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Abstract

In this work, we tackle the problem of instance segmen-

tation, the task of simultaneously solving object detection

and semantic segmentation. Towards this goal, we present

a model, called MaskLab, which produces three outputs:

box detection, semantic segmentation, and direction predic-

tion. Building on top of the Faster-RCNN object detector,

the predicted boxes provide accurate localization of object

instances. Within each region of interest, MaskLab performs

foreground/background segmentation by combining seman-

tic and direction prediction. Semantic segmentation assists

the model in distinguishing between objects of different se-

mantic classes including background, while the direction

prediction, estimating each pixel’s direction towards its cor-

responding center, allows separating instances of the same

semantic class. Moreover, we explore the effect of incor-

porating recent successful methods from both segmentation

and detection (e.g., atrous convolution and hypercolumn).

Our proposed model is evaluated on the COCO instance seg-

mentation benchmark and shows comparable performance

with other state-of-art models.

1. Introduction

Deep Convolutional Neural Networks (ConvNets) [41,

40] have significantly improved the performance of com-

puter vision systems. In particular, models based on Fully

Convolutional Networks (FCNs) [64, 53] achieve remark-

able results in object detection (localize instances) [22, 69,

25, 62, 51, 60, 19, 47] and semantic segmentation (identify

semantic class of each pixel) [10, 46, 56, 52, 80, 73, 79, 54].

Recently, the community has been tackling the more chal-

lenging instance segmentation task [26, 28], whose goal is

to localize object instances with pixel-level accuracy, jointly

solving object detection and semantic segmentation.

Due to the intricate nature of instance segmentation, one

could develop a system focusing on instance box-level de-

tection first and then refining the prediction to obtain more
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(a) Image (b) Predicted masks

Figure 1. Instance segmentation aims to solve detection and segmen-

tation jointly. We tackle this problem by refining the segmentation

masks within predicted boxes (gray bounding boxes).

detailed mask segmentation, or conversely, one could target

at sharp segmentation results before tackling the association

problem of assigning pixel predictions to instances. The

state-of-art instance segmentation model FCIS [44] employs

the position-sensitive [16] inside/outside score maps to en-

code the foreground/background segmentation information.

The usage of inside/outside score maps successfully seg-

ments foreground/background regions within each predicted

bounding box, but it also doubles the number of output chan-

nels because of the redundancy of background encoding. On

the other hand, the prior work of [70] produces three outputs:

semantic segmentation, instance center direction (predict-

ing pixel’s direction towards its corresponding instance cen-

ter), and depth estimation. However, complicate template

matching is employed subsequently to decode the predicted

direction for instance detection. In this work, we present

MaskLab (short for Mask Labeling), seeking to combine

the best from both detection-based and segmentation-based

methods for solving instance segmentation.

Specifically, MaskLab builds on top of Faster R-CNN

[62] and additionally produces two outputs: semantic seg-

mentation and instance center direction [70]. The predicted

boxes returned by Faster R-CNN bring object instances of

different scales to a canonical scale, and MaskLab performs

foreground/background segmentation within each predicted

box by exploiting both semantic segmentation and direc-

tion prediction. The semantic segmentation prediction, en-

coding the pixel-wise classification information including
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Figure 2. MaskLab generates three outputs, including refined box predictions (from Faster-RCNN), semantic segmentation logits (logits

for pixel-wise classification), and direction prediction logits (logits for predicting each pixel’s direction toward its corresponding instance

center). For each region of interest, we perform foreground/background segmentation by exploiting semantic segmentation and direction

logits. Specifically, for the semantic segmentation logits, we pick the channel based on the predicted box label and crop the regions according

to the predicted box. For the direction prediction logits, we perform the direction pooling to assemble the regional logits from each channel.

These two cropped features are concatenated and passed through another 1× 1 convolution for foreground/background segmentation.

background class, is adopted to distinguish between objects

of different semantic classes (e.g., person and background),

and thus removes the duplicate background encoding in [44].

