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Abstract

Most image captioning models focus on one-line (sin-

gle image) captioning, where the correlations like relevance

and diversity among group images (e.g., within the same al-

bum or event) are simply neglected, resulting in less accu-

rate and diverse captions. Recent works mainly consider

imposing the diversity during the online inference only,

which neglect the correlation among visual structures in of-

fline training. In this paper, we propose a novel group-based

image captioning scheme (termed GroupCap), which jointly

models the structured relevance and diversity among group

images towards an optimal collaborative captioning. In

particular, we first propose a visual tree parser (VP-Tree) to

construct the structured semantic correlations within indi-

vidual images. Then, the relevance and diversity among im-

ages are well modeled by exploiting the correlations among

their tree structures. Finally, such correlations are mod-

eled as constraints and sent into the LSTM-based caption-

ing generator. We adopt an end-to-end formulation to train

the visual tree parser, the structured relevance and diversity

constraints, as well as the LSTM based captioning model

jointly. To facilitate quantitative evaluation, we further re-

lease two group captioning datasets derived from the MS-

COCO benchmark, serving as the first of their kind. Quanti-

tative results show that the proposed GroupCap model out-

performs the state-of-the-art and alternative approaches.

1. Introduction

Automatic description of an image, a.k.a. image cap-

tioning, has recently attracted extensive research attention

[1, 2, 3, 4, 5]. Typically, these methods train the image cap-

tioning models under a one-line paradigm, without regard-

∗Corresponding Author.

Ground Truth: A group of school children gathered around  a birthday cake.

A group of people standing around  a pizza.

Generated caption: A group of children standing around  a birthday cake.
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Figure 1. In one-line captioning, existing methods tend to generate less

accurate and less discriminative captions compared to the ground truth (the

top caption is generated by the state-of-the-art [5]). We focus on captur-

ing the relevance and diversity among a group of images to reinforce and

diversify the image captions (the bottom one, which is generated by the

proposed GroupCap).

ing the correlations (i.e., relevance and diversity) among

group images. However, in many real-world applications

like captioning photo albums or events, the images are not

suitable to be captioned alone. In such situations, it would

benefit the generated results by capturing the relevance and

diversity among these group images as shown in Fig.1.

As far as we know, there is no existing work in the liter-

ature that addresses the task of group-based image caption-

ing. On the one hand, there is no related work addressing

the issue of modeling relevance. To this end, one should

the model image relevance by maximizing the visual sim-

ilarity of the inner-group images comparing to that of the

inter-group images. On the other hand, there are two works

[6, 7] that refer to modeling the image diversity, both of

which however only focus on online inference. Sadovnik

et al. [6] proposed a context-aware scheme to capture the

particular items (entities, relations, and etc.) of the tar-

get image to diversify its description from the other inner-
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Figure 2. The examples of VP-Trees and structured relevance/diversity

matrices among an image triplet. The second row presents the subtrees

of the VP-Trees, where the value in each node denotes the probability of

the corresponding entity/relation (“ PREP” means the preposition follow-

ing verb). The third row presents the relevance and diversity sub-matrices

(R and D, where t, p, and n denote the target, the positive, and the neg-

ative images, respectively), where the value of each element in the matrix

denotes the relevance/diversity score.

group images. However, the scheme in [6] only conducts

a coarse-grained online inference by using a simple tem-

plate matching for discriminative caption generation. Upon

the off-the-shelf LSTM model, Vedantam et al. [7] pro-

posed a fine-grained context-aware scheme to generate the

discriminative caption given the specific distractor image,

which exploits pairwise (i.e., target-distractor) textual con-

tents in online inference. However, the scheme in [7] only

considers the diversity between words in the corresponding

positions of the pairwise captions, while ignoring the struc-

tured alignment of semantic items, as well as the their visual

correlation among images.

In this paper, we argue that the fundamental issue of

group-based captioning among group images lies in model-

ing their relevance and diversity from the visual perspective

in an offline manner. On the one hand, the visual struc-

tured correlation can accurately model the fine-grained di-

versity among inner-group images in the offline training pe-

riod, which is different from the existing methods of coarse-

grained template matching [6] or the rough alignment on

words [7]. On the other hand, learning such visual struc-

tured correlation offline can better capture and accurately

interpret relevance among the inter-group images, which is

left unexploited in all existing works [4, 5, 8].

Driven by the above insights, we propose a novel group-

based image captioning model, termed as GroupCap, based

on offline learning with structured relevance and diversity

constraints. Our main innovations lie in two aspects. Firstly,

we introduce a visual parsing tree to extract the structured

semantic relations in each image, and the examples are

given in the second row of Fig.2. Secondly, we model

the structured relevance and diversity upon the VP-Trees

of group images, which are formulated as constraints to the

unified image captioning model, the examples of which are

given in the third row of Fig.2. In particular, taking an im-

age triplet (including the target, the positive and the negative

images) as the input for training, we firstly parse key enti-

ties and their relations of each image and organize them into

a tree structure, which is trained by the supervision of the

textual parsing trees. Then, based on parsing trees of these

images, we design a structured relevance constraint among

the image triplets by maximizing the similarity of the struc-

tured trees between the inner-group images, relative to that

between the inter-group images. To measure the similar-

ity among parsing trees, we further present an algorithm

to align and compare between pairwise tree nodes, leading

to an adaptive yet efficient calculation of structured rele-

vance and diversity between image pairs. Finally, we em-

bed such structured constraints into the decoder (an LSTM-

based captioning model) for the caption generation. Note

that, the parsing tree, the structured constraints, and the cap-

tioning model are integrated into an end-to-end joint train-

ing. In the online inference, we parse each image into a tree

structure, which is fed into the LSTM-based decoder for the

final caption generation.

