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(a) Camera output with ISO 8,000 (b) Camera output with ISO 409,600 (c) Our result from the raw data of (a)

Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera is < 0.1

lux. The Sony α7S II sensor is exposed for 1/30 second. (a) Image produced by the camera with ISO 8,000. (b) Image produced by the

camera with ISO 409,600. The image suffers from noise and color bias. (c) Image produced by our convolutional network applied to the

raw sensor data from (a).

Abstract

Imaging in low light is challenging due to low pho-

ton count and low SNR. Short-exposure images suffer from

noise, while long exposure can induce blur and is often

impractical. A variety of denoising, deblurring, and en-

hancement techniques have been proposed, but their effec-

tiveness is limited in extreme conditions, such as video-rate

imaging at night. To support the development of learning-

based pipelines for low-light image processing, we intro-

duce a dataset of raw short-exposure low-light images, with

corresponding long-exposure reference images. Using the

presented dataset, we develop a pipeline for processing

low-light images, based on end-to-end training of a fully-

convolutional network. The network operates directly on

raw sensor data and replaces much of the traditional im-

age processing pipeline, which tends to perform poorly on

such data. We report promising results on the new dataset,

analyze factors that affect performance, and highlight op-

portunities for future work.

1. Introduction

Noise is present in any imaging system, but it makes

imaging particularly challenging in low light. High ISO can

be used to increase brightness, but it also amplifies noise.

Postprocessing, such as scaling or histogram stretching, can

be applied, but this does not resolve the low signal-to-noise

ratio (SNR) due to low photon counts. There are physi-

cal means to increase SNR in low light, including opening

the aperture, extending exposure time, and using flash. But

each of these has its own characteristic drawbacks. For ex-

ample, increasing exposure time can introduce blur due to

camera shake or object motion.

The challenge of fast imaging in low light is well-

known in the computational photography community, but

remains open. Researchers have proposed techniques for

denoising, deblurring, and enhancement of low-light im-

ages [34, 16, 42]. These techniques generally assume that

images are captured in somewhat dim environments with

moderate levels of noise. In contrast, we are interested in

extreme low-light imaging with severely limited illumina-

tion (e.g., moonlight) and short exposure (ideally at video

rate). In this regime, the traditional camera processing

pipeline breaks down and the image has to be reconstructed

from the raw sensor data.

Figure 1 illustrates our setting. The environment is ex-

tremely dark: less than 0.1 lux of illumination at the cam-

era. The exposure time is set to 1/30 second. The aperture

is f/5.6. At ISO 8,000, which is generally considered high,

the camera produces an image that is essentially black, de-

spite the high light sensitivity of the full-frame Sony sen-

sor. At ISO 409,600, which is far beyond the reach of most

cameras, the content of the scene is discernible, but the im-

age is dim, noisy, and the colors are distorted. As we will

show, even state-of-the-art denoising techniques [32] fail to

remove such noise and do not address the color bias. An

alternative approach is to use a burst of images [24, 14], but
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burst alignment algorithms may fail in extreme low-light

conditions and burst pipelines are not designed for video

capture (e.g., due to the use of ‘lucky imaging’ within the

burst).

We propose a new image processing pipeline that ad-

dresses the challenges of extreme low-light photography via

a data-driven approach. Specifically, we train deep neural

networks to learn the image processing pipeline for low-

light raw data, including color transformations, demosaic-

ing, noise reduction, and image enhancement. The pipeline

is trained end-to-end to avoid the noise amplification and

error accumulation that characterize traditional camera pro-

cessing pipelines in this regime.

Most existing methods for processing low-light images

were evaluated on synthetic data or on real low-light im-

ages without ground truth. To the best of our knowledge,

there is no public dataset for training and testing techniques

for processing fast low-light images with diverse real-world

data and ground truth. Therefore, we have collected a new

dataset of raw images captured with fast exposure in low-

light conditions. Each low-light image has a corresponding

long-exposure high-quality reference image. We demon-

strate promising results on the new dataset: low-light im-

ages are amplified by up to 300 times with successful noise

reduction and correct color transformation. We systemati-

cally analyze key elements of the pipeline and discuss di-

rections for future research.