Additionally, direction prediction is used to separate object

instances of the same semantic label. Our model employs the

same assembling operation in [16, 44] to collect the direc-

tion information and thus gets rid of the complicate template

matching used in [70]. Furthermore, motivated by the recent

advances in both segmentation and detection, MaskLab fur-

ther incorporates atrous convolution [11] to extract denser

features maps, hypercolumn features [29] for refining mask

segmentation [21], multi-grid [71, 20, 12] for capturing dif-

ferent scales of context, and a new TensorFlow operation

[1], deformable crop and resize, inspired by the deformable

pooling operation [20].

We demonstrate the effectiveness of the proposed model

on the challenging COCO instance segmentation benchmark

[48]. Our proposed model, MaskLab, shows comparable

performance with other state-of-art models in terms of both

mask segmentation (e.g., FCIS [44] and Mask R-CNN [31])

and box detection (e.g., G-RMI [35] and TDM [66]). Finally,

we elaborate on the implementation details and provide de-

tailed ablation studies of the proposed model.

2. Related Work

In this work, we categorize current instance segmenta-

tion methods based on deep neural networks into two types,

depending on how the method approaches the problem by

starting from either detection or segmentation modules.

Detection-based methods: This type of methods ex-

ploits state-of-art detection models (e.g., Fast-RCNN [25],

Faster-RCNN [62] or R-FCN [19]) to either classify mask

regions or refine the predicted boxes to obtain masks. There

have been several methods developed for mask proposals,

including CPMC [9], MCG [3], DeepMask [58], SharpMask

[59], and instance-sensitive FCNs [16]. Recently, Zhang and

He [76] propose a free-form deformation network to refine

the mask proposals. Coupled with the mask proposals, SDS

[28, 14] and CFM [17] incorporate mask-region features to

improve the classification accuracy, while [29] exploit hyper-

column features (i.e., features from the intermediate layers).

Li et al. [43] iteratively apply the prediction. Zagoruyko et

al. [75] exploit object context at multiple scales. The work of

MNC [18] shows promising results by decomposing instance

segmentation into three sub-problems including box local-

ization, mask refinement and instance classification. Hayer

et al. [30] improve MNC by recovering the mask boundary

error resulted from box prediction. Arnab et al. [4, 5] apply

higher-order Conditional Random Fields (CRFs) to refine

the mask results. FCIS [44], the first Fully Convolutional

Network (FCN) [53] for instance segmentation, enriches the

position-sensitive score maps from [16] by further consider-

ing inside/outside score maps. Mask-RCNN [31], built on

top of FPN [47], adds another branch to obtain refined mask

results from Faster-RCNN box prediction and demonstrates

outstanding performance.

Segmentation-based methods: This type of methods

generally adopt a two-stage processing, including segmen-

tation and clustering. Pixel-level predictions are obtained

by the segmentation module before the clustering process

is applied to group them together for each object instance.
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Figure 3. Semantic segmentation logits and direction prediction logits are used to perform foreground/background segmentation within each

predicted box. In particular, segmentation logits are able to distinguish between instances of different semantic classes (e.g., person and

background), while direction logits (directions are color-coded) further separate instances of the same semantic class (e.g., two persons in the

predicted blue box). In the assembling operation, regional logits (the color triangular regions) are copied from each direction channel, similar

to [16, 44]. For example, the region specified by the red triangle copies the logits from the red direction channel encoding instance direction

from 0 degree to 45 degree. Note the weak activations in the pink channel encoding instance direction from 180 degree to 225 degree.

Proposal-free network [45] applies spectral clustering to

group segmentation results from DeepLab [10], while Zhang

et al. [78] exploit depth ordering within an image patch.

In addition to semantic and depth information, Uhrig et al.

[70] further train an FCN to predict instance center direc-

tion. Zhang et al. [77] propose a novel fully connected CRF

[39] (with fast inference by permutohedral lattice [2]) to

refine the results. Liu et al. [50] segment objects in multi-

scale patches and aggregate the results. Levinkov et al. [42]

propose efficient local search algorithms for instance seg-

mentation. Wu et al. [72] exploit a localization network

for grouping, while Bai and Urtasun [6] adopt a Watershed

Transform Net. Furthermore, Liu et al. [49] propose to

sequentially solve the grouping problem and gradually com-

pose object instances. [38, 36] exploit boundary detection

information, while [55, 23, 8] propose to cluster instances

w.r.t. the learned embedding values.