The contributions of this paper are as follows: (1) We

investigate a new problem, termed group based image cap-

tioning. (2) We are the first to model both relevance and

diversity among image contents in the group based image

captioning. (3) We propose an end-to-end offline training

scheme towards generating very distinguished captioning

among group images. (4) We release two group-based im-

age captioning datasets to facilitate the subsequent research.

Quantitative comparisons to the state-of-the-art and alterna-

tive schemes demonstrate our merits.

2. Related Work

Most existing methods for image captioning are based

on Convolutional Neural Network + Recurrent Neural Net-

work (CNN-RNN) [1, 2, 9, 10], where the visual features

are extracted from CNN, and then fed into RNN to output

word sequences as captions. The recent advances mainly

focus on revising the above CNN-RNN architecture. For

example, You et al. [4] proposed a semantic attention model

to select semantic concepts detected from the image, which

were embedded into the caption generation procedure. Lu

et al. [11] introduced an adaptive attention encoder-decoder

model, which relies on visual signals to decide when to

compensate the language model. Liu et al. [12] proposed

a semantically regularised CNN-RNN model to solve the

vanishing gradients during backpropagation. Recently, Gan

et al. [5] utilized a semantic compositional network to com-

pose the semantic meaning of individual tags for image cap-

tioning. However, all above methods are based on one-line

scheme that operates for individual images, without consid-

ering the correlations among group images to reinforce and

diversify each other.

Recent works in image captioning also pay attention to
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Figure 3. The framework overview of the proposed GroupCap model for

group-based image captioning. The deep visual features of the given triplet

images (the target (t), the positive (p), and the negative (n) images) are first

extracted from a pre-trained CNN model, which are then sent to train a vi-

sual parsing tree (VP-Tree) model. Meanwhile, the structured relevance

and diversity constraints are modeled based on these VP-Trees by mini-

mizing the triplet loss and classification loss among the relevance (R) and

diversity (D) matrices. Finally, the VP-Tree model, the structured rele-

vance and diversity constraints, and the LSTM based captioning model are

jointly trained in an end-to-end formulation.

exploiting the discriminability of caption generations, such

as personalized image captioning [13, 14], stylistic image

captioning [15], and context-aware discriminative image

captioning [6, 7]. Specifically, context-aware schemes [6, 7]

were proposed to capture the diversity among images dur-

ing the online captioning. In addition to our advance de-

scribed in Sec.1, we are dedicated to making the caption-

ing more discriminative, i.e., to describe specific concepts

and their structured correlations, rather than only capturing

their diversities as done in [6, 7]. For example, people tend

to specify the general concepts, e.g., they can easily name

the object with policeman, player, or fire man, rather than

generally naming man. This can be also verified by the an-

notating schemes that are commonly used in the datasets

like COCO [16].

In terms of context-aware image captioning, our work is

also related to the Referring Expression Generation (REG).

REG aims to uniquely compose an expression for a spec-

ified object in comparison to other objects in an image,

which can be regarded as a task of intra image contextual

image captioning [17, 18, 19, 20, 21, 22, 23]. For example,

Mao et al. [18] proposed to add a Maximum Mutual Infor-

mation (MMI) constraint, which encourages the generated

expression to describe the target object unambiguously rel-

ative to the others in the image. Luo et al. [23] proposed a

generate-and-rerank pipeline to identify the target regions

for unambiguous captions. Different from the above REG

task, our image captioning scheme is based on the correla-

tion (both relevance and diversity) among group images.

3. GroupCap

The framework of proposed group-based image cap-

tioning (GroupCap) scheme is presented in Fig.3, which

aims at embedding both relevance and diversity among

group images into the caption generation. It consists of

four stages, i.e., deep visual feature extraction, visual tree

parsing, structured relevance and diversity modeling, and

encoder-decoder based caption generating. In particular,

we first employ a pre-trained CNN model to extract visual

features from every given image. We then train a visual

parsing tree model to extract visual entities and their rela-

tions for these images, as detailed in Sec.3.1. Then, we

present our scheme to quantify tree-based correlations to

model image-to-image correlations (both relevance and di-

versity) in Sec.3.2. Finally, we depict the joint training of

the entire model in Sec.3.3.

3.1. Visual Parsing Tree

Visual parsing tree model (VP-Tree) is first designed in

[24] to extract semantic entities and model their relations

from an image. It is a fixed-structure of a three-layer com-

plete binary tree, where each node represents a semantic

item, i.e., an entity or a relation (specifically, a subject, an

object, a sub-relation or a main relation). We advance the

VP-Tree by changing binary tree to ternary tree and adding

the mapping for the relation from visual feature to the node

feature as shown in Fig.3, where the information of rela-

tion can be strengthened. Given an image-caption pair, a

deep visual feature G is first extracted from the last fully-

connected layer of a pretrained CNN [25]. Then, the deep

visual feature is mapped to the feature representations of en-

tities/relations in the corresponding nodes, which is named

as Semantic mapping. According to the structure of the tree,

we combine the features of entities or relations and map

them to the higher-level feature representations of relations.