2. Related Work

Computational processing of low-light images has been

extensively studied in the literature. We provide a short re-

view of existing methods.

Image denoising. Image denoising is a well-developed

topic in low-level vision. Many approaches have been

proposed, using techniques such as total variation [36],

wavelet-domain processing [33], sparse coding [9, 28], nu-

clear norm minimization [12], and 3D transform-domain fil-

tering (BM3D) [7]. These methods are often based on spe-

cific image priors such as smoothness, sparsity, low rank,

or self-similarity. Researchers have also explored the ap-

plication of deep networks to denoising, including stacked

sparse denoising auto-encoders (SSDA) [39, 1], trainable

nonlinear reaction diffusion (TNRD) [6], multi-layer per-

ceptrons [3], deep autoencoders [26], and convolutional

networks [17, 41]. When trained on certain noise levels,

these data-driven methods can compete with state-of-the-

art classic techniques such as BM3D and sparse coding.

Unfortunately, most existing methods have been evaluated

on synthetic data, such as images with added Gaussian or

salt&pepper noise. A careful recent evaluation with real

data found that BM3D outperforms more recent techniques

on real images [32]. Joint denoising and demosaicing has

also been studied, including recent work that uses deep net-

works [15, 10], but these methods have been evaluated on

synthetic Bayer patterns and synthetic noise, rather than real

images collected in extreme low-light conditions.

In addition to single-image denoising, multiple-image

denoising has also been considered and can achieve bet-

ter results since more information is collected from the

scene [31, 23, 19, 24, 14, 29]. In particular, Liu et al. [24]

and Hasinoff et al. [14] propose to denoise a burst of im-

ages from the same scene. While often effective, these

pipelines can be elaborate, involving reference image selec-

tion (‘lucky imaging’) and dense correspondence estimation

across images. We focus on a complementary line of inves-

tigation and study how far single-image processing can be

pushed.

Low-light image enhancement. A variety of techniques

have been applied to enhance the contrast of low-light im-

ages. One classic choice is histogram equalization, which

balances the histogram of the entire image. Another widely

used technique is gamma correction, which increases the

brightness of dark regions while compressing bright pix-

els. More advanced methods perform more global analysis

and processing, using for example the inverse dark chan-

nel prior [8, 29], the wavelet transform [27], the Retinex

model [30], and illumination map estimation [13]. How-

ever, these methods generally assume that the images al-

ready contain a good representation of the scene content.

They do not explicitly model image noise and typically ap-

ply off-the-shelf denoising as a postprocess. In contrast, we

consider extreme low-light imaging, with severe noise and

color distortion that is beyond the operating conditions of

existing enhancement pipelines.

Noisy image datasets. Although there are many studies

of image denoising, most existing methods are evaluated

on synthetic data, such as clean images with added Gaus-

sian or salt&pepper noise. The RENOIR dataset [2] was

proposed to benchmark denoising with real noisy images.

However, as reported in the literature [32], image pairs in

the RENOIR dataset exhibit spatial misalignment. Bursts

of images have been used to reduce noise in low-light con-

ditions [24], but the associated datasets do not contain re-

liable ground-truth data. The Google HDR+ dataset [14]

does not target extreme low-light imaging: most images in

the dataset were captured during the day. The recent Darm-

stadt Noise Dataset (DND) [32] aims to address the need for

real data in the denoising community, but the images were

captured during the day and are not suitable for evaluation

of low-light image processing. To the best of our knowl-

edge, there is no public dataset with raw low-light images

and corresponding ground truth. We therefore collect such

a dataset to support systematic reproducible research in this

area.
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Sony α7S II Filter array Exposure time (s) # images

x300 Bayer 1/10, 1/30 1190

x250 Bayer 1/25 699

x100 Bayer 1/10 808

Fujifilm X-T2 Filter array Exposure time (s) # images

x300 X-Trans 1/30 630

x250 X-Trans 1/25 650

x100 X-Trans 1/10 1117

Table 1. The See-in-the-Dark (SID) dataset contains 5094 raw

short-exposure images, each with a reference long-exposure im-

age. The images were collected by two cameras (top and bottom).