In addition to the two categories, there is other interest-

ing work. For example, [63, 61] propose recurrent neural

networks to sequentially segment an instance at a time. [37]

propose a weakly supervised instance segmentation model

given only bounding box annotations.

Our proposed MaskLab model combines the advantages

from both detection-based and segmentation-based meth-

ods. In particular, MaskLab builds on top of Faster-RCNN

[62] and additionally incorporates semantic segmentation (to

distinguish between instances of different semantic classes,

including background class) and direction features [70] (to

separate instances of the same semantic label). Our work

is most similar to FCIS [44], Mask R-CNN [31], and the

work of [70]; we build on top of Faster R-CNN [62] instead

of R-FCN [19] (and thus replace the complicated template

matching for instance detection in [70]), exploit semantic

segmentation prediction to remove duplicate background en-

coding in the inside/outside score maps, and we also simplify

the position-sensitive pooling to direction pooling.

3. MaskLab

Overview: Our proposed model, MaskLab, employs

ResNet-101 [32] as feature extractor. It consists of three

components with all features shared up to conv4 (or res4x)

block and one extra duplicate conv5 (or res5x) block is used

for the box classifier in Faster-RCNN [62]. Note that the

original conv5 block is shared for both semantic segmenta-

tion and direction prediction. As shown in Fig. 2, MaskLab,

built on top of Faster-RCNN [62], produces box prediction

(in particular, refined boxes after the box classifier), seman-

tic segmentation logits (logits for pixel-wise classification)

and direction prediction logits (logits for predicting each

pixel’s direction towards its corresponding instance center

[70]). Semantic segmentation logits and direction prediction

logits are computed by another 1 × 1 convolution added

after the last feature map in the conv5 block of ResNet-101.

Given each predicted box (or region of interest), we perform

foreground/background segmentation by exploiting those

two logits. Specifically, we apply a class-agnostic (i.e., with

weights shared across all classes) 1× 1 convolution on the

concatenation of (1) cropped semantic logits from the se-

mantic channel predicted by Faster-RCNN and (2) cropped

direction logits after direction pooling.

Semantic and direction features: MaskLab generates

semantic segmentation logits and direction prediction logits

for an image. The semantic segmentation logits are used to

predict pixel-wise semantic labels, which are able to separate

instances of different semantic labels, including the back-

ground class. On the other hand, the direction prediction

logits are used to predict each pixel’s direction towards its

corresponding instance center and thus they are useful to

further separate instances of the same semantic labels.

Given the predicted boxes and labels from the box predic-

tion branch, we first select the channel w.r.t. the predicted la-

bel (e.g., the person channel) from the semantic segmentation

logits, and crop the regions w.r.t. the predicted box. In order

4015



For each predicted box:

ConvNet
Predicted
Coarse
Mask

Features From
Lower Layers

. . .

Cropped
Features

Concat Small
ConvNet

Refined
Mask

Figure 4. Mask refinement. Hypercolumn features are concate-

nated with the coarse predicted mask and then fed to another small

ConvNet to produce the final refined mask predictions.

to exploit the direction information, we perform the same

assembling operation in [16, 44] to gather regional logits

(specified by the direction) from each direction channel. The

cropped semantic segmentation logits along with the pooled

direction logits are then used for foreground/background seg-

mentation. We illustrate the details in Fig. 3, which shows

that the segmentation logits for ‘person‘ clearly separate the

person class from background and the tie class, and the di-

rection logits are able to predict the pixel’s direction towards

its instance center. After assembling the direction logits,

the model is able to further separate the two persons within

the specified box region. Note that our proposed direction

prediction logits are class-agnostic instead of having the log-

its for each semantic class as in FCIS [44], yielding more

compact models. Specifically, for mask segmentation with

K classes, our model requires (K + 32) channels (K for

semantic segmentation and 32 for direction pooling), while

[44] outputs 2× (K+1)× 49 channels (2 for inside/outside

score maps and 49 for position grids).