The operation is named as Combination. Meanwhile, the

feature of each node is mapped to a category (entity or rela-

tion) space. And we name it as Classification. It’s noted that

the caption is parsed into a textual parsing tree denoted as

T t by the standard textual parser [26], which is employed as

the supervision for the corresponding entity/relation classi-

fication during training. Finally, the whole VP-Tree can be

generated with the parameters of the three operations.

To construct our VP-Tree, we first define it formally as

T
v = {hl

jl
∈ R

dn |l ∈ {1, 2, 3}, j1 ∈ {1, . . . , 7}, j2 ∈

{1, 2}, j3 ∈ {1}}, where h, l, and dn denote the node fea-

ture, the tree layer, and the dimensionality of the node fea-

ture, respectively. jl denotes the index of node in the l-th

layer. For example, h1
j1=1, h1

j1=7, and h2
j2=2 represents the

features of the first subject node (dog), the second object

node (grass), and the second sub-relation node (null, i.e.,

no specific relation) respectively in the VP-Tree as shown
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in Fig.3. During Semantic mapping, the deep visual feature

G can be mapped into the feature h1
j1

as following:

h
1
j1 = F

sem(G;W sem
j1 ), (1)

where F sem is the linear mapping function, which trans-

forms the visual feature to the semantic items (entities and

relations). W sem
j1

denotes the parameter for the j1-th node

in the first/leaf layer. We then combine the features of the

children nodes in the lower layer and feed them into their

parent nodes in the higher layer. Formally, we obtain the

features of the parent nodes in the second/middle layer and

the third/root layer respectively by:

h
2
j2=1 = F

com([h1
j1=1,h

1
j1=2,h

1
j1=3];W

com
j2=1), (2)

h
2
j2=2 = F

com([h1
j1=5,h

1
j1=6,h

1
j1=7];W

com
j2=2), (3)

h
3
j3=1 = F

com([h2
j2=1,h

1
j1=4,h

2
j2=2];W

com
j3=1), (4)

where [·, ·, ·] denotes the concatenation operation. F com

and W com denote the linear mapping function and its

parameter. Finally, each node is classified into the en-

tity/relation category by the Softmax classifier as following:

y
n
j1 = σ

(

F
cat(h1

j1 ;W
cat
<e>)

)

, j
1 ∈ {1, 3, 5, 7}, (5)

y
n
j2,3 = σ

(

F
cat(h

(3)

j2,3
;W cat

<r>)
)

, j
2 ∈ {1, 2}, j3 ∈ {1}, (6)

where yn denotes the predicted probability vectors of the

entity or relation categories according to the entity dictio-

nary or relation dictionary [24]. F cat is a linear mapping

function. W cat
<e> and W cat

<r> denote the mapping parame-

ters for the entity and the relation categories, respectively.

The parameter set of VP-Tree can be denoted as ΘT =
{W sem,W com,W cat

<e>,W
cat
<r>}. We minimize the loss of

the category classification to optimize the whole tree model.

And the offline training for VP-Tree is integrated into the

overall training, as detailed in Subsec.3.3.

3.2. Structured Relevance and Diversity Constraint

We build a structured relevance and diversity constraints

into the proposed GroupCap model, as illustrated in Fig.3.

Our main ideas are: 1) The inner-group similarity is ex-

pected to be larger than that of inter-group, which is re-

flected during the training of VP-Tree model; 2) The diver-

sity in two corresponding nodes of VP-Trees is expected to

be classified accurately (i.e., whether the nodes are diverse).

Given an image triplet, i.e., the target (the i-th), the pos-

itive (the j-th), and the negative (the k-th) images, we esti-

mate the relevance and diversity of pairwise images based

on the features matrices of their leaf nodes, i.e., T v
i , T v

j ,

and T v
k ∈ R

K×dn (K = 7 here, which denotes the number

of the leaf nodes). Taking the target and the positive images

for example, we have:

R
(i,j) = φ(T v

i UR(T
v
j )

T ), (7)

D
(i,j) = φ(T v

i UD(T v
j )

T ), (8)

where R(i,j) and D(i,j) denote the K×K relevance and the

K×K diversity matrices that align the visual tree nodes be-

tween the i-th and the j-th images. UR and UD are dn×dn
factor matrices, which are the parameters of the relevance

and diversity matrices, respectively. φ denotes a Sigmoid

function. Then, we compare the similarities between inner-

group and inter-group images as:

d
R(T v

i ,T
v
j ,T

v
k ;UR,Θ

T ) =
K
∑

p,q

(R(i,k)
p,q −R

(i,j)
p,q ), (9)

where Ri,j
p,q denotes the relevance score between the p-th

and the q-th nodes of the i-th and the j-th images. ΘT de-

notes parameters of VP-Tree. Suppose there are N image

triplets, we employ the triplet loss to maximize the inner-

group similarity and minimize the inter-group similarity,

leading to:

