
Facelet-Bank for Fast Portrait Manipulation

Ying-Cong Chen1 Huaijia Lin1 Michelle Shu3 Ruiyu Li1 Xin Tao1

Xiaoyong Shen2 Yangang Ye2 Jiaya Jia1,2

1The Chinese University of Hong Kong 2Tencent Youtu Lab 3Johns Hopkins University

{ycchen, linhj, ryli, xtao}@cse.cuhk.edu.hk goodshenxy@gmail.com

Mshu1@jhu.edu yangangye@tecent.com leojia9@gmail.com

Abstract

Digital face manipulation has become a popular and fas-

cinating way to touch images with the prevalence of smart

phones and social networks. With a wide variety of user

preferences, facial expressions, and accessories, a general

and flexible model is necessary to accommodate different

types of facial editing. In this paper, we propose a model

to achieve this goal based on an end-to-end convolutional

neural network that supports fast inference, edit-effect con-

trol, and quick partial-model update. In addition, this model

learns from unpaired image sets with different attributes.

Experimental results show that our framework can handle

a wide range of expressions, accessories, and makeup ef-

fects. It produces high-resolution and high-quality results

in fast speed.

1. Introduction

Digital face manipulation aims to change semantically

expressive and meaningful attributes, such as smiling and

mourning, or add virtual makeup/accessories to human

faces, including mustache and eyeglasses. With the increas-

ing popularity of smart phones and digital cameras, the de-

mand of a practical and fast system rises drastically. Face

manipulation has attracted great interests in computer vi-

sion and graphics [14, 3, 6, 4, 33, 31, 28]. Previous methods

devoted to face beautification [19, 8], de-beautification [10],

expression manipulation [28] and age progression [14], to

name a few.

Given these many solutions, it is common knowledge

that different face makeup or attribute changes require spe-

cial manipulation operations. For example, face beautifi-

cation or de-beautification processes skin color and texture

while face expression manipulation focuses more on 2D or

3D geometry. With this fact, most approaches were particu-

larly designed for individual tasks where any specialization

requires expert efforts and domain knowledge to establish

new solutions for effect generation.

(a) Original Image (b) Get younger (c) Add facial hair

Figure 1. Illustration of face manipulation using our model.

In the following, we elaborate on the underlying prob-

lems of face manipulation when seeking a data-driven

framework to unify many face effects. It is followed by in-

troducing the intriguing work to construct our system with

this pursuit.

1.1. Possible Solutions and Their Problems

Direct Regression The straightforward way to learn face

editing operations from external data is to directly regress

the input (before edit) and the ground truth image after edit

[10, 5]. However, this procedure requires labeled paired

data, which in many cases is unavailable or requires inten-

sive human labor to create. For any effects that do not exist

before, these operations cannot be established easily.

Generative Adversarial Network Recently, Generative

Adversarial Network (GAN) has shown its capacity in set-

13541

to-set unsupervised learning [36]. It uses a cycle consistent

loss to preserve image content, and an adversarial loss to

transfer the attribute of one set to another. Although the

concept is neat and results are quite phenomenal, it is dif-

ficult to train, especially for new effects that require sys-

tem component modification. The training needs to keep a

balance of generation and discrimination. We notice non-

optimal training would result in unrealistic manipulation,

which could be easily noticeable on visually-sensitive hu-

man faces.

Deep Feature Interpolation Deep feature interpolation

[29] provides another solution to learn image attribute

change from two different sets. It is based on the deep fea-

ture of two image sets. However, it is not an end-to-end

framework and thus cannot be optimized globally. In addi-

tion, it is computation-intensive even during testing because

of its heavy involvement of hundreds of face warping and

convolution operations.

1.2. Our Solution

We pursue a general, flexible and high-quality-output

network for face manipulation. Fig. 1 shows the results

generated by our method. Our work follows the an encoder-

decoder architecture rather than the popular GAN. Inspired

by the Style-Bank [9] that learns replaceable style transfer

layers, we propose a Facelet-Bank framework that models

face effects with respective middle-level convolutional lay-

ers. So interestingly, in order to generate different effects,

instead of redesigning the framework completely, only the

middle-level convolutional layers need to be updated.

