, 45]. These models generally use a CNN optimized for

paired ranking loss [5]. Compared to the Ranking SVM

models, they typically achieve better accuracy but require

more time for training and larger quantities of training data.

We use Singh and Lee’s Siamese network [40] in our work,

where each branch consists of a spatial transformer network

and ranker network.

3.2. Modeling Prominent Differences

We now introduce our approach for modeling prominent

differences, defined as the attribute a person would mention

first when comparing two given images. We first introduce

a naive method, then present our approach.

Naive Widest Relative Difference Given an image pair

yuv , a simple approach for predicting prominence would

be to directly compare their relative attribute scores rum =
Rm(xu) and rvm = Rm(xv). After normalizing these

scores, one can compute the relative difference |rum − rvm|,
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for how different the images are in terms of am. By taking

the maximum

Wuv = argmax
m

|rum − rvm| (3)

over all attributes, we obtain the naive widest relative differ-

ence Wuv .

We hypothesize Wuv alone is inadequate for predicting

prominence. As illustrated in Section 1, there are several

contributing factors to prominence, such as unusual occur-

rence of attributes, and many other complex interactions be-

tween the properties of the image pair. In the next section,

we describe our approach for modeling prominence, which

uses a novel representation to learn the interactions that

cause prominence. Later, we demonstrate the efficacy of

our approach through comparison with widest differences

and other methods (cf. Section 5.2).

Our Approach Suppose we have a set of images I =
{xi}, along with M relative attributes A = {am}Mm=1 as

defined before. In addition, for each am, we are given a

set of unordered prominence image pairs Um = {(xi, xj)}
such that the most prominent difference between xi and xj

is am. Note that Um is distinct from Om and Sm, the rela-

tive attribute pairs used to train the relative attribute ranker.

Our goal is to construct a model that, given a novel pair

of images yuv = (xu, xv), predicts which attribute Auv is

the most prominent difference for that image pair.

First, in order to represent yij as an unordered pair, we

need a symmetric transformation φ(yij) = φ(yji) that com-

bines the attributes of the images into a joint representa-

tion, such that the model always predicts the same promi-

nent difference for each specific pair. The representation

should also capture the wide variety of factors for why cer-

tain properties stand out as prominent, so that the model

may effectively learn.

To create our feature representation φ, we first compute

the relative attribute scores rim = Rm(xi) for both im-

ages xi in the pair and all attributes in the vocabulary, us-

ing the models described in Section 3.1, resulting in scores

ri1, . . . , r
i
M for each image. We then compute φ as the aver-

age of the pair’s scores for each attribute, and concatenate

the absolute difference between the pair’s attribute scores,

creating a feature vector of length 2M :

φ(yij) = (
ri
1
+ r

j
1

2
, . . . ,

ri
M

+ r
j

M

2
,

∣

∣

∣
ri
1
− r

j
1

∣

∣

∣
, . . . ,

∣

∣

∣
riM − r

j

M

∣

∣

∣
).

(4)

This feature representation captures the individual rela-

tive attribute properties while maintaining symmetry: for

instance, unordered pair scores for each attribute am
can be reconstructed from two feature vector components

φ(yij)m ± 1
2φ(yij)M+m. We standardize attribute scores

to zero mean and unit variance before they are input into

φ(yij).

Figure 4: Our approach pipeline for prominent difference prediction.

We experimented with other φ transformations on the

attribute scores of an image pair, including element-wise

products, absolute difference, and weighted averages. We

select the given formulation of φ due to its strong perfor-

mance in practice.

Given this representation, we now build M predictors

Pm(yuv) for m = 1, . . . ,M such that Pm(yuv) is the pre-

dicted confidence score that the prominent difference for

yuv is am. We predict the prominence confidence for each

attribute am using

Pm(yuv) = Sm(wT
mφ(yuv)) (5)

where wT
m are the weights learned of a binary linear clas-

sifier, and Sm is a function mapping classifier outputs to

confidence scores.

To learn the classifier weights wT
m for each am, we mark

all training pairs from Um as positive examples, and all

other training pairs as negatives. We use a linear SVM

classifier for each attribute, due to its strong performance

in practice. We use Platt’s method [36] (Sm) to transform

each classifier output into posterior probabilities.