Mask refinement: Motivated by [21] which applies an-

other network consisting of only few layers for segmentation

refinement, we further refine the predicted coarse masks by

exploiting the hypercolumn features [29]. Specifically, as

shown in Fig. 4, the generated coarse mask logits (by only

exploiting semantic and direction features) are concatenated

with features from lower layers of ResNet-101, which are

then processed by three extra convolutional layers in order

to predict the final mask.

Deformable crop and resize: Following Dai et al. [20],

who demonstrate significant improvement in object detection

by deforming convolution and pooling operations, we modify

the key TensorFlow operation used for box classification,

“crop and resize” (similar to RoIAlign in Mask R-CNN [31]),

to support deformation as well. As shown in Fig. 5, “crop and

resize” first crops a specified bounding box region from the

feature maps and then bilinearly resizes them to a specified

size (e.g., 4× 4). We further divide the regions into several

sub-boxes (e.g., 4 sub-boxes and each has size 2 × 2) and

employ another small network to learn the offsets for each

sub-box. Finally, we perform “crop and resize” again w.r.t.

each deformed sub-box. In summary, we use “crop and

resize” twice to implement the deformable pooling in [20].

(a) Crop and resize (b) 2 × 2 sub-boxes (c) Deformed sub-boxes

Figure 5. Deformable crop and resize. (a) The operation, crop and

resize, crops features within a bounding box region and resizes

them to a specified size 4× 4. (b) The 4× 4 region is then divided

into 4 small sub-boxes, and each has size 2× 2. (c) Another small

network is applied to learn the offsets of each sub-box. Then we

perform crop and resize again w.r.t. to the deformed sub-boxes.

4. Experimental Evaluation

We conduct experiments on the COCO dataset [48]. Our

proposed model is implemented in TensorFlow [1] on top of

the object detection library developed by [35].

4.1. Implementation Details

We employ the same hyper-parameter settings as in [35,

67], and only discuss the main difference below.

Atrous convolution: We apply the atrous convolution

[34, 27, 64, 57], which has been successfully explored

in semantic segmentation [13, 79, 12], object detection

[19, 35] and instance segmentation [78, 44], to extract

denser feature maps. Specifically, we extract features with

output stride = 8 (output stride denotes the ratio of input

image spatial resolution to final output resolution).

Weight initialization: For the 1× 1 convolution applied

to the concatenation of semantic and direction features, we

found that the training converges faster by initializing the

convolution weights to be (0.5, 1), putting a slightly larger

weight on the direction features, which is more important in

instance segmentation, as shown in the experimental results.

Mask training: During training, only groundtruth boxes

are used to train the branches that predict semantic segmen-

tation logits and direction logits, since direction logits may

not align well with instance center if boxes are jittered. We

employ sigmoid function to estimate both the coarse and re-

fined mask results. Our proposed model is trained end-to-end

without piecewise pretraining of each component.

4.2. Quantitative Results

We first report the ablation studies on a minival set and

then evaluate the best model on test-dev set, with the metric

mean average precision computed using mask IoU.

Mask crop size: The TensorFlow operation, “crop and

resize”, is used at least in two places: one for box classifi-

cation and one for cropping semantic and direction features

for foreground/background segmentation (another one for

deformed sub-boxes if “deformable crop and resize” is used).

In the former case, we use the same setting as in [35, 67],
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Mask crop size mAP@0.5

21 50.92%

41 51.29%

81 51.17%

161 51.36%

321 51.24%

Table 1. Using crop size = 41 is sufficient for mask segmentation.

(a) 1 bin (b) 2 bins (c) 4 bins
Figure 6. We quantize the distance within each direction region. In

(b), we split each original direction region into 2 regions. Our final

model uses 4 bins for distance quantization as shown in (c).

while in the latter case, the crop size determines the mask

segmentation resolution. Here, we experiment with the effect

of using different crop size in Tab. 1 and observe that using

crop size more than 41 does not change the performance

significantly and thus we use 41 throughout the experiments.

Effect of semantic and direction features: In Tab. 2,

we experiment with the effect of semantic and direction

features. Given only semantic segmentation features, the

model attains an mAP@0.75 performance of 24.44%, while

using only direction features the performance improves to

27.4%, showing that direction feature is more important

than the semantic segmentation feature. When employing

both features, we achieve 29.72%. We observe that the

performance can be further improved if we also quantize the

distance in the direction pooling. As illustrated in Fig. 6,

we also quantize the distance with different number of bins.