Also, considering lack of ground truth data for many face

manipulation tasks, we leverage the result of [29] to produce

pseudo targets to learn the facelet-bank layers. The local re-

ceptive field of our facelet bank naturally provides regular-

ization, and thus it can capture the correct relation between

visual patterns and certain network operations, despite the

fact that the pseudo targets are usually noisy.

Finally, we show that these layers can automatically at-

tend to the most important regions so that face manipulation

can be performed in an end-to-end fashion. Our method is

specially designed to allow users to control the level of ef-

fect, and thus it enables interactive face manipulation. Our

overall contribution is multifold.

• We propose a set-to-set CNN framework for face ma-

nipulation. It does not requires paired data in training.

• The framework is flexible to generate different effects

and their levels by simply updating a few convolutional

layers, which makes the system developer-friendly.

• Our method naturally benefits from the local prior of

convolutional layers, which regularizes noisy labels.

• Experiments show that our approach can handle a wide

range of face effects in fast speed.

2. Related Work

Face Editing Our work can be categorized as face edit-

ing or manipulation, which has been extensively studied in

computer vision and graphics [31, 3, 33, 4, 6, 14]. Tradi-

tional face edit includes face relighting [31, 3], expression

editing [33], face morphing [4], attribute editing [6], and

face aging [14]. However, these models are designed for

specific tasks, and rely heavily on domain knowledge. Ours

method differs from them as it is a data-driven framework

designed to handle general face effects and manipulation.

Image Attribute Manipulation Altering semantic at-

tributes of images is an important topic. Image analogy

[11, 7, 30] transfers the attribute or appearance changes

from a pair of images to a new one. Recently, genera-

tive adversarial networks [12, 36, 25, 27, 22] have become

popular in image generation and image-to-image transform.

Specifically, the method in [12] learns attribute transforma-

tion from two sets of paired data. This idea is further gen-

eralized to handle unpaired data [36, 27, 25]. These ap-

proaches alter the attributes by training a generator to sim-

ulate an online updating domain discriminator. However,

when designing and training a system, the balance between

generator and discriminator is difficult to deal with. Scal-

ing up image sizes would make training even more difficult.

Besides, these approaches do not allow control over the de-

gree of editing, e.g., how bright the face is, which is very

important to real-world applications.

Feature Interpolation Our work is also related to feature

interpolation [17, 23, 29, 32, 16, 34]. Variational autoen-

coder (VAE) [17, 34] learns a latent space such that image

manipulation can be done with simple arithmetic compu-

tation in the deep space. But it implicitly assumes that the

target attribute is well isolated. Given unpaired data for face

manipulation, this assumption is usually not satisfied. The

method of [29] alleviates this problem by proposing a K-

NN based approach to isolate the target attribute. Yet only

a subset of samples are used for estimation, which lead to

undesired visual artifacts in resulted images. In addition,

the computational cost is inevitably high, which may be in-

tolerable for fast face manipulation. Our work is different

from these approaches. We use convolutional neural net-

works to learn the shifting direction, so that each transfor-

mation is associated with a corresponding visual pattern.

We show that the resulting direction is better isolated to-

wards the target attribute. In addition, our method is an

end-to-end framework that supports fast inference.

3542

(a) Encoder (c) Decoder

Concatenate

Concatenate

Learnable Conv Layer

feature of

(b) Facelet Bank

Figure 2. Illustration of our framework. (a) is the encoder E(·); (b) are convolutional layers of our facelet bank V(·); (c) is the decoder

D(·). The structure of our facelet bank is Conv-ReLU-Conv-ReLU-Conv, where all Convs are with 3 × 3 kernels. Also, all Convs of the

facelet bank do not change the height, width and number of channels given the previous input.

