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Abstract

High-performance object detection relies on expensive

convolutional networks to compute features, often leading

to significant challenges in applications, e.g. those that re-

quire detecting objects from video streams in real time. The

key to this problem is to trade accuracy for efficiency in an

effective way, i.e. reducing the computing cost while main-

taining competitive performance. To seek a good balance,

previous efforts usually focus on optimizing the model ar-

chitectures. This paper explores an alternative approach,

that is, to reallocate the computation over a scale-time

space. The basic idea is to perform expensive detection

sparsely and propagate the results across both scales and

time with substantially cheaper networks, by exploiting the

strong correlations among them. Specifically, we present a

unified framework that integrates detection, temporal prop-

agation, and across-scale refinement on a Scale-Time Lat-

tice. On this framework, one can explore various strate-

gies to balance performance and cost. Taking advantage of

this flexibility, we further develop an adaptive scheme with

the detector invoked on demand and thus obtain improved

tradeoff. On ImageNet VID dataset, the proposed method

can achieve a competitive mAP 79.6% at 20 fps, or 79.0%
at 62 fps as a performance/speed tradeoff. 1

1. Introduction

Object detection in videos has received increasing atten-

tion as it sees immense potential in real-world applications

such as video-based surveillance. Despite the remarkable

progress in image-based object detectors [3, 5, 26], extend-

ing them to the video domain remains challenging. Conven-

tional CNN-based methods [15, 16] typically detect objects

on a per-frame basis and integrate the results via temporal

association and box-level post-processing. Such methods

are slow, resource-demanding, and often unable to meet the

requirements in real-time systems. For example, a compet-

itive detector based on Faster R-CNN [26] can only operate

1Code is available at http://mmlab.ie.cuhk.edu.hk/

projects/ST-Lattice/
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Figure 1: The proposed Scale-Time Lattice permits a flexi-

ble design space for performance-cost tradeoff.

at 7 fps on a high-end GPU like Titan X.

A typical approach to this problem is to optimize the un-

derlying networks, e.g. via model compression [9, 13, 30].

This way requires tremendous engineering efforts. On the

other hand, videos, by their special nature, provide a dif-

ferent dimension for optimizing the detection framework.

Specifically, there exists strong continuity among consecu-

tive frames in a natural video, which suggests an alternative

way to reduce computational cost, that is, to propagate the

computation temporally. Recently, several attempts along

this direction were made, e.g. tracking bounding boxes [15]

or warping features [33]. However, the improvement on the

overall performance/cost tradeoff remains limited – the pur-

suit of one side often causes significant expense to the other.

Moving beyond such limitations requires a joint perspec-

tive. Generally, detecting objects in a video is a multi-step

process. The tasks studied in previous work, e.g. image-

based detection, temporal propagation, and coarse-to-fine

refinement, are just individual steps in this process. While

improvements on individual steps have been studied a lot,

a key question is still left open: “what is the most cost-

effective strategy to combine them?”

Driven by this joint perspective, we propose to explore

a new strategy, namely pursuing a balanced design over

a Scale-Time Lattice, as shown in Figure 1. The Scale-

Time Lattice is a unified formulation, where the steps men-
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tioned above are directed links between the nodes at differ-

ent scale-time positions. From this unified view, one can

readily see how different steps contribute and how the com-

putational cost is distributed.

More importantly, this formulation comes with a rich de-

sign space, where one can flexibly reallocate computation

on demand. In this work, we develop a balanced design

by leveraging this flexibility. Given a video, the proposed

framework first applies expensive object detectors to the key

frames selected sparsely and adaptively based on the object

motion and scale, to obtain effective bounding boxes for

propagation. These boxes are then propagated to interme-

diate frames and refined across scales (from coarse to fine),

via substantially cheaper networks. For this purpose, we

devise a new component based on motion history that can

propagate bounding boxes effectively and efficiently. This

framework remarkably reduces the amortized cost by only

invoking the detector sparsely, while maintaining compet-

itive performance with a cheap but very effective propa-

gation component. This also makes it convenient to seek

a good performance/cost tradeoff, e.g. by tuning the key

frame selection strategy or the network complexity at in-

dividual steps.