LR(UR,Θ
T ) =

1

N

N
∑

<i,j,k>

max(dR(T v
i ,T

v
j ,T

v
k ;UR,Θ

T ), τ),

(10)

where τ denotes the predefined margin of the triplet loss. To

align the relevance of every two nodes in two VP-Trees, we

introduce an alignment-wise logistic regression to compute

the classification loss. Taking the i-th and the j-th images

in the same group as example, we have:

LR
c (UR,Θ

T ) = −
1

K2

K
∑

p,q=1

logP (yR
p,q = 1|T v

i ,T
v
j ;UR),

(11)

where yR
p,q denotes the estimation of the relevance between

the p-th and the q-th nodes in R
(i,j)
p,q . If they are relevant,

yR
p,q = 1, otherwise yR

p,q = 0. Similarly, to align diversity

of every two nodes in two VP-Trees (specially for the node

pairs in inner-group images, i.e., the target and the positive

images), we also adopt alignment-wise logistic regression

to compute the classification loss:

LD
c (UD,Θ

T ) = −
1

K2

K
∑

p,q=1

logP (yD
p,q = 1|T v

i ,T
v
j ;UD),

(12)

where yD
p,q denotes the estimation of the diversity between

the p-th and the q-th nodes in D
(i,j)
p,q . To get the ground-

truth relevance and diversity of two nodes, we use the tex-

tual parsing trees to decide if two nodes of different trees

are relevant or diverse, the details of which will be provided

in Sec.4. It’s noted that the relevance and diversity are em-

bedded as constraints only in the training period to refine

the VP-Tree model.

3.3. Joint Learning

The training data for each image consist of deep visual

feature G and caption words sequence {yt}. Our goal is to

jointly learn all the visual parser parameters ΘT , relevance
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and diversity constraint parameters Θ
C = {UR,UD}, to-

gether with the LSTM parameters ΘL by minimizing a loss

function over the training set. Given the deep visual feature

set S = {Gi|i = 1, 2, 3} of an image triplet, the joint loss

of the GroupCap model is defined as:

L(ΘT
,Θ

C
,Θ

L) =

|S|
∑

i

(

T
∑

t

logP (yi
t|y

i
0:t−1, Gi;Θ

L)

+
K
∑

j

logP (yn,i
j |Gi;Θ

T )
)

+LR(UR,Θ
T ) + LR

c (UR,Θ
T ) + LD

c (UD,Θ
T ),

(13)

where T and K denote the length of the sequence output

and the number of tree nodes, respectively. yi
t and y

n,i
j de-

note the word output in the t-th state and the entity/relation

categories in the j-th node for the i-th sample, respectively.

We pre-train the VP-Tree model separately at the first

time and the VP-Tree model with the caption generation

model at the second time. Then, we use Adam algorithm

[27] with learning rate 1 × 10−4 to optimize Eq.13, where

the gradient is back-propagated over the caption genera-

tion model, the visual tree parser, and the structured rele-

vance/diversity constraint. To avoid overfitting, we employ

a dropout operation with a ratio of 0.5. Finally, the iteration

ends until the cost of the final word prediction converges.

4. Experiments

In this section, we perform extensive experiments to

evaluate the proposed GroupCap model. We first describe

the datasets and experimental settings. Next, we quanti-

tatively compare the results of our proposed model to the

state-of-the-art methods on image captioning. Finally, we

qualitatively analyze our merits in details.

Preprocessing on Textual Parsing Trees. Due to the ir-

relevant words and noise configurations generated by Stan-

ford Parser [26], we whiten the source sentences by using

the pos-tag tool and the lemmatizer tool in NTLK [28] si-

multaneously. After that, we convert the dynamic parsing

tree to a fixed-structured, three-layer binary tree, which only

contains nouns (or noun pair, adjective-noun pair), verbs,

coverbs, prepositions, and conjunctions. Only nouns are re-

garded as entities and used as leaf nodes in the subsequent

training. We select the frequent words and manually merge

words with similar meaning to obtain the entity dictionary

and the relation dictionary with size 748 and 246, respec-

tively. For the judgment of relevance, we leave the noun

pair and the adjective-noun pair out of leaf nodes. For the

judgment of diversity, we keep two kinds of leaf nodes: leaf

nodes with and without the noun pair and the adjective-noun

pair1. Assuming there are K nodes in the fixed-structured

1The judgment of diversity needs the coarse-categories and fine-

categories simultaneously. For examples, as Fig.1 shows, the condition

of diversity between children and adults is that they both belong to people.

Table 1. Performance comparisons to the state-of-the-art methods and

baselines on FG-dataset. “-g” means using the grouped data (FG-dataset)

from MS-COCO. The numbers in bold face are the best known results and

(-) indicates unknown scores. All values are in %.