3. Proposed Method

Suppose there are two face domainsX and Y with differ-

ent properties. Our goal is to shift images of domain X to-

wards domain Y without guidance from any paired data. As

for face manipulations, we want the algorithm to produce

intermediate results so that users can control the strength of

operations, such as smoothness of the skin.

This process can be represented as

z = O(x, λ), (1)

where x and z are the input and output images, λ controls

the strength, and O denotes the operation that changes x

from domain X toward domain Y .

Note that domains X and Y usually differ semantically,

so O can be highly complex. In order to simplify O, we

instead define the operation O′ in a deep space, and change

Eq. (1) to

ψ(z) = O′(ψ(x), λ), (2)

where ψ(·) denotes the deep space. To one extreme, if ψ(·)
captures enough rich semantic information, O′ can be fur-

ther simplified as linear shift in the deep space [20], which

leads to

ψ(z) = ψ(x) + λ∆v, (3)

where ∆v denotes the direction from domain X to domain

Y in the deep space.

As indicated in [35], a network trained on large-scale

data captures semantic attributes in the convolutional lay-

ers. This idea is validated in the work of [20, 29], which

uses a VGG network [26] to encode the semantic infor-

mation for deep feature interpolation or style transfer. We

follow this idea to use the 5 convolutional layers to con-

struct ψ(·). To represent face attributes at different levels,

ReLU3 1, ReLU4 1 and ReLU5 1 are jointly used to rep-

resent ψ(·).

Reversing ψ(·) Following [20, 9], we train a fixed de-

coder network D to decode ψ(z) to obtain the final out-

put. The decoder D has reverse architecture of the encoder

E , except for concatenating the manipulated features to the

corresponding layers. We use the following loss function to

train D:

L =

n∑

i=1

||zi − xi||
2

2 + ω

n∑

i=1

||E(xi)− E(D(E(xi)))||
2

2, (4)

where the first and second terms impose consistencies in

pixel and feature space respectively, and ω is the weight

to balance the two losses. We also observe that pre-

training of the decoder with L =
∑n

i=1 ||(E(xi)+λ∆vi)−
E(D(E(xi) + λ∆vi))||

2
2 is helpful, where ∆vi are pseudo

labels of different attributes computed with Eq (6).

Overall Structure The overall network architecture is il-

lustrated in Fig. 2, which is composed of an encoder E that

transforms images to a deep space, a ConvNet V that es-

timates the domain direction shift ∆v, and a decoder that

transforms the operated deep feature back to an image. With

this effective pipeline, the encoder and decoder are respon-

sible for general operations, while V is the key component

that determines the specific effect required for a face ma-

nipulation.

Now, realizing differences across all types of face ef-

fects, from a smile on the face to adding mustache, no

3543

longer needs frequent redesign of the framework. By us-

ing different V , these apparently dissimilar face operations

can be accomplished accordingly. Thus, we name the col-

lection of V as Facelet Bank, representing the collection of

different face effects we can achieve.

3.1. Learning Facelet Bank

Estimating ∆v requires cancellation of all factors except

for the target attributes. Without paired data, a straight-

forward approach is to compute the average difference be-

tween X and Y [17, 34], namely

∆v ←
1

m

m∑

i=1

ψ(yi)−
1

n

n∑

i=1

ψ(xi), (5)

wherem and n are the training samples of domainsX andY
respectively. However, this implies a strong assumption that

all training samples have similar attributes to the queried

one. When this assumption is not satisfied, the model does

not produce realistic results.

Generating Pseudo Labels We relax this assumption by

adopting a query-adaptive attribute transform model V(x),
where x is a query sample.

Note that learning V(·) is difficult as we do not have

paired-data to infer ∆v for each training sample. Inspired

by the method in [29], we average neighbors of each train-

ing sample of both domains to construct the attribute vector.