For example, when using 2 bins, we split the same direction

region into 2 regions. We found that using 4 bins can further

improves performance to 30.57%. Note that quantizing the

distance bins improves more at high mAP threshold (cf .

mAP@0.5 and mAP@0.75 in Tab. 2). In the case of using

x distance bins, the channels of direction logits become

8× x, since we use 8 directions by default (i.e., 360 degree

is quantized into 8 directions). Thus, our model generates

32 = 8× 4 channels for direction pooling in the end.

Number of directions: In Tab. 3, we explore the effect of

different numbers of directions for quantizing the 360 degree.

We found that using 8 directions is sufficient to deliver good

performance, when adopting 4 bins for distance quantization.

Our model thus uses 32 = 8 × 4 (8 for direction and 4

for distance quantization) channels for direction pooling

throughout the experiments.

Mask refinement: We adopt a small ConvNet consisting

Semantic Direction mAP@0.5 mAP@0.75

X 48.41% 24.44%

X(1) 50.21% 27.40%

X X(1) 51.83% 29.72%

X X(4) 52.26% 30.57%

Table 2. Effect of semantic and direction features. Direction fea-

tures are more important than semantic segmentation features in the

model, and the best performance is obtained by using both features

and adopting 4 bins to quantize the distance in direction pooling.

We show number of bins for distance quantization in parentheses.

Distance bins Directions mAP@0.5 mAP@0.75

4 2 53.51% 33.80%

4 4 53.85% 34.39%

4 6 54.10% 34.86%

4 8 54.13% 34.82%

Table 3. Effect of different numbers of directions (i.e., how many

directions for quantizing the 360 degree) when using four bins for

distance quantization.

conv1 conv2 conv3 mAP@0.5 mAP@0.75

52.26% 30.57%

X 52.68% 32.92%

X X 53.26% 33.89%

X X X 52.55% 32.88%

Table 4. Mask refinement. The best performance is obtained when

using features from conv1 and conv2 (i.e., last feature map in res2x

block). Note conv3 denotes the last feature map in res3x block.

of three 5 × 5 convolution layers with 64 filters. We have

experimented with replacing the small ConvNet with other

structures (e.g., more layers and more filters) but have not

observed any significant difference. In Tab. 4, we experi-

ment with different features from lower-level of ResNet-101.

Using conv1 (the feature map generated by the first convolu-

tion) improves the mAP@0.75 performance to 32.92% from

30.57%, while using both conv1 and conv2 (i.e., the last

feature map in res2x block) obtains the best performance of

33.89%. We have observed no further improvement when

adding more lower-level features.

Multi-grid: Motivated by the success of employing a

hierarchy of different atrous rates in semantic segmentation

[71, 20, 12], we modify the atrous rates in (1) the last resid-

ual block shared for predicting both semantic and direction

features, and (2) the block for box classifier. Note that there

are only three convolutions in those blocks. As shown in

Tab. 5, it is more effective to apply different atrous rates

for the box classifier. We think current evaluation metric

(mAPr) favors detection-based methods (as also pointed out

by [6]) and thus it is more effective to improve the detection
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Box Classifier

(1, 1, 1) (1, 2, 1) (1, 2, 4)

Sem/Dir

(4, 4, 4) 34.82% 35.59% 35.35%

(4, 8, 4) 35.07% 35.60% 35.78%

(4, 8, 16) 34.89% 35.43% 35.51%

Table 5. Multi-grid performance (mAP@0.75). Within the parenthe-

ses, we show the three atrous rates used for the three convolutions

in the residual block. It is effective to adopt different atrous rates

for the box classifier. Further marginal improvement is obtained

when we also change the atrous rates in the last block that is shared

by semantic segmentation and direction prediction logits.

branch over the segmentation branch in our proposed model.