The main contributions of this work lie in several as-

pects: (1) the Scale-Time Lattice that provides a joint per-

spective and a rich design space, (2) a detection frame-

work devised thereon that achieves better speed/accuracy

tradeoff, and (3) several new technical components, e.g. a

network for more effective temporal propagation and an

adaptive scheme for keyframe selection. Without bells-

and-whistles, e.g. model ensembling and multi-scale test-

ing, we obtain competitive performance on par with the

method [32, 33] that won ImageNet VID challenges 2017,

but with a significantly faster running speed of 20 fps.

2. Related Work

Object detection in images. Contemporary object detec-

tion methods have been dominated by deep CNNs, most of

which follow two paradigms, two-stage and single-stage. A

two-stage pipeline firstly generates region proposals, which

are then classified and refined. In the seminal work [6],

Girshick et al. proposed R-CNN, an initial instantiation of

the two-stage paradigm. More efficient frameworks have

been developed since then. Fast R-CNN [5] accelerates fea-

ture extraction by sharing computation. Faster R-CNN [26]

takes a step further by introducing a Region Proposal Net-

work (RPN) to generate region proposals, and sharing fea-

tures across stages. Recently, new variants, e.g. R-FCN [3],

FPN [19], and Mask R-CNN [8], further improve the per-

formance. Compared to two-stage pipelines, a single-stage

method is often more efficient but less accurate. Liu et

al. [21] proposed Single Shot Detector (SSD), an early at-

tempt of this paradigm. It generates outputs from default

boxes on a pyramid of feature maps. Shen et al. [27] pro-

posed DSOD, which is similar but based on DenseNet [11].

YOLO [24] and YOLOv2 [25] present an alternative that

frames detection as a regression problem. Lin et al. [20]

proposed the use of focal loss along with RetinaNet, which

tackles the imbalance between foreground and background

classes.

Object detection in videos. Compared with object detec-

tion in images, video object detection was less studied until

the new VID challenge was introduced to ImageNet. Han

et al. [7] proposed Seq-NMS that builds high-confidence

bounding box sequences and rescores boxes to the aver-

age or maximum confidence. The method serves as a post-

processing step, thus requiring extra runtime over per-frame

detection. Kang et al. [15,16] proposed a framework that in-

tegrates per-frame proposal generation, bounding box track-

ing and tubelet re-scoring. It is very expensive, as it requires

per-frame feature computation by deep networks. Zhu et

al. [33] proposed an efficient framework that runs expen-

sive CNNs on sparse and regularly selected key frames.

Features are propagated to other frames with optical flow.

The method achieves 10× speedup than per-frame detec-

tion at the cost of 4.4% mAP drop (from 73.9% to 69.5%).

Our work differs to [33] in that we select key frames adap-

tively rather than at a fixed interval basis. In addition, we

perform temporal propagation in a scale-time lattice space

rather than once as in [33]. Based on the aforementioned

work, Zhu et al. [32] proposed to aggregate nearby features

along the motion path, improving the feature quality. How-

ever, this method runs slowly at around 1 fps due to dense

detection and flow computation. Feichtenhofer et al. [4]

proposed to learn object detection and cross-frame track-

ing with a multi-task objective, and link frame-level detec-

tions to tubes. They do not explore temporal propagation,

only perform interpolation between frames. There are also

weakly supervised methods [2, 22, 23] that learn object de-

tectors from videos.

Coarse-to-fine approaches. The coarse-to-fine design has

been adopted for various problems such as face align-

ment [29, 31], optical flow estimation [10, 14], semantic

segmentation [18], and super-resolution [12, 17]. These

approaches mainly adopt cascaded structures to refine re-

sults from low resolution to high resolution. Our approach,

however, adopts the coarse-to-fine behavior in two dimen-

sions, both spatially and temporally. The refinement process

forms a 2-D Scale-Time Lattice space that allows gradual

discovery of denser and more precise bounding boxes.

3. Scale-Time Lattice

In developing a framework for video object detection,

our primary goal is to precisely localize objects in each

frame, while meeting runtime requirements, e.g. high de-
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Figure 2: The Scale-Time Lattice, where each node represents the detection results at a certain scale and time point, and each edge

represents an operation from one node to another. In particular, the horizontal edges (in blue color) represent the temporal propagation

from one time step to the next; while the vertical edges (in green color) represent the spatial refinement from low to high resolutions. Given

a video, the image-based detection is only done at sparsely chosen key frames, and the results are propagated along a pre-defined path to

the bottom row. The final results at the bottom cover all time points.

tection speed. One way to achieve this is to apply the ex-

pensive object detectors on as few key frames as possible,

and rely on the spatial and temporal connections to generate

detection results for the intermediate frames. While this is a

natural idea, finding an optimal design is non-trivial. In this

work, we propose the Scale-Time Lattice, which unifies the

sparse image-based detection and the construction of dense

video detection results into a single framework. A good bal-

ance of computational cost and detection performance can

then be achieved by carefully allocating resources to differ-

ent components within this framework.