Specifically, for sample x, the corresponding ∆v is com-

puted as

∆v∗(x) =
1

K

∑

i∈NK

Y
(x)

ψ(yi)−
1

K

∑

i∈NK

X
(x)

ψ(xi), (6)

where NK
y (x) and NK

x (x) refer to K nearest neighbors of

x among sets Y and X respectively. To reduce the influence

of pose, viewpoint and rotation, all training face images are

aligned to a frontal face template in advance1. Here the “av-

erage” operation suppresses undesired noise and thus ∆v∗

tends to cancel out other factors except those that divide do-

mains X and Y .

Network Design Since ∆v∗ relates strongly to the deep

feature, we reuse the extracted deep feature by setting the

input of V(·) to V(E(q)). We stack 3 fully convolutional

layers with ReLU activation to capture the non-linearity re-

lation. In this way, V can be learned as

LV =
n∑

i=1

||V(E(xi))−∆v∗(xi)||
2
2, (7)

where xi refers to training samples of set X . ∆v∗(xi) is

defined in Eq. (6).

1A face alignment tool [13] in DLIB [2] is used in our experiment.

3.2. More Analysis of the Facelet Bank

Although our facelet bank learns with the help of pseudo

paired data ∆v∗ defined in Eq. (7), it has additional advan-

tages compared with directly using ∆v∗.

Noise Resistance In practice, our facelet bank can even

outperform the pseudo label ∆v∗. To demonstrate it, we

compute the heat map of ∆v as

Hi,j =

c∑

k=1

v2i,j,k, (8)

where i = {1, 2, · · · , h}, j = {1, 2, · · · , w}, and k =
{1, 2, · · · , c} denotes the row, column and channel indexes

respectively. Fig. 3 shows the heat map of “add beard”

operation. Intuitively, adding beard is only relevant to the

mouth region, while other place should not be updated.

However, the pseudo target ∆v∗ activates in many regions

as shown in the heat map. This may cause undesirable

changes in wrong places as shown in Fig 3(c). Note that

the pseudo label is computed by only a subset of samples2,

not sufficient to cancel out all noise. On the contrary, our

facelet bank has a much cleaner heat map, which only acti-

vates in the correct region.

Although this may look counterintuitive at the first

glance, it actually makes sense if we consider the built-in

regularization of the convolutional neural network. Note

that CNN has local receptive fields, which force the system

to capture the relation between certain visual patterns (the

mouth in this case) and the corresponding manipulation op-

erations (“add beard” in this case). By training on a large

set of samples, unrelated activations can be well suppressed,

and only the relevant regions are activated.

Implicit Attention Mechanism Another advantage of

our Facelet Bank is the implicit attention mechanism. Note

that computing the pseudo target requires faces to be

aligned in advance. This is not needed for our facelet bank

during testing. As shown in Fig. 4, the trained operations

are adaptive to the position and pose of the face, and keep

staying in the correct region. This is another major advan-

tage stemming from the fully convolution architecture. Es-

sentially, convolution layers of our facelet bank capture the

relation of certain visual patterns and corresponding ∆v,

which are not dependent of the position. As a result, the

facelet bank is capable of detecting certain patterns (e.g.,

mouth for beard), and adding the effects accordingly.

Speed Calculating ∆v∗ with Eq. (3) is computationally

expensive. The cost is mostly on face warping, deep feature

22K = 200 samples are used in our method, which is less than 1%

compared with the training set.

3544

(a) Original Image (b) Heat Map of �RÛ:T; (e) Heat Map of ð:T; (e) Result of ð:T;(c) Result of �RÛ:T;

Figure 3. Illustration of the noise resistance effect. (a) The original image. (b) The heat map of pseudo shifting direction computed by Eq.

(3). The blue rectangles mark the undesired change regions. (c) Corresponding result of Eq. (3). (d) Heat map of our estimated direction

shift. (e) Our result.