From left to right: ratio of exposure times between input and refer-

ence images, filter array, exposure time of input image, and num-

ber of images in each condition.

3. See-in-the-Dark Dataset

We collected a new dataset for training and benchmark-

ing single-image processing of raw low-light images. The

See-in-the-Dark (SID) dataset contains 5094 raw short-

exposure images, each with a corresponding long-exposure

reference image. Note that multiple short-exposure images

can correspond to the same long-exposure reference image.

For example, we collected sequences of short-exposure im-

ages to evaluate burst denoising methods. Each image in the

sequence is counted as a distinct low-light image, since each

such image contains real imaging artifacts and is useful for

training and testing. The number of distinct long-exposure

reference images in SID is 424.

The dataset contains both indoor and outdoor images.

The outdoor images were generally captured at night, under

moonlight or street lighting. The illuminance at the camera

in the outdoor scenes is generally between 0.2 lux and 5 lux.

The indoor images are even darker. They were captured in

closed rooms with regular lights turned off and with faint in-

direct illumination set up for this purpose. The illuminance

at the camera in the indoor scenes is generally between 0.03

lux and 0.3 lux.

The exposure for the input images was set between 1/30

and 1/10 seconds. The corresponding reference (ground

truth) images were captured with 100 to 300 times longer

exposure: i.e., 10 to 30 seconds. Since exposure times for

the reference images are necessarily long, all the scenes in

the dataset are static. The dataset is summarized in Table 1.

A small sample of reference images is shown in Figure 2.

Approximately 20% of the images in each condition are ran-

domly selected to form the test set, and another 10% are

selected for the validation set.

Images were captured using two cameras: Sony α7S

II and Fujifilm X-T2. These cameras have different sen-

sors: the Sony camera has a full-frame Bayer sensor and

Figure 2. Example images in the SID dataset. Outdoor images

in the top two rows, indoor images in the bottom rows. Long-

exposure reference (ground truth) images are shown in front.

Short-exposure input images (essentially black) are shown in the

back. The illuminance at the camera is generally between 0.2 and

5 lux outdoors and between 0.03 and 0.3 lux indoors.

the Fuji camera has an APS-C X-Trans sensor. This sup-

ports evaluation of low-light image processing pipelines on

images produced by different filter arrays. The resolution is

4240×2832 for Sony and 6000×4000 for the Fuji images.

The Sony set was collected using two different lenses.

The cameras were mounted on sturdy tripods. We used

mirrorless cameras to avoid vibration due to mirror flap-

ping. In each scene, camera settings such as aperture, ISO,

focus, and focal length were adjusted to maximize the qual-

ity of the reference (long-exposure) images. After a long-

exposure reference image was taken, a remote smartphone

app was used to decrease the exposure time by a factor of

100 to 300 for a sequence of short-exposure images. The

camera was not touched between the long-exposure and the

short-exposure images. We collected sequences of short-

exposure images to support comparison with an idealized

burst-imaging pipeline that benefits from perfect alignment.

The long-exposure reference images may still contain

some noise, but the perceptual quality is sufficiently high

for these images to serve as ground truth. We target ap-

plications that aim to produce perceptually good images in

low-light conditions, rather than exhaustively removing all

noise or maximizing image contrast.

4. Method

4.1. Pipeline

After getting the raw data from an imaging sensor, the

traditional image processing pipeline applies a sequence of
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Figure 3. The structure of different image processing pipelines. (a) From top to bottom: a traditional image processing pipeline, the L3

pipeline [18], and a burst imaging pipeline [14]. (b) Our pipeline.

modules such as white balance, demosaicing, denoising,

sharpening, color space conversion, gamma correction, and

others. These modules are often tuned for specific cameras.