Methods B1 B2 B3 B4 M

BRNN [2] 62.5 45.0 32.1 23.0 19.5

LRCN [29] 62.8 44.2 30.4 21.0 -

Google NIC [1] 66.6 45.1 30.4 20.3 -

Toronto [3] 71.8 50.4 35.7 25.0 23.0

ATT [4] 70.9 53.7 40.2 30.4 24.3

SCA-CNN [8] 71.9 54.8 41.1 31.1 25.0

StructCap [24] 72.6 56.3 43.0 32.9 25.4

SCN [5] 72.8 56.6 43.3 33.0 25.7

NIC-g 68.1 46.3 31.5 21.4 21.8

StructCap-g 73.1 56.8 43.1 32.8 25.7

SCN-g 73.4 57.0 43.4 33.0 25.7

GroupCap-T 73.4 57.0 43.3 32.9 25.8

GroupCap-T-SRC 73.7 57.3 43.5 33.0 25.9

GroupCap-T-SDC 73.6 57.2 43.2 32.8 25.8

GroupCap (w/o ensemble) 73.9 57.4 43.5 33.0 26.0

GroupCap (w/ ensemble) 74.4 58.1 44.3 33.8 26.2

tree, there would be K2 alignments between two trees, each

of which reflects whether each alignment in the relevance

alignment matrix is relevant, as well as whether each align-

ment in the diversity alignment matrix is diverse.

Datasets and Evaluation Protocols. MS-COCO is a

widely-used dataset for image captioning. There are over

123,000 images in MS-COCO, which has been split pub-

licly into training, testing and validating sets2. We build

two group captioning datasets3 from MS-COCO to evalu-

ate the performance of our models, where the images in the

training set are grouped into two kinds of groups:

1) Frequency-based Group Captioning Dataset (FG-

dataset). This dataset evaluates the accuracy and discrim-

inability of the generated captions. To construct this dataset,

we firstly filter and collect the top-784 entities and the top-

246 relations with high frequencies in the textual parsing

tree. Then, we combine the entities and the relations, and

then keep the top-39, 766 semantic combinations with high

frequencies in the textual parsing tree. Finally, we divide the

MS-COCO image-caption pairs into 39, 766 image groups

corresponding to the semantic combinations. We get the

FG-dataset with totally 1, 432, 076 training images among

39, 766 training groups, 5,000 valuation images, and 5,000

testing images (The valuation and testing sets are the same

as MS-COCO). Note that all groups are unable to cover

all semantic combinations, and any each group is unable

to cover all the semantic items. However, by such high-

frequency based sampling, the dataset is adequate to evalu-

ate the performance of group-based models on accuracy and

discriminability. To form the triplet, we randomly select the

positive and negative images from the same and different

2https://github.com/karpathy/neuraltalk
3Datasets are available at mac.xmu.edu.cn/Data_cvpr18.html
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Table 2. Performance comparisons to the state-of-the-art methods and

baselines on ES-dataset. “-g” means using the grouped data (ES-dataset)

from MS-COCO. The numbers in bold face are the best known results and

(-) indicates unknown scores. All values are in %.

Methods B1 B2 B3 B4 M

StructCap-g [24] 72.0 55.7 41.4 31.3 25.7

SCN-g [5] 72.1 55.2 41.6 31.9 25.7

GroupCap-T 72.3 56.0 41.9 31.1 25.6

GroupCap-T-SRC 72.6 56.3 42.3 31.5 25.8

GroupCap-T-SDC 72.3 56.0 42.1 31.2 25.7

GroupCap 72.9 56.5 42.5 31.6 25.9

groups respectively for each target image.

2) Entity-specific Group Captioning Dataset (ES-dataset).

This dataset evaluates the accuracy and discriminability of

the specific entities in the generated captions. We firstly

collect the specific entities that are frequently missed in

the generated captions by the state-of-the-art method [5].

We then filter and keep the images with the specific entity4

from FG-dataset. Finally, we get the ES-dataset with totally

449, 190 training images among 28, 937 training groups,

5,000 valuation images, and 5,000 testing images (The val-

uation and testing sets are the same as MS-COCO). We fur-

ther select the target and positive images in the Missing Sub-

set and out of Missing Subset, respectively. The negative

image is selected out of the group in the same way as that

of FG-dataset.

Quantitative performance of all methods are evaluated by

using microsoft COCO caption evaluation tool5, including

BLEU, METEOR, ROUGE-L[16]. We also evaluate our

model by using accuracy and recall.

Baselines and State-of-the-Arts. We compare the pro-

posed GroupCap with six baselines: 1) StructCap: A

structured semantic embedding model for image caption-

ing based on binary VP-Tree model [24]. 2) GroupCap-

T: The mutated version of GroupCap without structured

relevance and diversity constraints. 3) GroupCap-T-SRC:

The mutated version of GroupCap, where the structured di-

versity constraint is removed. We compare our model to

GroupCap-T-SRC to evaluate the effectiveness of the diver-

sity constraint. 4) GroupCap-T-SDC: The mutated version

of GroupCap, where the structured relevance constraint is

removed. We compare our model to GroupCap-T-SDC to

evaluate the effectiveness of the relevance constraint. We

also compare the state-of-the-art methods, i.e., ATT [4],

SCA-CNN [8] and SCN [5].