(a) beard (b) smile (c) age

Figure 4. Visualization of the attention region. The attention mask

is computed by Eq. (8). (a), (b) and (c) correspond to the oper-

ations of adding beards, making smiles and changing age. Note

that for the beard effect, our facelet bank focuses on the mouth

area. For the smile effect, it attends to smile-related facial mus-

cles. As for the age changing effect, the attention region covers

the whole face. These results match our intuition.

extraction and nearest-neighbor search. The total testing

time for a 448× 448 image is 1.09 minutes with the system

implemented with Pytorch, and running on a server with a

Titan XP GPU and an E5-2623 v4 CPU. But for our Facelet

Bank, computing V(x) only requires network forwarding,

which costs only 0.0194 second.

Discussion Compared with cycleGAN [36], our frame-

work has the following advantages. First, it is very easy to

train. Compared with cycleGAN that jointly optimizes two

generators and two discriminators, our system only needs to

learn the convolutional layers of facelet bank, which is both

easier and faster.

Second, our method can handle higher-resolution im-

ages. Note that the original cycleGAN has demonstrated

its effectiveness on 256× 256 images, whereas our method

handles much higher resolutions, e.g., 640 × 480. Third,

our work allows change of operation strength of effect con-

veniently by modifying the value of λ in Eq. (3). In con-

trast, changing the effect strength of cycleGAN requires the

use of different training data and re-training of the model.

Another related approach is DFI [29], which needs no train-

ing and handles the highest resolution input data. Com-

pared with DFI [29], our approach is much faster during

testing because it does not need to perform face alignment

and KNN search in the deep space.

4. Experiments

Implementation Details We implement our model using

PyTorch [1]. Before training the facelet bank, we train our

decoder with Adam optimizer [15] with an initial learning

rate of 0.0001 and step weight decay. After training, the

decoder is fixed. The face effects are trained separately.

Each corresponds to a set of convolution layers of the facelet

bank. Adam optimizer with default hyper-parameters are

used to train the facelet-bank layers.

Dataset Celeba [21] is a large face dataset that contains

202,599 images belonging to 10,177 identities. We ran-

domly sample 90% for training and the rest are used for

testing. The landmark and attribute information is used for

computing the pseudo label ∆v∗ computed by Eq. (3). But

it is not used during testing. In addition to the Celeba data,

we also use the Portrait [24] and Helen [18] datasets for

testing. The images of [24] and [18] are collected on Flickr

with varying ages, skin colors, clothing, hair styles, etc. We

use them to validate the cross-dataset generalization ability.

4.1. Evaluation of Our Approach

The vital part of our approach is the facelet bank. In the

following, we split evaluation of this design into three parts,

i.e., effectiveness of the facelet bank, reason to use multi-

layer aggregation, and flexibility in edit strength control.

4.1.1 Effectiveness of Facelet Bank

Estimation of attribute direction shift ∆v is critical to the

result of manipulation. We compare our facelet-bank solu-

tion with several baseline approaches. The simplest way to

estimate ∆v is to average both positive and negative sam-

ples, as the methods of [17, 23, 32, 34]. As shown in Fig.

3545

(a) Original Image (b) Global Mean (c) K-NN Mean (d) Ours

Figure 5. Comparing our facelet-bank method with baseline approaches. Please zoom in to see details.

(a) Original Image (b) Layer 5 Only (c) Layer 4 + 5 (d) All 3 Layers

Figure 6. Results of removing facial hair. (a) the original image; (b), (c) and (d) are the results of using layer 5, layer 5+layer 4 and all

three layers respectively. Please zoom in to see details.

(a) Facial hair

(b) Smile

(c) Younger

Figure 7. Illustration of different edit strength. (a), (b) and (c) show the results of different edit strength respectively.

3546

Original

Ours

Smile Face hair Younger

CycleGAN

Smile Face hair Younger Smile Face hair Younger

DFI
Figure 8. Comparing with CycleGAN [36] and DFI [29].

3547

(a) Original Image (b) DFI (c) Ours

Figure 9. Adding uncommon facial hair on a woman face; (a) is

the original image; (b) is the result of DFI [29]; (c) is our result.