Jiang et al. [18] proposed to use a large collection of lo-

cal, linear, and learned (L3) filters to approximate the com-

plex nonlinear pipelines found in modern consumer imag-

ing systems. Yet neither the traditional pipeline nor the L3

pipeline successfully deal with fast low-light imaging, as

they are not able to handle the extremely low SNR. Hasinoff

et al. [14] described a burst imaging pipeline for smartphone

cameras. This method can produce good results by aligning

and blending multiple images, but introduces a certain level

of complexity, for example due to the need for dense corre-

spondence estimation, and may not easily extend to video

capture, for example due to the use of lucky imaging.

We propose to use end-to-end learning for direct single-

image processing of fast low-light images. Specifically, we

train a fully-convolutional network (FCN) [22, 25] to per-

form the entire image processing pipeline. Recent work has

shown that pure FCNs can effectively represent many im-

age processing algorithms [40, 5]. We are inspired by this

work and investigate the application of this approach to ex-

treme low-light imaging. Rather than operating on normal

sRGB images produced by traditional camera processing

pipelines, we operate on raw sensor data.

Figure 3(b) illustrates the structure of the presented

pipeline. For Bayer arrays, we pack the input into four

channels and correspondingly reduce the spatial resolution

by a factor of two in each dimension. For X-Trans arrays

(not shown in the figure), the raw data is arranged in 6×6

blocks; we pack it into 9 channels instead of 36 channels by

exchanging adjacent elements. We subtract the black level

and scale the data by the desired amplification ratio (e.g.,

x100 or x300). The packed and amplified data is fed into

a fully-convolutional network. The output is a 12-channel

image with half the spatial resolution. This half-sized out-

put is processed by a sub-pixel layer to recover the original

resolution [37].

After preliminary exploration, we have focused on two

general structures for the fully-convolutional network that

forms the core of our pipeline: a multi-scale context aggre-

gation network (CAN) recently used for fast image process-

ing [5] and a U-net [35]. Other work has explored residual

connections [20, 34, 41], but we did not find these bene-

ficial in our setting, possibly because our input and output

are represented in different color spaces. Another consid-

eration that affected our choice of architectures is memory

consumption: we have chosen architectures that can process

a full-resolution image (e.g., at 4240×2832 or 6000×4000

resolution) in GPU memory. We have therefore avoided
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(a) x28 (b) x87 (c) x189 (d) x366

Figure 4. The effect of the amplification factor on a patch from an indoor image in the SID dataset (Sony x100 subset). The amplification

factor is provided as an external input to our pipeline, akin to the ISO setting in cameras. Higher amplification factors yield brighter images.

This figure shows the output of our pipeline with different amplification factors.

fully-connected layers that require processing small image

patches and reassembling them [26]. Our default architec-

ture is the U-net [35].

The amplification ratio determines the brightness of the

output. In our pipeline, the amplification ratio is set exter-

nally and is provided as input to the pipeline, akin to the

ISO setting in cameras. Figure 4 shows the effect of dif-

ferent amplification ratios. The user can adjust the bright-

ness of the output image by setting different amplification

factors. At test time, the pipeline performs blind noise sup-

pression and color transformation. The network outputs the

processed image directly in sRGB space.

4.2. Training

We train the networks from scratch using the L1 loss and

the Adam optimizer [21]. During training, the input to the

network is the raw data of the short-exposed image and the

ground truth is the corresponding long-exposure image in

sRGB space (processed by libraw, a raw image process-

ing library). We train one network for each camera. The

amplification ratio is set to be the exposure difference be-

tween the input and reference images (e.g., x100, x250, or

x300) for both training and testing. In each iteration, we

randomly crop a 512×512 patch for training and apply ran-

dom flipping and rotation for data augmentation. The learn-

ing rate is initially set to 10−4 and is reduced to 10−5 after

2000 epochs. Training proceeds for 4000 epochs.