Performance on FG-dataset. We compare GroupCap

to the state-of-the-art and baseline methods on FG-dataset

as shown in Tab.1. GroupCap, especially the one with en-

4We choose the specific entity in each group with high frequency in

the ground-truth captions. And the images with this entity that the state-

of-the-art method missed (We call it Missing Subset in each group) must

be 40%-60% of all the images with this entity to guarantee the sample

balance.
5https://github.com/tylin/coco-caption

Table 3. The performance comparisons of parsing models (Par. M.) on

FG-dataset. “CNN-F”, “CNN-sVP” and “CNN-gVP” denote the fully-

connected layer, the original VP-Tree [24], and our VP-Tree respectively

with the output of CNN. “Acc.(E.)” and “Acc.(R.)” denote the metrics of

the correct classification (top-3) on entities and relations, respectively. All

values are in %.

Caption Generation Classification

Par. M. B4 M R C Acc.(E.) Acc.(R.)

CNN-F 32.5 25.0 53.2 98.3 - -

CNN-sVP 32.8 25.7 54.2 100.6 72.1 70.5

CNN-gVP 32.9 25.8 54.5 101.9 74.7 73.0

Ground Truth:  A single elephant standing in a large grassy field.

on:20.2%

in:14.7%

unknown:9.3%

null:64.6%

stand:2.2%

on:1.8%

null:57.9%

on:28.1%

unknown:2.2%

elephant:34.2%

person:16.3%

material:10.1%

null:66.4%

grass:10.4%

elephant:9.1%

null:93.2%

unknown:0.8%

grass:0.1%

grass:23.1%

null:17.9%

land:14.0%

stand_PREP:19.1%

null:18.5%

unknown:10.9%

null:76.4%

unknown:4.7%

stand:3.8%

null:29.3%

in:10.7%

on:9.0%

elephant:38.0%

baby:15.7%

unknown:11.4%

null:59.8%

unknown:17.3%

grass:11.4%

null:96.6%

grass:0.5%

head:0.0%

land:24.6%

null:18.0%

grass:17.0%

Ground Truth:  A black and white dog sleeps in front of a blue door.

sit:40.2%

sit_PREP:13.6%

on :9.5%

null:73.9%

with:14.6%

and:6.4%

on:72.6%

and:7.2%

null:3.8%

dog:53.6%

cat:33.4%

building:9.0%

null:83.6%

clock:10.3%

wall:2.0%

null:95.0%

unknown:1.4%

door:1.2%

door:21.4%

building:17.0%

wall:12.4%

with:24.1%

sit:16.7%

on :6.9%

null:63.9%

on:10.6%

over:5.3%

null:69.2%

on:14.1%

unknow:3.2%

cat:49.9%

dog:37.3%

building:13.4%

null:75.2%

building:14.3%

wall:6.2%

null:87.3%

light:1.8%

door:1.5%

building:31.2%

door:19.4%

wall:8.3%

Ground Truth:  A white toilet in a bathroom next to a white sink.

with:26.1%

in:12.3%

on :2.9%

null:63.2%

on:9.6%

with:6.9%

null:81.7%

on:9.2%

and:0.3%

bathroom:22.4%

toilet:11.5%

building:13.4%

null:55.2%

bathroom:14.3%

unknown:6.2%

sink:37.3%

toilet:1.8%

null:1.1%

wall:31.2%

sink:19.4%

unknow:8.3%

sit:19.3%

next_to:18.7%

with:11.5%

null:62.9%

in:13.6%

with:7.2%

null:41.9%

with:8.0%

and:0.1%

toilet:27.8%

sink:13.3%

null:11.1%

bathroom:66.3%

kitchen:10.4%

unknown:5.4%

toilet :35.3%

null:12.0%

sink:1.5%

wall:14.7%

sink:14.5%

closet:10.9%

Ground Truth:  A baseball pitcher is in a position to throw the ball.

throw:29.4%

in:12.2%

wear:10.2%

null:26.8%

pitch:15.7%

in:11.9%

on:97.6%

null:2.7%

unknown:0.1%

baseball_player:

58.2%

person:13.1%

pitcher:9.0%

uniform:40.2%

null:30.4%

baseball:12.1%

null:96.1%

unknown:0.6%

baseball:0.4%

baseball:22.6%

ball:14.0%

baseball_field: 

10.7%

throw:18.7%

in:10.3%

on :2.9%

null:44.2%

in:23.8%

with:3.3%

null:82.2%

and:8.1%

unknown:2.2%

man :59.3%

person:32.1%

motorcyclist:5.1%

uniform :45.2%

null:34.3%

close:1.2%

null:87.3%

unknown:1.8%

baseball:1.5%

baseball:21.2%

ball:12.5%

baseball_field:

15.3%

Figure 4. VP-Trees constructed by the proposed GroupCap compared to

StructCap. The three columns are the source images, the generated VP-

Trees by the model [24], the generated VP-Trees by our model, respec-

tively. Red font means the correct semantic items according to the textual

parsing trees.

semble scheme (4 models), achieves the best performance

under all metrics, which reflects that considering the rele-

vance and diversity can reinforce and diversify the caption

generation (The generated results will be further analyzed in

the part of Evaluation for Caption Generation). Moreover,

GroupCap outperforms GroupCap-T-SRC and GroupCap-

T-SDC, which reveals that our relevance and diversity con-

straints do contribute to the overall performance. In addi-

tion, GroupCap-T outperforms NIC-g, which indicates the

effectiveness of our VP-Tree.