The Scale-Time Lattice, as shown in Fig. 2, is formulated

as a directed acyclic graph. Each node in this graph stands

for the intermediate detection results at a certain spatial res-

olution and time point, in the form of bounding boxes. The

nodes are arranged in a way similar to a lattice: from left to

right, they follow the temporal order, while from top to bot-

tom, their scales increase gradually. An edge in the graph

represents a certain operation that takes the detection re-

sults from the head node and produces the detection results

at the tail node. In this work, we define two key operations,

temporal propagation and spatial refinement, which respec-

tively correspond to the horizontal and vertical edges in the

graph. Particularly, the temporal propagation edges con-

nect nodes at the same spatial scale but adjacent time steps.

The spatial refinement edges connect nodes at the same time

step but neighboring scales. Along this graph, detection re-

sults will be propagated from one node to another via the

operations introduced above following certain paths. Even-

tually, the video detection results can be derived from the

nodes at the bottom row, which are at the finest scale and

cover every time step.

On top of the Scale-Time Lattice, a video detection

pipeline involves three steps: 1) generating object detection

results on sparse key frames; 2) planning the paths from

image-based detection results (input nodes) to the dense

video detection results (output nodes); 3) propagating key

frame detection results to the intermediate frames and refine

them across scales. The detection accuracy of the approach

is measured at the output nodes.

The Scale-Time Lattice framework provides a rich de-

sign space for optimizing the detection pipeline. Since the

total computational cost equals to the summation of the cost

on all paths, including the cost for invoking image-based

detectors, it is now convenient to seek a cost/performance

tradeoff by well allocating the budget of computation to dif-

ferent elements in the lattice. For example, by sampling

more key frames, we can improve detection performance,

but also introduce heavy computational cost. On the other

hand, we find that with much cheaper networks, the propa-

gation/refinement edges can carry the detection results over

a long path while still maintaining competitive accuracy.

Hence, we may obtain a much better accuracy/cost tradeoff

if the cost budget is used instead for the right component.

Unlike previous pursuits of accuracy/cost balance like

spatial pyramid or feature flow, the Scale-Time Lattice op-

erates from coarse to fine, both temporally and spatially.

The operation flow across the scale-time lattice narrows the

temporal interval while increasing the spatial resolution. In

the following section, we will describe the technical details

of individual operations along the lattice.

4. Technical Design

In this section, we introduce the design of key compo-

nents in the Scale-Time Lattice framework and show how

they work together to achieve an improved balance between
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performance and cost. As shown in Figure 1, the lattice is

comprised of compound structures that connect with each

other repeatedly to perform temporal propagation and spa-

tial refinement. We call them Propagation and Refinement

Units (PRUs). After selecting a small number of key frames

and obtaining the detection results thereon, we propagate

the results across time and scales via PRUs until they reach

the output nodes. Finally, the detection results at the output

nodes are integrated into spatio-temporal tubes, and we use

a tube-level classifier to reinforce the results.

4.1. Propagation and Refinement Unit (PRU)

The PRU takes the detection results on two consec-

utive key frames as input, propagates them to an inter-

mediate frame, and then refines the outputs to the next

scale, as shown in Figure 3. Formally, we denote the

detection results at time t and scale level s as Bt,s =
{b0t,s, b

1
t,s, . . . , b

nt

t,s}, which is a set of bounding boxes bit,s =

(xi
t,s, y

i
t,s, w

i
t,s, h

i
t,s). Similarly, we denote the ground truth

bounding boxes as Gt = {g0t , g
1
t , . . . , g

mt

t }. In addition, we

use It to denote the frame image at time t and Mt→t+τ to

denote the motion representation from frame t to t+ τ .