Pretrained network: We experimentally found that it is

beneficial to pretrain the network. Recall that we duplicate

one extra conv5 (or res5x) block in original ResNet-101 for

box classification. As shown in Tab. 6, initializing the box

classifier in Faster R-CNN with the ImageNet pretrained

weights improves the performance from 33.89% to 34.82%

(mAP@0.75). If we further pretrain ResNet-101 on the

COCO semantic segmentation annotations and employ it

as feature extractor, the model yields about 1% improve-

ment. This finding bears a similarity to [7] which adopts the

semantic segmentation regularizer.

Putting everything together: We then employ the best

multi-grid setting from Tab. 5 and observe about 0.7%

improvement (mAP@0.75) over the one pretrained with

segmentation annotations, as shown in Tab. 6. Follow-

ing [47, 31], if the input image is resized to have a

shortest side of 800 pixels and the Region Proposal Net-

work adopts 5 scales, we observe another 1% improve-

ment. Using the implemented “deformable crop and re-

size” brings extra 1% improvement. Additionally, we em-

ploy scale augmentation, specifically random scaling of in-

puts during training (with shortest side randomly selected

from {480, 576, 688, 800, 930}), and attain performance of

40.41% (mAP@0.75). Finally, we exploit the model that has

been pretrained on the JFT-300M dataset [33, 15, 67], con-

taining 300M images and more than 375M noisy image-level

labels, and achieve performance of 41.59% (mAP@0.75).

Atrous convolution for denser feature maps: We

employ atrous convolution, a powerful tool to control

output resolution, to extract denser feature maps with

output stride = 8. We have observed that our performance

drops from 40.41% to 38.61% (mAP@0.75), if we change

output stride = 16.

Test-dev mask results: After finalizing the design

choices on the minival set, we then evaluate our model on

the test-dev set. As shown in Tab. 7, our MaskLab model out-

performs FCIS+++ [44], although FCIS+++ employs scale

augmentation and on-line hard example mining [65] during

training as well as multi-scale processing and horizontal flip

BC Seg MG Anc DC RS JFT mAP@0.5 mAP@0.75

53.26% 33.89%

X 54.13% 34.82%

X X 55.03% 35.91%

X X X 55.64% 36.65%

X X X X 57.44% 37.57%

X X X X X 58.69% 38.61%

X X X X X X 60.55% 40.41%

X X X X X X X 61.80% 41.59%

Table 6. BC: Initialize the Box Classifier branch with ImageNet

pretrained model. Seg: Pretrain the whole model on COCO se-

mantic segmentation annotations. MG: Employ multi-grid in last

residual block. Anc: Use (800, 1200) and 5 anchors. DC: Adopt

deformable crop and resize. RS: Randomly scale inputs during

training. JFT: Further pretrain the model on JFT dataset.

during test. Our ResNet-101 based model performs better

than the ResNet-101 based Mask R-CNN [31], and attains

similar performance as the ResNet-101-FPN based Mask

R-CNN. Our ResNet-101 based model with scale augmen-

tation during training, denoted as MaskLab+ in the table,

performs 1.9% better, attaining similar mAP with Mask R-

CNN built on top of the more powerful ResNeXt-101-FPN

[47, 74]. Furthermore, pretraining MaskLab+ on the JFT

dataset achieves performance of 38.1% mAP.

Test-dev box results: We also show box detection results

on COCO test-dev in Tab. 8. Our ResNet-101 based model

even without scale augmentation during training performs

better than G-RMI [35] and TDM [66] which employ more

expensive yet powerful Inception-ResNet-v2 [68] as feature

extractor. All our model variants perform comparably or bet-

ter than Mask R-CNN variants in the box detection task. Our

best single-model result is obtained with scale augmentation

during training, 41.9% mAP with an ImageNet pretrained

network and 43.0% mAP with a JFT pretrained network.

4.3. Qualitative Results

Semantic and direction features: In Fig. 7, we visualize

the ‘person’ channel in the learned semantic segmentation

logits. We have observed that there can be some high ac-

tivations in the non-person regions (e.g., regions that are

near elephant’s legs and kite), since the semantic segmenta-

tion branch is only trained with groundtruth boxes without

any negative ones. This, however, is being handled by the

box detection branch which filters out wrong box predic-

tions. More learned semantic segmentation and direction

prediction logits are visualized in Fig. 3.