Performance on ES-dataset. Tab.2 shows the compar-

ing between GroupCap and state-of-the-art methods on ES-

dataset. GroupCap achieves the best performance under

all metrics. Since the specific entities are collected where

the state-of-the-art method (SCN) fails, the superior per-

formance reflects that GroupCap can refine the generated

caption on the accuracy and discriminability. GroupCap

also outperforms all the baselines on ES-dataset, such as

GroupCap-T-SRC and GroupCap-T-SDC, which indicates
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A:plate

B:on

C:table

D:contain

E:null

F:meat

G:pizza

a:food

b:and

c:alcohol

d:sit

e:null

f:uknown

g:table

target positive

A:person 

B:ride

C:snowboard

D:down

E:null

F:null

G:snow

a:person 

b:on

c:snowboard

d:fly

e:null

f:null

g:hill

target positive

A:giraffe 

B:look 

C:fence 

D:in

E:null

F:null

G:zoo

a:giraffe 

b:near 

c:building 

d:behind 

e:null

f:null

g:fence

target positive

A:baseball_

player 

B:play

C:null

D:unknown 

E:null

F:null

G:game

a:baseball_

player 

b:play 

c:baseball 

d:at 

e:null

f:null

g:game

target positive

Figure 5. Visualization of the relevance matrices. Darker color means

more relevant between two semantic items (entities or relations).

that considering relevance and diversity do contribute to the

overall performance.

Evaluation for VP-Tree Construction. To evaluate the

advanced VP-Tree, we compare it with the visual parser

proposed in [24].6 The qualitative results are shown in

Fig.4. The proposed VP-Trees are more identical to the

ground-truth captions compared to the ones generated by

sVP. Also, the semantic items (entities or relations) in each

VP-Tree generated by gVP are more accurate, which is due

to more information of the relation from images.

Further, we estimate the performances of caption gen-

eration and classification (classify each node into an en-

tity/relation category) by using sVP and gVP models in

Tab.3. CNN-gVP outperforms the CNN-F and CNN-sVP,

which indicates the effectiveness and superiority of our pro-

posed gVP model. Additionally, the entity/relation classifi-

cation of CNN-gVP is more accurate than that of CNN-sVP,

which further manifests the rationality of the proposed gVP

structure.

Evaluation for Relevance. We propose relevance con-

straint to make the generated captions more accurate. To

evaluate the effect of this relevance constraint, we col-

lect the specific entities where the state-of-the-art method

(SCN) fails (as described in the part of Datasets and Eval-

uation Protocols), based on which we find whether Group-

Cap can predict such difficult cases and refine the generated

6For distinction, we call our VP-Tree and the original visual parser [24]

as gVP and sVP, respectively

target

A:man  

B:null

C:null

D:wear

E:black-jacket

F:and

G:tie

a:man

b:null

c:null

d:wear

e:brown-bow_

tie

f:and

g:gray-jacket

A:flower_pot 

B:unknown

C:flower 

D:sit 

E:null

F:null

G:windowsill

a:cat

b:sit

c:unknown

d:with 

e:null

f:null

g:large-

window

A:broccoli-

meat 

B:and

C:other-food 

D:on

E:fork

F:and

G:knife

a:potato 

b:and 

c:broccoli

d:with 

e:knife 

f:and 

g:fork

A:blurry-

street_sign 

B:null

C:null

D:stand

E:null

F:null

G:street

a:red-stop_sign

b:null

c:null

d:sit

e:null

f:null

g:sidewalk

target positive

target positive

positive

target positive

Figure 6. Visualization of the diversity matrices. Darker color means

more diverse between two semantic items (entities or relations).

captions. We estimate the occurrence recall (Occ. Recall)

of specific entities (S. E.) in the generated captions in Tab.4,

where the occurrence recall of a specific entity can be com-

puted as:

Occ. Recall =
No. of Correct Occ. of S. E.

No. of Ground Truths with S. E.
, (14)

where we count Ground Truths with S. E. when S. E. si-

multaneously occurs in all the ground-truth captions of an

image. From Tab.4, we find that GroupCap can describe the

captions more accurately compared to the StructCap [24]

and SCN [5], which validates the effect of the structured

relevance constraint.

We further explore the relevance captured by the pro-

posed model. We visualize the relevance matrices of some

examples with high relevance scores in Fig.5. The value of

each element in the relevance matrix means the confidence

score of the relevance between two corresponding seman-

tic items (entities and relations) in two VP-Trees. We can

find that the alignments of relevant semantic items appear

darker color, and the gradation distribution of color is gen-

erally consistent to node alignments of the textual parsing

trees (green boxes Fig.5). It reflects that the structured rel-

evance among semantic items is well captured by the pro-

posed relevance constraint.

Evaluation for Diversity. We further evaluate the qual-

ity of diversity captured by the proposed model. We vi-

sualize the diversity matrices of some examples with high
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Table 4. Occurrence recalls (Values in %) of specific entities (with top-10 frequencies in ES-dataset) in generated captions.

road table person food ball ski phone water dog track

StructCap 8.0 81.8 100.0 70.0 20.0 75.0 73.3 57.1 76.9 90.0

SCN 6.0 84.8 75.0 70.0 20.0 75.0 73.3 42.9 76.0 70.0

GroupCap 14.0 90.9 100.0 80.0 30.0 87.5 80.0 85.7 77.7 90.0

S: a giraffe is standing in the dirt.