5. Experiments

5.1. Qualitative results and perceptual experiments

Comparison to traditional pipeline. Our initial baseline is

the traditional camera processing pipeline, with amplifica-

tion prior to quantization. (We use the same amplification

ratio as the one given to our pipeline.) Qualitative com-

parisons to this baseline are shown in Figures 5, 6, and 7.

Images produced by the traditional pipeline in extreme low-

light conditions suffer from severe noise and color distor-

tion.

Comparison to denoising and burst processing. The nat-

ural next step is to apply an existing denoising algorithm

post-hoc to the output of the traditional pipeline. A careful

recent evaluation on real data has shown that BM3D [7] out-

performs more recent denoising models on real images [32].

We thus use BM3D as the reference denoising algorithm.

Figure 7 illustrates the results. Note that BM3D is a non-

blind denoising method and requires the noise level to be

specified extrinsically as a parameter. A small noise level

setting may leave perceptually significant noise in the im-

age, while a large level may over-smooth. As shown in Fig-

ure 7, the two effects can coexist in the same image, since

uniform additive noise is not an appropriate model for real

low-light images. In contrast, our pipeline performs blind

noise suppression that can locally adapt to the data. Fur-

thermore, post-hoc denoising does not address other arti-

facts present in the output of the traditional pipeline, such

as color distortion.

We also compare to burst denoising [24, 14]. Since im-

age sequences in our dataset are already aligned, the burst-

imaging pipeline we compare to is idealized: it benefits

from perfect alignment, which is not present in practice.

Since alignment is already taken care of, we perform burst

denoising by taking the per-pixel median for a sequence of

8 images.

Comparison in terms of PSNR/SSIM using the reference

long-exposure images would not be fair to BM3D and burst

processing, since these baselines have to use input images

that undergo different processing. For fair comparison, we

reduce color bias by using the white balance coefficients

of the reference image. In addition, we scale the images

given to the baselines channel-by-channel to the same mean

values as the reference image. These adjustments bring the

images produced by the baselines closer in appearance to

the reference image in terms of color and brightness. Note

that this amounts to using privileged information to help the

baselines.

To evaluate the relative quality of images produced by

our pipeline, BM3D denoising, and burst denoising, we

conduct a perceptual experiment based on blind randomized
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(a) JPEG image produced by camera (b) Raw data via traditional pipeline (c) Our result

Figure 5. (a) An image captured at night by the Fujifilm X-T2 camera with ISO 800, aperture f/7.1, and exposure of 1/30 second. The

illuminance at the camera is approximately 1 lux. (b) Processing the raw data by a traditional pipeline does not effectively handle the noise

and color bias in the data. (c) Our result obtained from the same raw data.

A/B tests deployed on the Amazon Mechanical Turk plat-

form [4]. Each comparison presents corresponding images

produced by two different pipelines to an MTurk worker,

who has to determine which image has higher quality. Im-

age pairs are presented in random order, with random left-

right order, and no indication of the provenance of different

images. A total of 1180 comparisons were performed by 10

MTurk workers. Table 2 shows the rates at which workers

chose an image produced by the presented pipeline over a

corresponding image produced by one of the baselines. We

performed the experiment with images from two subsets of

the test set: Sony x300 (challenging) and Sony x100 (eas-

ier). Our pipeline significantly outperforms the baselines

on the challenging x300 set and is on par on the easier x100

set. Recall that the experiment is skewed in favor of the

baselines due to the oracle preprocessing of the data pro-

vided to the baselines. Note also that burst denoising uses

information from 8 images with perfect alignment.

Sony x300 set Sony x100 set

Ours > BM3D 92.4% 59.3%

Ours > Burst 85.2% 47.3%

Table 2. Perceptual experiments were used to compare the pre-

sented pipeline with BM3D and burst denoising. The experiment

is skewed in favor of the baselines, as described in the text. The

presented single-image pipeline still significantly outperforms the

baselines on the challenging x300 set and is on par on the easier

x100 set.