Using our full predictors P1...M , we predict the most

prominent difference Auv for yuv by choosing the attribute

with the highest confidence:

Auv = argmax
m

(Pm(yuv))). (6)

In addition, we can also return the top k prominent dif-

ferences by selecting the k attributes with the highest con-

fidence scores. This can be used to generate a description

for a pair of images describing their k most prominent dif-

ferences (cf. Section 4.2).

Our model follows the structure of a one vs. all multi-

class classifier, with our relative attribute features φ(yuv) as

input features and the prominent difference as class labels.

Other models could certainly be considered, such as a one

vs. one classifier, or a ranker. We choose the one vs. all

classifier over a one vs. one for several reasons: its strong

prediction performance, its easy interpretability for individ-

ual attributes, and its efficiency (only requiring one clas-

sifier per attribute). We choose a classifier approach vs. a
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ranker for its ease of collecting natural human perception of

prominence (see the next section), as opposed to exhaustive

comparisons between all combinations of attributes, which

is less intuitive and can lead to noisier results. Deep models

could certainly also fit into our framework, although they

require substantially more manual annotation.

3.3. Annotating Prominent Differences

No dataset exists for training or evaluating prominent

differences, so we collect human annotations of prominence

for image pairs at the instance level using Mechanical Turk.

To collect human perception of prominent differences,

we first create a large and diverse vocabulary of M at-

tributes that generally stuck out to annotators when view-

ing the dataset (see Section 5.1 for vocabulary details). We

then show an annotator a pair of randomly selected images,

along with a list of all M attributes {am},m ∈ {1, . . . ,M},

and ask which attribute out of the list sticks out as the most

noticeable difference for that image pair.

It is important to highlight that we ask each annotator to

select just one prominent difference. This allows annota-

tors to provide their natural first impression. Additionally,

we provide the entire vocabulary of M attributes to choose

from, which aids in ensuring that at least a subset of choices

are noticeably different for almost all image pairs.

In addition, our approach is scalable: it requires only one

annotation question per image pair, regardless of the num-

ber of attributes in the vocabulary, vs.
(

M
2

)

combinations of

attribute pair questions required to annotate one instance of

binary dominance in [43]. This helps us scale to the instance

level and capture fine-grained information on which spe-

cific images and features lead to prominence, whereas [43]

collects data at the category-level, projecting the same val-

ues to all instance images in a category and losing valuable

instance-level characteristics in the process.

To obtain our prominent difference ground truth labels,

we collect annotations from seven annotators for each im-

age pair. Then, for each pair, we rank the attributes by fre-

quency chosen, and label the highest ranked attribute as the

ground truth most prominent difference.

4. Applications of Prominent Differences

We now present our approaches for applying prominent

differences to two human-centric applications, image search

(Section 4.1) and description generation (Section 4.2).

4.1. Image Search

First, we consider applying prominent differences to

WhittleSearch [20, 21], an interactive image search frame-

work where users provide relative attribute feedback

through comparisons (e.g., I would like images that are

more formal than reference image X).

Figure 5: In WhittleSearch [20, 21], a user chooses reference images and

constraints from the search page. We hypothesize that users will provide

prominent differences between the reference and their target as feedback,

and show how the proposed method can improve search.

WhittleSearch intersects the relative attribute constraints

c1, . . . , cn provided by the user, ranking database images by

how many constraints they satisfy. In each search iteration,

the user is shown a page of top ranked images and selects

reference images and relative attribute constraints on those

images. WhittleSearch then adds the new feedback to the

set of all constraints and ranks images accordingly.

When users provide feedback in the form of “What I am

looking for is more/less am than image xref”, by defini-

tion, they will provide prominent differences between the

reference image xref and their mental target (see Figure

5). Thus, images are more likely to be relevant if they are

prominently different in am with xref . We model this by

introducing a relevance term p for each database image xi

using prominence:

p(xi | c1, . . . , cn) ∝
∏

c

Pmc
(xi, xrefc), (7)

where Pmc
is our prominence predictor for mc, and at-

tribute mc and reference refc are the constraint parameters

from constraint c, for all c1, . . . , cn.