A PRU at the s-level consists of a temporal propaga-

tion operator FT , a spatial refinement operator FS , and a

simple rescaling operator FR. Its workflow is to output

(Bt,s+1, Bt+τ,s+1, Bt+2τ,s+1) given Bt,s and Bt+2τ,s. The

process can be formalized as

BL
t+τ,s = FT (Bt,s,Mt→t+τ ), (1)

BR
t+τ,s = FT (Bt+2τ,s,Mt+2τ→t+τ ), (2)

Bt+τ,s = BL
t+τ,s ∪BR

t+τ,s, (3)

Bt+τ,s+1 = FS(Bt+τ,s, It+τ ), (4)

Bt,s+1 = FR(Bt,s), Bt+2τ,s+1 = FR(Bt+2τ,s). (5)

The procedure can be briefly explained as follows: (1) Bt,s

is propagated temporally to the time step t + τ via FT , re-

sulting in BL
t+τ,s. (2) Similarly, Bt+2τ,s is propagated to the

time step t+ τ in an opposite direction, resulting in BR
t+τ,s.

(3) Bt+τ,s, the results at time t+τ , are then formed by their

union. (4) Bt+τ,s is refined to Bt+τ,s+1 at the next scale

via FS . (5) Bt,s+1 and Bt+2τ,s+1 are simply obtained by

rescaling Bt,s and Bt+2τ,s.

Designing an effective pipeline of PRU is non-trivial.

Since the key frames are sampled sparsely to achieve high

efficiency, there can be large motion displacement and scale

variance in between. Our solution, as outlined above, is to

factorize the workflow into two key operations FT and FS .

In particular, FT is to deal with the large motion displace-

ment between frames, taking into account the motion infor-

mation. This operation would roughly localize the objects

at time t + τ . However, FT focuses on the object move-

ment and it does not consider the offset between the detec-

tion results Bt,s and ground truth Gt. Such deviation will

ℱ� ℱ�
ℱ�

��,� ��+2�,���+�,��

��+�,�+1
��+�,����+�,���+�,�� ∪ ��+�,��

=

ℱ� ℱ�
��,�+1 ��+2�,�+1

Figure 3: A Propagation and Refinement Unit.

be accumulated into the gap between Bt+τ,s and Gt+τ . FS

is designed to remedy this effect by regressing the bounding

box offsets in a coarse-to-fine manner, thus leading to more

precise localization. These two operations work together

and are conducted iteratively following the scale-time lat-

tice to achieve the final detection results.

Temporal propagation The idea of temporal propagation

is previously explored in the video object detection liter-

atures [16, 32, 33]. Many of these methods [32, 33] rely

on optical flow to propagate detection results. In spite of

its performance, the approach is expensive for a real-time

system and not tailored to encoding the motion information

over a long time span. In our work, we adopt Motion His-

tory Image (MHI) [1] as the motion representation which

can be computed very efficiently and preserve sufficient mo-

tion information for the propagation.

We represent the motion from time t to t + τ as

Mt→t+τ = (Ht→t+τ , I
(g)
t , I

(g)
t+τ ). Here Ht→t+τ denotes

the MHI from t to t+ τ , and I
(g)
t and I

(g)
t+τ denote the gray-

scale images of the two frames respectively, which serve as

additional channels to enhance the motion expression with

more details. We use a small network (ResNet-18 in our

experiments) with RoIAlign layer [8] to extract the features

of each box region. On top of the RoI-wise features, a re-

gressor is learned to predict the object movement from t to

t+ τ .

To train the regressor, we adopt a similar supervision

to [15], which learns the relative movement from Gt to

Gt+τ . The regression target of the j-th bounding box ∆∗j
FT

is defined as the relative movement between best overlapped

ground truth box gjt and the corresponding one on frame

gjt+τ , adopting the same transformation and normalization

used in most detection methods [5, 6].

Coarse-to-fine refinement After propagation, Bt+τ,s is

supposed to be around the target objects but may not be

precisely localized. The refinement operator FS adopts a

similar structure as the propagation operator and aims to

refine the propagated results. It takes It+τ and the propa-

gated boxes Bt+τ,s as the inputs and yields refined boxes

Bt+τ,s+1. The regression target ∆∗
FS

is calculated as the

offset of Bt+τ,s w.r.t. Gt+τ . In the scale-time lattice,

smaller scales are used in early stages and larger scales are
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used in later stages. Thereby, the detection results are re-

fined in a coarse to fine manner.

Joint optimization The temporal propagation network

FT and spatial refinement network FS are jointly optimized

with a multi-task loss in an end-to-end fashion.