Qualitative results on smartphone images. We expect

that best results will be obtained when a dedicated network

is trained for a specific camera sensor. However, our prelim-

inary experiments with cross-sensor generalization indicate

that this may not always be necessary. We have applied a

model trained on the Sony subset of SID to images captured

by an iPhone 6s smartphone, which also has a Bayer filter

array and 14-bit raw data. We used an app to manually set

(a) Traditional pipeline (b) Our result

Figure 6. Application of a network trained on SID to a low-light

raw image taken with an iPhone 6s smartphone. (a) A raw image

captured at night with an iPhone 6s with ISO 400, aperture f/2.2,

and exposure time 0.05s. This image was processed by the tradi-

tional image processing pipeline and scaled to match the bright-

ness of the reference image. (b) The output of our network, with

amplification ratio x100.

ISO and other parameters, and exported raw data for pro-

cessing. A representative result is shown in Figure 6. The

low-light data processed by the traditional pipeline suffers

from severe noise and color shift. The result of our net-

work, trained on images from a different camera, has good

contrast, low noise, and well-adjusted color.

5.2. Controlled experiments

Table 3 (first row) reports the accuracy of the presented

pipeline in terms of Peak Signal-to-Noise Ratio (PSNR) and

Structural SIMilarity (SSIM) [38]. We now describe a se-

quence of controlled experiments that evaluate the effect of

different elements in the pipeline.
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(a) Traditional pipeline (b) ... followed by BM3D denoising (c) Our result

Figure 7. An image from the Sony x300 set. (a) Low-light input processed by the traditional image processing pipeline and linear scaling.

(b) Same, followed by BM3D denoising. (c) Our result.

Condition Sony Fuji

1. Our default pipeline 28.88/0.787 26.61/0.680

2. U-net → CAN 27.40/0.792 25.71/0.710

3. Raw → sRGB 17.40/0.554 25.11/0.648

4. L1 → SSIM loss 28.64/0.817 26.20/0.685

5. L1 → L2 loss 28.47/0.784 26.51/0.680

6. Packed → Masked 26.95/0.744 –

7. X-Trans 3× 3 → 6× 6 – 23.05/0.567

8. Stretched references 18.23/0.674 16.85/0.535

Table 3. Controlled experiments. This table reports mean

PSNR/SSIM in each condition.

Network structure. We begin by comparing different net-

work architectures. Table 3 (row 2) reports the result of

replacing the U-net [35] (our default architecture) by the

CAN [5]. The U-net has higher PSNR on both sets. Al-

though images produced by the CAN have higher SSIM,

they sometimes suffer from loss of color. A patch from the

Fuji x300 set is shown in Figure 8. Here colors are not re-

covered correctly by the CAN.

(a) CAN (b) U-net

Figure 8. Comparison of network architectures on an image patch

from the Fuji x300 test set. (a) Using the CAN structure, the color

is not recovered correctly. (b) Using the U-net. Zoom in for detail.

Input color space. Most existing denoising methods oper-

ate on sRGB images that have already been processed by a

traditional image processing pipeline. We have found that

operating directly on raw sensor data is much more effective

in extreme low-light conditions. Table 3 (row 3) shows the

results of the presented pipeline when it’s applied to sRGB

images produced by the traditional pipeline.

Loss functions. We use the L1 loss by default, but have

evaluated many alternative loss functions. As shown in

Table 3 (rows 4 and 5), replacing the L1 loss by L2 or

SSIM [43] produces comparable results. We have not ob-

served systematic perceptual benefits for any one of these

loss functions. Adding a total variation loss does not im-

prove accuracy. Adding a GAN loss [11] significantly re-

duces accuracy.

Data arrangement. The raw sensor data has all colors in a

single channel. Common choices for arranging raw data for

a convolutional network are packing the color values into

different channels with correspondingly lower spatial reso-

lution, or duplicating and masking different colors [10]. We

use packing by default. As shown in Table 3 (row 6), mask-

ing the Bayer data (Sony subset) yields lower PSNR/SSIM

than packing; a typical perceptual artifact of the masking

approach is loss of some hues in the output.