5, the beard position can be wrong since the globally com-

puted ∆v is not adaptive to the query face. If the face pose

is far from the average of the dataset, the method fails in-

evitably. Directly applying ∆v∗ computed by Eq. (6) al-

leviates this problem. However, in this case, the skin color

is changed since color factor is not fully canceled out by

the query’s nearest neighbors. Our method learns the rela-

tion between semantic visual pattern (mouth in this case)

and the corresponding beard add-up operation, which cause

small influence on the other regions.

4.1.2 Effectiveness of Multi-layer Aggregation

It was shown that different levels of layers are complemen-

tary to each other [29]. Therefore, using all of them jointly

yield better results. Fig. 6 shows the result using differ-

ent layers for the “remove facial hair” task. Using only

layer 5 removes a large proportion of facial hair, but not

complete. By incorporating layer 4 and layer 3, the amount

of facial hair gradually decreases. It is eventually removed

completely with all 3 layers.

4.1.3 Different Operation Strength

Our model provides a fast and convenient way to control the

strength of operations. Both deep feature E(x) and the esti-

mated attribute direction shift ∆v are computed only once.

After that, changing the strength only requires to forward

E + λ∆v to the decoder network. This takes only 9ms on

our server. We believe that it can similarly achieve a high

speed on recent high-end mobile devices.

We show results of controlling different edit strength in

Fig. 7. For each case, we use strength of 0, 0.2, 0.4, 0.6,

0.8, 1, 1.2, 1.4, 1.6, and 1.8 to edit the original image. Fig.

7 shows the resulting images accordingly. When λ > 1, the

edit can be seen as extrapolation rather than interpolation.

This adds stronger edit to the original image, but sometimes

yields unnatural results.

4.2. Comparison with State­of­the­Arts

Fig. 8 shows the overall comparison with deep feature

interpolation (DFI) [29] and cycleGAN [36], which also

perform set-to-set image attribute transform. Three effects

are tested, which includes smiling, adding facial hair, and

getting younger. Generally, our method can achieve bet-

ter results than those of CycleGAN where the results con-

tain stronger effect without introducing too many visual ar-

tifacts.

Compared with the DFI, our approach achieves better

performance on local effects (e.g., facial hair), since our ap-

proach introduces less irrelevant changes. For other effects,

the two methods perform similarly. In terms of the amount

of computation, our method is much lighter than DFI. It

does not require face warping, nearest-neighbor computa-

tion and backward optimization. As a result, it is 3,371

times faster than DFI with running time of 0.0194 second

and 65.4 seconds respectively. cycleGAN takes 0.0185 sec-

ond for one direction, which is slightly faster than our ap-

proach.

Disentangling Correlated Attributes We compare the

results of “adding beard to woman” in Fig. 9. Intriguingly,

our model does a much better job than DFI. It is notice-

able that DFI changes the overall appearance of the result-

ing face, while our approach maintains most of the subject’s

feminine characteristics. This is because DFI intrinsically is

an instance-based method, which relies heavily on training

samples. Since “beard” always comes with man’s face fea-

tures, it cannot disentangle the different attributes.

In contrast, our method captures the relation between

“beard” and “mouth”. Since the former is a masculine trait

and the latter can be found in both genders, our model nat-

urally disregards other similar relations, including the com-

parison of “beard” with “gender”. Thus in the above exam-

ple, albeit uncommon, our model yields better performance.

5. Concluding Remarks

In this paper, we have proposed a general framework for

face manipulation. Our framework can learn face attribute

shift from two image sets without any paired-example in-

formation. Thus, it does not need intensive human efforts

for labeling. In addition, our framework is highly flexible –

each operation is related to only a few computed convolu-

tional layers. We have proved in our experiments that this

approach yields superior results compared with other set-to-

set image translation models.

References

[1] http://pytorch.org. 5

[2] https://pypi.python.org/pypi/dlib. 4

[3] V. Blanz, C. Basso, T. Poggio, and T. Vetter. Reanimating

faces in images and video. In CGF, 2003. 1, 2

[4] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3d faces. In Ann. Conf. Comput. Graph. Interactive Tech.,

1999. 1, 2

3548

[5] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Neural photo

editing with introspective adversarial networks. arXiv, 2016.