Then, we rank images within each group satisfying the

same number of constraints by listing them in descending

order of p(xi). We use this approach to maintain the over-

all constraint ordering of WhittleSearch, while using promi-

nence to significantly improve the ordering of images that

share the same number of satisfied constraints.

A strength of our approach is that it does not require

any additional user input: we simply use the user’s existing

feedback for prominence data. As we will show, our ap-

proach is especially impactful in the first several iterations

of search, when many images satisfy all or most of the feed-

back constraints, and would be otherwise randomly ordered

by the existing WhittleSearch algorithm [20].

4.2. Description Generation

For our second application, we consider applying promi-

nent differences to generate textual image descriptions.

Given a novel image pair, we want to generate a descrip-

tion comparing the images in terms of their attributes (e.g.,

Image X is more sporty and less formal than Image Y).
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When humans compare images, by definition, they state

prominent differences first. In addition, humans will not

name all differences for a pair; instead, they will usually

describe a subset of the prominent differences. Previous

work [34, 37] generates descriptions comparing images in

terms of all attributes, in an arbitrary order. We argue that

this is not sufficient; listing out all differences is too lengthy,

while listing a random subset can miss key differences.

We propose generating descriptions containing promi-

nent differences. Namely, given a novel image pair yuv , we

sort all attributes in descending order of their prominence

scores, and generate a description with the top k promi-

nent differences. For example, given two shoe images, our

model can generate the description “The left shoe is more

sporty, less stylish, and less shiny than the right shoe,” stat-

ing the three most prominent differences between the in-

stance images.

5. Results

We first introduce the two datasets we use (Section 5.1),

followed by the baselines that we compare our approach to

(Section 5.2). Finally, we evaluate our approach on promi-

nence prediction (Section 5.3), as well as on image search

(Section 5.4) and description generation (Section 5.5).

5.1. Datasets

We now introduce the two datasets used in our experi-

ments, then highlight annotator agreement statistics.

UT-Zap50K Shoes Dataset The UT-Zap50K

Dataset [46] is a dataset of 50,025 shoe images from

Zappos. We use a vocabulary of ten relative attributes for

our experiments: (1) sporty, (2) comfortable, (3) shiny,

(4) rugged, (5) fancy, (6) colorful, (7) feminine, (8) tall,

(9) formal, (10) stylish. These were selected from data

collected in [48], in which annotators were asked to provide

the first difference that comes to mind. We use the 19

provided categories (e.g., AnkleBoots, OxfordsShoes, etc.)

as categories for the binary dominance baseline [43].

We randomly sample 2,000 images, and collect promi-

nence for 4,990 sample pairs. For the SVM ranker and bi-

nary dominance, we generate CNN features from the fc7

layer of AlexNet [22]. For the deep CNN ranker [40], the

inputs are raw pixels. For prominence prediction, we re-

port the average of 10-fold cross validation. Images used in

training pairs are disjoint from images used in testing pairs.

LFW10 Faces Dataset The LFW10 Dataset [38] is a

collection of 2,000 face images from LFW [12], along with

10,000 relative attribute annotations over ten different at-

tributes, (1) bald head, (2) dark hair, (3) eyes open, (4) good

looking, (5) masculine, (6) mouth open, (7) smiling, (8) vis-

ible teeth, (9) visible forehead, (10) young. We use these at-

tributes as our vocabulary, and create categories for binary

dominance [43] by matching images to their subjects. We

keep all individuals with three or more instances, resulting

in 1,064 images from 150 categories.

We collect prominence for 1,463 sample pairs. For im-

age descriptors for the SVM rankers and binary dominance,

we use the 8,300 dimension part features learned on dense

SIFT [28] provided by [38]. We reduce the dimensionality

to 200 using PCA to avoid overfitting. We report the aver-

age of 5-fold cross validation.

Annotator Agreement 77% of Zap50K image pairs had

three or more annotators out of seven agree on the most

prominent difference, with 87% for LFW10. On average,

3.8 unique attributes were chosen as most noticeable for

each image pair for Zap50K, with 3.3 for LFW10. (See

Supp for additional attribute frequency statistics.) This high

level of agreement shows that prominent differences are in

fact consistent for most comparisons.