G: a giraffe standing on a dry grass field.

GT: A giraffe standing on top of a dry grass field.

stand in unknow

null stand in null and  unknow

giraffe unknown person

null land unknown

null grass tree

land unknown tree

S: a white and white dog sitting on a chair.

G: a small brown and white dog wearing a tie 

sitting in front of a chair.

GT: A brown and white dog wearing a tie on carpet.

with unknown in

null and with null and unknown

dog unknown person

null unknown shirt

null unknown hat

tie unknown dog

S: a couple of cats sitting on top of a window.

G: a black and white cat sitting on a ledge.

GT: a black and gray spotted cat is sitting on a 

windows sill.

sit in with

null sit look null and  unknown

cat unknown bird

null floor cat

null floor unknown

ledge window door

S: a group of zebras standing in a field.

G: a herd of zebra standing on top of a grass covered

field.

GT: A herd of zebras stand on a pathway near brown grass.

stand in unknown

null unknown and on and unknown

zebra unknown animal

null land grass

grass null tree

land tree grass

S: a man riding a skateboard down a ramp.

G: a man flying through the air while riding a

skateboard.

GT: A man flying through the air while riding a

skateboard.

Fly in unknown

null on unknown with and unknown

person people unknown

null unknown skateboard

null unknown sign

skateboard unknown ramp

S: a clock on the side of a building.

G: a large clock tower towering over a city street.

GT: A clock is high up on a large city structure.

over on with

null with on null and unknown

clock building clock_tower

null clock unknown

null building sign

building road unknown

S:  little boy sitting on the floor holding a toothbrush.

G: a little boy playing with a cell phone.

GT: A young boy sitting on a rug holding a cell phone.

play in hold

null in sit with and  unknown

kid baby person

null floor phone

null unknown bottle

phone couch unknown

S: a group of people on a field playing baseball.

G: a person holding a baseball on top of a field.

GT: A person taking a swing at a  baseball on the field.

on in unknonwn

hold null in null and  unknown

person people basebal-player

baseball unknown ball

null baseball  uniform

land baseball unknown

S: a close up of a plastic container filled with food.

G: a plastic container filled with fruits and

vegetables.

GT: Various fruits and vegetables prepared and

Packed into small containers.

on include with

null and with null  and  unknown

container tray fruit

fruit  null unknown

null unknown fruit

table unknown null

S: a cat laying on a chair in a chair.

G:  black and white cat sitting on a chair.

GT: cat that is laying down on a chair.

sit on with

null in and null and unknown

cat unknow person

null unknown chair

null unknown chair

chair unknown null

S: a young child is brushing her teeth.

G: a little girl sitting at a sink with a toothbrush.

GT: a little kid cleaning their toothbrush in the sink.

sit in eat

null pour unknown with and unknown

kid person baby

null person cake

sink unknown  fork

teeth blender cake

S: a couple of people sitting on top of a grass field.

G: a couple of kids are sitting in a park eating food.

GT: Two young boys in shorts at park with hands raised.

eat in hold

and null in in and unknown

kid person  people

kid null frisbee

null unknown baby

park frisbee pizza

Figure 7. Visualization of the constructed VP-Trees and generated captions on FG-dataset. We compare the captions generated by the proposed GroupCap

model to that of the state-of-the-art model (SCN) [5]. “S”, “G”, and “GT” denote SCN, GroupCap, ground truth, respectively.

diversity scores/probabilities in Fig.6. Different from rel-

evance matrix, the value of each element in the diversity

matrix represents the confidence score on whether two cor-

responding semantic items in two VP-Trees are first rele-

vant and then diverse. We can find that the alignment of

the diverse semantic items appears darker color, e.g., the

alignment of black-jacket and gray-jacket in the first ex-

ample is with higher score compared to others. Moreover,

the gradation distribution of color is generally consistent to

node alignments of the textual parsing trees (green boxes in

Fig.6), which reflects that the proposed diversity constraint

can well capture the diversity among semantic items.

Evaluation for Caption Generation. Finally, we qual-

itatively evaluate our proposed GroupCap model in Fig.7.

As we can see, the generated captions by GroupCap are

more accurate and more discriminative compared to the

state-of-the-art, which are also consistent with the ground

truths. Moreover, the VP-Tree is mostly consistent with the

image and the generated caption, which reveals the effect of

the proposed joint training in Subsec.3.3.

5. Conclusion

In this paper, we propose a novel group-based image

captioning model (GroupCap) by modeling relevance and

diversity among group images for discriminative caption

generation. Specifically, we first propose a visual parsing

(VP) model to extract visual semantic items (entities and

relations) and model their correlations, forming a tree struc-

ture. Then, we model the structured relevance and diversity

among images via comparing between such tree structures.

Finally, we embed the VP-Tree into the LSTM-based cap-

tioning model for the caption generation. In offline opti-

mization, we further give an end-to-end formulation, which

jointly trains the visual tree parser, the structured relevance

and diversity constraints, and the LSTM based captioning

model. Two group captioning datasets derived from MS-

COCO are further released, serving as the first of its kind.

Extensive experimental evaluations show that our model

achieves state-of-the-art performance under several stan-

dard evaluation metrics.
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