The X-Trans data is very different in structure from the

Bayer data and is arranged in 6×6 blocks. One option is

to pack it into 36 channels. Instead, we exchange some val-

ues between neighboring elements to create a 3×3 pattern,

which is packed into 9 channels. As shown in Table 3 (row

7), 6×6 packing yields lower PSNR/SSIM; a typical per-

ceptual artifact is loss of color and detail.

Postprocessing. In initial experiments, we included his-

togram stretching in the processing pipeline for the ref-

erence images. Thus the network had to learn histogram

stretching in addition to the rest of the processing pipeline.

Despite trying many network architectures and loss func-

tions, we were not successful in training networks to per-
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(a) (b)

(c) (d)

Figure 9. Effect of histogram stretching. (a) A reference image in

the Sony x100 set, produced with histogram stretching. (b) Output

if trained on histogram-stretched images. The result suffers from

artifacts on the wall. (c) Output if trained on images without his-

togram stretching. The result is darker but cleaner. (d) The image

(c) after histogram stretching applied in postprocessing.

form this task. As shown in Table 3 (row 8), the accuracy

of the network drops significantly when histogram stretch-

ing is applied to the reference images (and thus the network

has to learn histogram stretching). Our experiments sug-

gest that our pipeline does not easily learn to model and

manipulate global histogram statistics across the entire im-

age, and is prone to overfitting the training data when faced

with this task. We thus exclude histogram stretching from

the pipeline and optionally apply it as postprocessing. Fig-

ure 9 shows a typical result in which attempting to learn

histogram stretching yields visible artifacts at test time. The

result of training on unstretched reference images is darker

but cleaner.

6. Discussion

Fast low-light imaging is a formidable challenge due to

low photon counts and low SNR. Imaging in the dark, at

video rates, in sub-lux conditions, is considered impractical

with traditional signal processing techniques. In this pa-

per, we presented the See-in-the-Dark (SID) dataset, cre-

ated to support the development of data-driven approaches

that may enable such extreme imaging. Using SID, we have

developed a simple pipeline that improves upon traditional

processing of low-light images. The presented pipeline is

based on end-to-end training of a fully-convolutional net-

work. Experiments demonstrate promising results, with

successful noise suppression and correct color transforma-

tion on SID data.

The presented work opens many opportunities for future

(a) Traditional pipeline (b) ... followed by BM3D

(c) Burst denoising (d) Our result

Figure 10. Limited signal recovery in extreme low-light conditions

(indoor, dark room, 0.2 lux). (a) An input image in the Sony x300

set, processed by the traditional pipeline and amplified to match

the reference. (b) BM3D denoising applied to (a). (c) Burst de-

noising with 8 images: the result is still bad due to the severe

artifacts in all images in the burst. (d) The result of our network;

loss of detail is apparent upon close examination.

research. Our work did not address HDR tone mapping.

(Note the saturated regions in Figure 1(c).) The SID dataset

is limited in that it does not contain humans and dynamic

objects. The results of the presented pipeline are imperfect

and can be improved in future work; the x300 subset is par-

ticularly challenging. Some artifacts in the output of the

presented approach are demonstrated in Figure 10(d).

Another limitation of the presented pipeline is that the

amplification ratio must be chosen externally. It would be

useful to infer a good amplification ratio from the input,

akin to Auto ISO. Furthermore, we currently assume that

a dedicated network is trained for a given camera sensor.

Our preliminary experiments with cross-sensor generaliza-

tion are encouraging, and future work could further study

the generalization abilities of low-light imaging networks.

Another opportunity for future work is runtime optimiza-

tion. The presented pipeline takes 0.38 and 0.66 seconds to

process full-resolution Sony and Fuji images, respectively;

this is not fast enough for real-time processing at full reso-

lution, although a low-resolution preview can be produced

in real time.

We expect future work to yield further improvements in

image quality, for example by systematically optimizing the

network architecture and training procedure. We hope that

the SID dataset and our experimental findings can stimulate

and support such systematic investigation.
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