5.2. Baselines

Binary Attribute Dominance [43] Our first baseline is

Turakhia and Parikh’s binary attribute dominance [43]. We

follow the authors’ approach as closely as possible, collect-

ing separate dominance and binary attribute annotations for

training the model (see Supp for details). We convert rel-

ative attributes into binary equivalents (e.g., sportiness be-

comes is sporty and is not sporty), and extend their model

to handle prominence by first computing binary dominance

for each attribute and image in a pair, then selecting the at-

tribute with the highest score for an individual image as the

predicted prominent difference.

Widest Relative Difference + tf-idf This baseline uses

the (standardized) widest relative difference Wuv described

in Section 3.2 to estimate prominence. We add tf-idf

weighting to this baseline, which we find is a strict improve-

ment over no weighting scheme.

Single Image Prominence This baseline is trained on

the same prominence labels as our approach, but projects

the labels onto the two images of each pair. It then trains

a multiclass SVM with individual images as inputs, as op-

posed to our approach, which trains on pairs and a pairwise

feature representation.

Prior Frequency The final baseline we use is a simple

“prior frequency” model, which predicts prominent differ-

ences proportionally according to their frequency of occur-

rence in the ground truth.

5.3. Prominent Difference Evaluation

We evaluate prominent difference prediction accuracy,

with each model predicting a single most prominent dif-

ference for each image pair. Recall that seven annotators

supply ground truth prominence on each image pair. Be-
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Figure 6: Prominence prediction accuracy results for two datasets (top,

bottom) and either SVM or CNN-based attribute rankers (left, right).

cause there is not always a unanimous prominent differ-

ence, we evaluate accuracy over a range of k maximum

attributes marked as ground truth correct, to account for

variance in perception. Specifically, we sort attributes by

their frequency chosen, creating a partial ranking of c at-

tributes, and take the min(k, c) most chosen as the promi-

nence ground truth. We mark a pair as correct if the predic-

tion Auv is present in the ground truth. At k = 1, only the

most prominent attribute is considered correct.

Figure 6 shows accuracy results. We divide results for

both Zap50K and LFW10 into two plots, one for each at-

tribute ranker used (ranking SVM and deep CNN). Our

approach significantly outperforms all baselines for pre-

diction. We observe sizable gains of roughly 20-22% on

Zap50K, and 6-15% on LFW10 over the strongest base-

lines. This clearly demonstrates the advantage of our ap-

proach, which uses pairwise relative attribute features to

learn the interactions between visual properties that result

in prominent differences.

Our results show that the baselines are not adequate for

predicting prominent differences. For widest relative differ-

ence, its lower accuracy demonstrates that strength differ-

ence is only one contributing factor to prominence: our ap-

proach is able to effectively capture other important causes.

We also outperform binary dominance [43] significantly.

The weak performance of the single image prominence

baseline demonstrates that prominence is a pairwise phe-

nomenon, requiring both images for context.

(a) color (>),

sporty, comfort

(b) sporty (>),

color, comfort

(c) feminine (>),

comfort, shiny

(d) teeth (>),

mouth open, smiling

(e) bald head (<),

dark hair, teeth

(f) dark hair (<),

mouth open, smiling

Figure 7: Prominence predictions made by our approach. Predicted most

prominent attribute in bold, followed by next two most confident attributes.

Figure 8: Image search results. Quantitative results on left, lower rank

is better. On right, qualitative search results with a user’s target image,

followed by baseline results and our results. Our approach returns signifi-

cantly more similar images to the user’s mental target.

Comparing the use of the two attribute rankers, both

yield similar performance on Zap50K but we benefit from

the CNN ranker scores on LFW10. The advantages of our

approach hold whether using SVM rankers or deep rankers.

It is important to highlight that our contributions are orthog-

onal to the choice of attribute ranker: our approach can learn

from relative attribute scores generated from any model.

Figure 7 shows qualitative examples. For example, the

shoes in 7a are very different in many properties; despite

this, our model accurately predicts colorful as the most

prominent difference. Although the images in 7d are of the

same person, our model is able to accurately predict visible

teeth as the most prominent difference. (See Supp for more

examples.)