Deformable crop and resize: In Fig. 8, we visualize

the learned deformed sub-boxes. Interestingly, unlike the

visualization results of deformable pooling in [20] which

learns to focus on object parts, our sub-boxes are deformed

in a circle-shaped arrangement, attempting to capture longer

context for box classification. We note that incorporating

context to improve detection performance has been used in,

e.g., [24, 81, 75], and our model is also able to learn this.
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Method Feature Extractor mAP mAP@0.5 mAP@0.75 mAPS mAPM mAPL

FCIS [44] ResNet-101 29.2% 49.5% - - - -

FCIS+++ [44] ResNet-101 33.6% 54.5% - - - -

Mask R-CNN [31] ResNet-101 33.1% 54.9% 34.8% 12.1% 35.6% 51.1%

Mask R-CNN [31] ResNet-101-FPN 35.7% 58.0% 37.8% 15.5% 38.1% 52.4%

Mask R-CNN [31] ResNeXt-101-FPN 37.1% 60.0% 39.4% 16.9% 39.9% 53.5%

MaskLab ResNet-101 35.4% 57.4% 37.4% 16.9% 38.3% 49.2%

MaskLab+ ResNet-101 37.3% 59.8% 39.6% 19.1% 40.5% 50.6%

MaskLab+ ResNet-101 (JFT) 38.1% 61.1% 40.4% 19.6% 41.6% 51.4%

Table 7. Instance segmentation single model mask mAP on COCO test-dev. MaskLab+: Employ scale augmentation during training.

Method Feature Extractor mAP mAP@0.5 mAP@0.75 mAPS mAPM mAPL

G-RMI [35] Inception-ResNet-v2 34.7% 55.5% 36.7% 13.5% 38.1% 52.0%

TDM [66] Inception-ResNet-v2 37.3% 57.8% 39.8% 17.1% 40.3% 52.1%

Mask R-CNN [31] ResNet-101-FPN 38.2% 60.3% 41.7% 20.1% 41.1% 50.2%

Mask R-CNN [31] ResNeXt-101-FPN 39.8% 62.3% 43.4% 22.1% 43.2% 51.2%

MaskLab ResNet-101 39.6% 60.2% 43.3% 21.2% 42.7% 52.4%

MaskLab+ ResNet-101 41.9% 62.6% 46.0% 23.8% 45.5% 54.2%

MaskLab+ ResNet-101 (JFT) 43.0% 63.9% 47.1% 24.8% 46.7% 55.2%

Table 8. Object detection single model box mAP on COCO test-dev. MaskLab+: Employ scale augmentation during training.

(a) Image (b) ‘Person’ Logits
Figure 7. ‘Person’ channel in the predicted semantic segmentation

logits. Note the high activations on non-person regions, since the

semantic segmentation branch is only trained with groundtruth

boxes. This, however, is being handled by the box detection branch

which filters out wrong box predictions.

Predicted masks: We show some qualitative results pro-

duced by our proposed model in Fig. 9. We further visual-

ize our failure mode in the last row, mainly resulting from

detection failure (e.g., missed-detection and wrong class

prediction) and segmentation failure (e.g., coarse boundary

result).

Supplementary material: We visualize more learned

semantic segmentation and direction prediction logits as

well as predicted mask results in the supplementary material.

Figure 8. Visualization of learned deformed sub-boxes. The 49

(arranged in a 7 × 7 grid) sub-boxes (each has size 2 × 2) are

color-coded w.r.t. the top right panel (e.g., the top-left sub-box is

represented by light blue color). Our “deformable crop and resize”

tend to learn circle-shaped context for box classification.

5. Conclusion

In this paper, we have presented a model, called MaskLab,

that produces three outputs: box detection, semantic segmen-

tation and direction prediction, for solving the problem of

instance segmentation. MaskLab, building on top of state-of-

art detector, performs foreground/background segmentation

by utilizing semantic segmentation and direction prediction.

We have demonstrated the effectiveness of MaskLab on the

challenging COCO instance segmentation benchmark and

shown promising results.
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Figure 9. Visualization results on the minival set. As shown in the figure (particularly, last row), our failure mode comes from two parts: (1)

detection failure (missed-detection and wrong classification), and (2) failure to capture sharp object boundary.
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