L(∆FT
,∆FS

,∆∗
FT

,∆∗
FS

) =

1

N

N
∑

j=1

LFT
(∆j

FT
,∆∗j

FT
) + λ

1

N

N
∑

j=1

LFS
(∆j

FS
,∆∗j

FS
),

(6)

where N is the number of bounding boxes in a mini batch,

∆FT
and ∆FS

are the network output of FT and FS , and

LFT
and LFS

are smooth L1 loss of temporal propagation

and spatial refinement network, respectively.

4.2. Key Frame Selection and Path Planning

Under the Scale-Time Lattice framework, selected key

frames form the input nodes, whose number and quality are

critical to both detection accuracy and efficiency. The most

straightforward approach to key frame selection is uniform

sampling which is widely adopted in the previous methods

[4, 33]. While uniform sampling strategy is simple and ef-

fective, it ignores a key fact that not all frames are equally

important and effective for detection and propagation. Thus

a non-uniform frame selection strategy could be more de-

sirable.

To this end, we propose an adaptive selection scheme

based on our observation that temporal propagation results

tend to be inferior to single frame image-based detection

when the objects are small and moving quickly. Thus the

density of key frames should depend on propagation diffi-

culty, namely, we should select key frames more frequently

in the presence of small or fast moving objects.

The adaptive frame selection process works as fol-

lows. We first run the detector on very sparse frames

{t0, t1, t2, . . . } which are uniformly distributed. Given the

detection results, we evaluate how easy the results can be

propagated, based on both the object size and motion. The

easiness measure is computed as

ei,i+1 =
1

|I|

∑

(j,k)∈I

sj,kti,ti+1
mj,k

ti,ti+1
(7)

where I is the set of matched indices of B′
ti

and

B′
ti+1

through bipartite matching based on confidence score

and bounding box IoUs, sj,kti,ti+1
= 1

2 (
√

area(bjti) +
√

area(bkti+1
)) is the object size measure and mj,k

ti,ti+1
=

IoU(bjti , b
k
ti+1

) is the motion measure. Note since the results

can be noisy, we only consider boxes with high confidence

scores. If ei,i+1 falls below a certain threshold, an extra key

frame t̄i,i+1 = ti+ti+1

2 is added. This process is conducted

for only one pass in our experiments.

With the selected key frames, we propose a simple

scheme to plan the paths in the scale-time lattice from in-

put nodes to output nodes. In each stage, we use propa-

gation edges to link the nodes at the different time steps,

and then use a refinement edge to connect the nodes across

scales. Specifically, for nodes (ti, s) and (ti+1, s) at time

point ti and ti+1 of the scale level s, results are propagated

to ((ti+ti+1)/2, s), then refined to ((ti+ti+1)/2, s+1). We

set the max number of stages to 2. After two stages, we use

linear interpolation as a very cheap propagation approach

to generate results for the remaining nodes. More complex

path planning may further improve the performance at the

same cost, which is left for future work.

4.3. Tube Rescoring

By associating the bounding boxes across frames at the

last stage with the propagation relations, we can construct

object tubes. Given a linked tube T = (bt0 , . . . , btn) con-

sisting of tn − t0 bounding boxes that starts from frame t0
and terminates at tn with label l given by the original detec-

tor, we train a R-CNN like classifier to re-classify it follow-

ing the scheme of Temporal Segment Network (TSN) [28].

During inference, we uniformly sample K cropped bound-

ing boxes from each tube as the input of the classifier, and

the class scores are fused to yield a tube-level prediction.

After the classification, scores of bounding boxes in T are

adjusted by the following equation.

si =

{

si + s′, if l = l′

1
n

∑n

i=0 si, otherwise

where si is the class score of bti given by the detector, and

s′ and l′ are the score and label prediction of T given by

the classifier. After the rescoring, scores of hard positive

samples can be boosted and false positives are suppressed.

5. Experiments

5.1. Experimental Setting

Datasets. We experiment on the ImageNet VID dataset2,

a large-scale benchmark for video object detection, which

contains 3862 training videos and 555 validation videos

with annotated bounding boxes of 30 classes. Following

the standard practice, we train our models on the training

set and measure the performance on the validation set using

the mean average precision (mAP) metric. We use a subset

of ImageNet DET dataset and VID dataset to train our base

detector, following [4, 16, 32].