5.4. Image Search Results

For our image search application on WhittleSearch [20,

21], we evaluate a proof-of-concept experiment using the

Zap50K dataset. We use Zap50K for its large size, and sam-

ple 5,000 unseen images as our experimental database.

Due to the cost of obtaining human feedback for each

combination of image and results list, we generate feedback

automatically following [20]. A random subset of images

from the top results page is chosen as reference images. For

the user’s feedback between the target xt and each reference

image xref , the user selects the most prominent difference

At,ref to provide feedback upon. To simulate variance in
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Figure 9: Description generation offline results.

human perception, we add noise by randomly selecting 75%

of feedback as prominent differences, and 25% as random

true differences. We select 200 images as the user’s men-

tal targets. At each iteration, the user is shown the top 16

results, selects 8 images as references, and provides 8 feed-

back constraints using the references.

Figure 8 shows the results (more in Supp). Our approach

substantially improves the target image rank over the first

several iterations of search, and returns significantly more

relevant images, without requiring any additional feedback.

5.5. Description Generation Results

We evaluate generated descriptions in one offline and

one online experiment. For the offline experiment, we out-

put the top k most prominent attributes that would be in

a generated description, and check what percentage of the

k ground truth prominent attributes are present, a metric

that is critical to description quality. We compare our ap-

proach to the three strongest baselines and report results

with the CNN attribute ranker in Figure 9 (see Supp for sim-

ilar results with other ranker). Our approach outperforms all

baselines, generating descriptions capturing more human-

perceived prominent differences.

For the online experiment, we ask annotators to judge

generated descriptions. Specifically, we present an im-

age pair and two descriptions—our description of predicted

prominent differences, and a baseline description with ran-

domly chosen true differences—and ask which description

is more natural and appropriate. We sample 200 pairs from

Zap50K and 100 pairs from LFW10, generate descriptions

with three statements each, and have seven judges provide

feedback per pair, taking the majority vote.

For Zap50K, 69% of people preferred our description,

compared to 31% for the baseline, with a p-value < 0.0001,

with 61% and 39% for LFW10, with a p-value of 0.01, re-

spectively. We also ran the same experiment using anno-

tator ground truth prominence vs. the same baseline: peo-

ple preferred the ground truth description 69% of the time

for Zap50K and 70% for LFW10 (see Table 1). Our gen-

erated Zap50K descriptions are closer to the ground truth

(a) Left is less shiny, less formal,

and more colorful than the right.

(b) Left is less feminine, more

rugged, and less shiny than the

right.

(c) Left has less dark hair, more

bald head, and more mouth open

than the right.

(d) Left is more masculine, less

smiling, and less visible teeth than

the right.

Figure 10: Sample generated descriptions by proposed approach.

Zap50K
Ours: 69% Baseline: 31%

Ground Truth: 69% Baseline: 31%

LFW10
Ours: 61% Baseline: 39%

Ground Truth: 70% Baseline: 30%

Table 1: Description generation human study results.

performance than for LFW10 due to our method’s higher

prominence prediction accuracy on Zap50K. These results

demonstrate that describing images using prominent differ-

ences results in significantly more natural descriptions.

6. Conclusion

We introduced prominent differences, a novel func-

tionality for comparing images. When humans compare

images, certain prominent differences naturally stick out,

while others, although present, may not be mentioned. We

present a novel approach for modeling prominence at the

image pair level. Experimental results on the UT-Zap50K

and LFW10 datasets show that our proposed approach sig-

nificantly outperforms an array of baseline methods for pre-

dicting prominent differences. In addition, we demonstrate

how prominence can be used to improve two applications:

interactive image search and description generation.

There is strong potential for future work. In zero-shot

learning using relative attributes [34], where a human su-

pervisor teaches a machine about an unseen visual category

using comparisons, humans will provide prominent differ-

ences as supervision. This knowledge, if integrated, could

result in improved classification without requiring any ad-

ditional human effort. In addition, prominent differences

could be used to improve referring expressions [30, 31],

phrases identifying specific objects in an image. Prominent

differences could be used to identify best differences to help

distinguish one object over others.
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