1

[6] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. Faceware-

house: A 3d facial expression database for visual computing.

TVCG, 2014. 1, 2

[7] T. Cao, C. Zach, S. Modla, D. Powell, K. Czymmek, and

M. Niethammer. Registration for correlative microscopy us-

ing image analogies. In WBIR, 2012. 2

[8] C.-W. Chen, D.-Y. Huang, and C.-S. Fuh. Automatic skin

color beautification. In Int. Conf. Arts Technol., 2009. 1

[9] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua. Stylebank: An

explicit representation for neural image style transfer. arXiv,

2017. 2, 3

[10] Y.-C. Chen, X. Shen, and J. Jia. Makeup-go: Blind reversion

of portrait edit. In ICCV, 2017. 1

[11] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.

Salesin. Image analogies. In Ann. Conf. Comput. Graph.

Interactive Tech., 2001. 2

[12] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. arXiv,

2016. 2

[13] V. Kazemi and J. Sullivan. One millisecond face alignment

with an ensemble of regression trees. In CVPR, 2014. 4

[14] I. Kemelmacher-Shlizerman, S. Suwajanakorn, and S. M.

Seitz. Illumination-aware age progression. In CVPR, 2014.

1, 2

[15] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv, 2014. 5

[16] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. arXiv, 2013. 2

[17] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and

O. Winther. Autoencoding beyond pixels using a learned

similarity metric. arXiv, 2015. 2, 4, 5

[18] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. Inter-

active facial feature localization. In ECCV, 2012. 5

[19] T. Leyvand, D. Cohen-Or, G. Dror, and D. Lischinski. Digi-

tal face beautification. In Siggraph, 2006. 1

[20] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang.

Universal style transfer via feature transforms. arXiv, 2017.

3

[21] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face

attributes in the wild. In ICCV, 2015. 5

[22] G. Perarnau, J. van de Weijer, B. Raducanu, and J. M.

Álvarez. Invertible conditional gans for image editing. arXiv,

2016. 2

[23] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv, 2015. 2, 5

[24] X. Shen, X. Tao, H. Gao, C. Zhou, and J. Jia. Deep automatic

portrait matting. In ECCV, 2016. 5

[25] Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman,

and D. Samaras. Neural face editing with intrinsic image

disentangling. In CVPR, 2017. 2

[26] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv, 2014. 3

[27] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-

domain image generation. arXiv, 2016. 2

[28] J. Thies, M. Zollhöfer, M. Nießner, L. Valgaerts, M. Stam-

minger, and C. Theobalt. Real-time expression transfer for

facial reenactment. TOG, 2015. 1

[29] P. Upchurch, J. Gardner, K. Bala, R. Pless, N. Snavely, and

K. Weinberger. Deep feature interpolation for image content

changes. arXiv, 2016. 2, 3, 4, 5, 7, 8

[30] G. Wang, T.-T. Wong, and P.-A. Heng. Deringing cartoons

by image analogies. TOG, 2006. 2

[31] Y. Wang, L. Zhang, Z. Liu, G. Hua, Z. Wen, Z. Zhang, and

D. Samaras. Face relighting from a single image under arbi-

trary unknown lighting conditions. TPAMI, 2009. 1, 2

[32] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Con-

ditional image generation from visual attributes. In ECCV,

2016. 2, 5

[33] F. Yang, J. Wang, E. Shechtman, L. Bourdev, and

D. Metaxas. Expression flow for 3d-aware face component

transfer. TOG, 2011. 1, 2

[34] R. Yeh, Z. Liu, D. B. Goldman, and A. Agarwala. Seman-

tic facial expression editing using autoencoded flow. arXiv,

2016. 2, 4, 5

[35] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, 2014. 3

[36] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. arXiv, 2017. 2, 5, 7, 8

3549