2http://www.image-net.org/challenges/LSVRC/
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Implementation details. We train a Faster R-CNN as our

base detector. We use ResNet-101 as the backbone network

and select 15 anchors corresponding to 5 scales and 3 as-

pect ratios for the RPN. A total of 200k iterations of SGD

training is performed on 8 GPUs. We keep boxes with an

objectness score higher than 0.001, which results in a mAP

of 74.5 and a recall rate of 91.6 with an average of 37 boxes

per image. During the joint training of PRU, two random

frames are sampled from a video with a temporal interval

between 6 and 18. We use the results of the base detector

as input ROIs for propagation. To obtain the MHI between

frame t and t + τ , we uniformly sample five images apart

from frame t and t + τ when τ is larger than 6 for accel-

eration. The batch size is set to 64 and each GPU holds 8

images in each iteration. Training lasts 90 epochs with a

learning rate of 0.002 followed by 30 epochs with a learn-

ing rate of 0.0002. At each stage of the inference, we apply

non-maximum suppression (NMS) with a threshold 0.5 to

bidirectionally propagated boxes with the same class label

before they are further refined. The propagation source of

suppressed boxes are considered as linked with that of re-

served ones to form an object tube. For the tube rescoring,

we train a classifier with the backbone of ResNet-101 and

the K = 6 frames are sampled from each tube during infer-

ence.

5.2. Results

We summarize the cost/performance curve of our ap-

proach designed based on Scale-Time Lattice (ST-Lattice)

and existing methods in Figure 4. The tradeoff is made un-

der different temporal intervals. The proposed ST-Lattice

is clearly better than baselines such as naı̈ve interpolation

and DFF [33] which achieves a real-time detection rate by

using optical flow to propagate features. ST-Lattice also

achieves better tradeoff than state-of-the-art methods, in-

cluding D&T [4], TPN+LSTM [15], and FGFA [32]. In

particular, our method achieves a mAP of 79.6 at 20 fps,

which is competitive with D&T [4] that achieves 79.8 at

about 5 fps. After a tradeoff on key frame selection, our

approach still maintains a mAP of 79.0 at an impressive 62
fps. We show the detailed class-wise performance in the

supplementary material.

To further demonstrate how the performance and com-

putational cost are balanced using the ST-Lattice space, we

pick a configuration (with a fixed key frame interval of 24)

and show the time cost of each edge and the mAP of each

node in Figure 5. Thanks to the ST-Lattice, we can flexibly

seek a suitable configuration to meet a variety of demands.

We provide some examples in Fig. 6, showing the results

of per frame baseline and different nodes in the proposed

ST-Lattice.

3The mAP is evaluated on all frames, except for the fast version of

D&T, which is evaluated on sparse key frames. We expect its performance
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Figure 4: Performance and runtime on ImageNet VID

dataset compared with existing methods.3
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5.3. Ablation Study

In the following ablation study, we use a fixed key frame

interval of 24 unless otherwise indicated and run only the

first stage of our approach.

Temporal propagation. In the design space of ST-Lattice,

there are many propagation methods that can be explored.

We compare the proposed propagation module with other

alternatives, such as linear interpolation and RGB differ-

ence based regression, under different temporal intervals.

For a selected key frame interval, we evaluate the mAP of

propagated results on the intermediate frame from two con-

secutive key frames, without any refinement or rescoring.

We use different intervals (from 2 to 24) to see the balance

between runtime and mAP. Results are shown in Figure 7.

The fps is computed w.r.t. the detection time plus propa-

gation/interpolation time. The MHI based method outper-

will be lower in the full all-frame evaluation if the detections on other

frames are interpolated.
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Figure 6: Examples video clips of the proposed Scale-Time Lattice. The per-frame baseline and detection results in different nodes are

shown in different rows.

forms other baselines by a large margin. It even surpasses

per-frame detection results when the temporal interval is

small (10 frames apart). To take a deeper look into the

differences of those propagation methods, we divide the

ground truths into three parts according to object motion

following [32]. We find that the gain mainly originates from

objects with fast motion, which are considered more diffi-

cult than those with slow motion.

Designs of PRU. Our design of the basic unit is a two-step

regression component PRU that takes the Bt,s and Bt+2τ,s

as input and outputs Bt+τ,s+1. Here, we test some vari-

ants of PRU as well as a single-step regression module, as

shown in Figure 8. M represents motion displacement and

O denotes the offset w.r.t. the ground truth. The results are

shown in Table 1. We find that design (a) that decouples

the estimation of temporal motion displacement and spatial

offset simplifies the learning target of regressors, thus yield-

ing a better results than designs (b) and (d). In addition,

comparing (a) and (c), joint training of two-stage regression

also improves the results by back propagating the gradient

of the refinement component to the propagation component,

which in turn increases the mAP of the first step results.

Cost allocation. We investigate different cost allocation

strategies by trying networks of different depths for the

20 40 60 80 100 120 140 160
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m
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Interpolation
RGB diff
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55
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m
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20 40 60 80 100 120 140 160
runtime(fps)

10

20

30

40
Fast motion

Figure 7: Results of different propagation methods under

different key frame intervals. (Left) the overall results.

(Right) Detailed results based on different object motion.

propagation and refinement components. Allocating com-

putational costs at different edges on the ST-Lattice would

not have the same effects, so we test different strategies by

replacing the network of propagation and refinement com-

ponents with cheaper or more expensive ones. The results

in Table 2 indicate that the performance increases as the net-

work gets deeper for both the propagation and refinement.
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Figure 8: Variants of the basic unit. (a) is our design in Sec-

tion 4 that regresses motion and offset respectively at two

stages; (b) is a variant of our design that regresses the over-

all offset instead of motion at the first stage; (c) is the same

of (a) in structure but not trained jointly; (d) is a single-step

regression unit.

Table 1: Performance of different designs of basic unit. vT
and vS refers to Bt+τ,s (the blue node) and Bt+τ,s+1 (the

green node) in Figure 8, respectively.

vT mAP (%) vS mAP (%) Runtime (ms)

unit (a) 71.6 73.9 21

unit (b) 70.6 72.1 21

unit (c) 71.4 73.7 21

unit (d) N/A 71.0 12

Table 2: Performance of different combinations of propaga-

tion (T) and refinement (S) components. The two numbers

(x/y) represent the mAP after propagation and after spatial

refinement, respectively. Small, medium and large refers to

channel-reduced ResNet-18, ResNet-18 and ResNet-34.

Net S

small medium large

N
et

T small 67.7/71.1 67.7/72.7 67.8/72.6

Medium 71.5/72.5 71.6/73.9 71.5/73.7

Large 72.8/73.1 72.0/73.5 71.8/74.2

Notably, it is more fruitful to use a deeper network for the

spatial refinement network than the temporal propagation

network. Specifically, keeping the other one as medium, in-

creasing the network size of spatial refinement from small

to large results in a gain of 1.2 mAP (72.5 → 73.7), while

adding the same computational cost on FT only leads to an

improvement of 0.8 mAP (72.7 → 73.5).

Key frame selection. The selection of input nodes is an-

other design option available on the ST-Lattice. In order to

compare the effects of different key frame selection strate-

gies, we evaluate the naı̈ve interpolation approach and the

proposed ST-Lattice based on uniformly sampled and adap-

0 20 40 60 80 100 120
runtime(fps)

66
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70

72

74

76

78

80

m
AP

(%
)

uniform(for interpolation)
adaptive(for interpolation)
uniform(for ST-Lattice)
adaptive(for ST-Lattice)

Figure 9: Uniformly sampled and adaptively selected key

frames.

tively selected key frames. The results are shown in Fig-

ure 9. For the naı̈ve interpolation, the adaptive scheme

leads to a large performance gain. Though the adaptive

key frame selection does not bring as much improvement

to ST-Lattice as interpolation, it is still superior to uniform

sampling. Especially, its advantage stands out when the in-

terval gets larger. Adaptive selection works better because

through our formulation, more hard samples are selected for

running per-frame detector (rather than propagation) and

leave easier samples for propagation. This phenomenon

can be observed when we quantify the mAP of detections

on adaptively selected key frames than uniformly sampled

ones (73.3 vs 74.1), suggesting that more harder samples

are selected by the adaptive scheme.

6. Conclusion

We have presented the Scale-Time Lattice, a flexible

framework that offers a rich design space to balance the per-

formance and cost in video object detection. It provides a

joint perspective that integrates detection, temporal propa-

gation, and across-scale refinement. We have shown var-

ious configurations designed under this space and demon-

strated their competitive performance against state-of-the-

art video object detectors with much faster speed. The pro-

posed Scale-Time Lattice is not only useful for designing

algorithms for video object detection, but also can be ap-

plied to other video-related domains such as video object

segmentation and tracking.
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