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Abstract

Rain removal is important for improving the robust-

ness of outdoor vision based systems. Current rain re-

moval methods show limitations either for complex dynamic

scenes shot from fast moving cameras, or under torrential

rain fall with opaque occlusions. We propose a novel derain

algorithm, which applies superpixel (SP) segmentation to

decompose the scene into depth consistent units. Alignment

of scene contents are done at the SP level, which proves to

be robust towards rain occlusion and fast camera motion.

Two alignment output tensors, i.e., optimal temporal match

tensor and sorted spatial-temporal match tensor, provide in-

formative clues for rain streak location and occluded back-

ground contents to generate an intermediate derain output.

These tensors will be subsequently prepared as input fea-

tures for a convolutional neural network to restore high

frequency details to the intermediate output for compen-

sation of mis-alignment blur. Extensive evaluations show

that up to 5dB reconstruction PSNR advantage is achieved

over state-of-the-art methods. Visual inspection shows that

much cleaner rain removal is achieved especially for highly

dynamic scenes with heavy and opaque rainfall from a fast

moving camera.

1. Introduction

Modern intelligent systems rely more and more on vi-

sual information as input. However, in an outdoors setting,

visual input quality and in turn, system performance, could

be seriously degraded by atmospheric turbulences [11, 23].

One such turbulence, rain streaks, degrade image contrast

and visibility, obscure scene features, and could be miscon-

strued as scene motion by computer vision algorithms. Rain

removal is therefore vital to ensure the robustness of out-

door vision-based systems.

There are two categories of methods for rain removal –

Synthesized rain frame Ground truth scene VMD-CVPR17

DSC-ICCV15 DDN-CVPR17 Proposed SPAC-CNN

Figure 1: Comparison of derain outputs by different algo-

rithms for a challenging video sequence with fast camera

motion and heavy rain fall. Image-based derain methods,

i.e., discriminative sparse coding (DSC) [22] and deep de-

tail network (DDN) [8] fail to remove large and/or opaque

rain streaks. A video-based method via matrix decompo-

sition (VMD) [24] creates serious blur due to fast camera

motion. Our proposed SPAC-CNN can cleanly remove the

rain streaks and preserve scene contents truthfully.

image-based methods, which rely solely on the information

of the processed frame, and video-based methods, which

also utilize temporal clues from neighboring frames. Due

to the lack of temporal information, image-based methods

face difficulties in recovering from torrential rain with large

and opaque occlusions.

To properly utilize temporal information, video-based

methods require scene content to be aligned throughout

consecutive frames. However, this requirement is challeng-

ing due to two factors – motion of the camera and dy-

namic scene content, i.e., presence of moving object. Pre-

vious works tackle these two issues separately. Camera

motion-induced scene content shifts can be reversed using

global frame alignment [29, 27]. However, the granularity

of global alignment is too large when scene depth range is

large; parts of scene content will be poorly aligned. Scene
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Figure 2: System diagram for the proposed SPAC-CNN rain removal algorithm.

content shifts due to scene object motions could cause the

scene to be misclassified as rain. One solution is to identify

and exclude these pixels. This approach, however, is unable

to remove rain that overlaps moving objects.

In this paper, we propose a novel and elegant frame-

work that simultaneously solves both issues for the video-

based approach – rain removal based on robust SuperPixel

(SP) Alignment between video frames followed by detail

Compensation in a CNN framework (SPAC-CNN). First,

the target video frame is segmented into SPs and each SP

is aligned with its temporal neighbors. This step simultane-

ously aligns both the scene background and moving objects

without prior assumptions about moving objects. Scene

content is also much better aligned at a SP level granularity.

An intermediate derain output can be obtained by averaging

the aligned SPs, which unavoidably introduces blurring. We

restore the rain free details to the intermediate output by ex-

tracting the information from the aligned SPs using a con-

volutional neural network (CNN).

Extensive experiments show that our proposed algorithm

achieves up to 5dB reconstruction advantage over state-

of-the-art rain removal methods. Visual inspection shows

that rain is much better removed, especially for heavy and

opaque rainfall regions over highly dynamic scene content.

Fig. 1 illustrates the advantage of our proposed algorithm

over existing methods in a challenging video sequence. The

contribution of this work can be generalized as follows:

1. We propose a novel spatial-temporal content alignment

algorithm at SP level, which can handle fast camera

motion and dynamic scene contents in one framework.

This mechanism greatly outperforms existing scene

motion analysis methods that models background and

foreground motion separately.

2. The strong local properties of SPs can robustly counter

heavy rain interferences, and facilitate much more ac-

curate alignment. Owing to such robust alignment, ac-

curate temporal correspondence could be established

for rain occlusions such that heavily occluded back-

grounds could be truthfully restored. This greatly out-

performs image-based derain methods in which recov-

ery of large and opaque rain occlusions remain the

biggest challenge.

3. We propose a set of very efficient spatial-temporal fea-

tures for the compensation of high frequency details

lost during the deraining process. An efficient CNN

network is designed, and a synthetic rain video dataset

is created for training the CNN.

2. Related Work

Rain removal based on a single image is intrinsically a

challenging one, since it only relies on visual features and

priors to distinguish rain from the background. Local pho-

tometric, geometric, and statistical properties of rain have

been studied in [11, 10, 36, 15]. Li et al. [20] models back-

ground and rain streaks as layers to be separated. Under

the sparse coding framework, rain and backgrounds can be

efficiently separated either with classified dictionary atoms

[13, 6], or via discriminative sparse coding [22]. Convo-

lutional Neural Networks have been very effective in both

high-level vision tasks [19] and low-level vision applica-

tions for capturing signal characteristics [14, 34]. Hence,

different network structures and features were explored for

rain removal, such as the deep detail network [8], and the

joint rain detection and removal model [32]. Due to the lack

of temporal information, heavy and opaque rain is difficult

to be distinguished from scene structures. Full recovery of

a seriously occluded scene is almost impossible.

The temporal information from a video sequence pro-

vides huge advantage for rain removal [9, 3, 25, 26, 33].

True rain pixels are separated from moving object pixels

based on statistics of intensity values [29] or chromatic val-

ues [35], on geometric properties of connected candidate

pixels [5], or on segmented motion regions [7]. Kim’s work

[16] compensates for scene content motion by using optical

flow for content alignment. Ren et al. [24] decomposes a

video into background, rain, and moving objects using ma-

trix decomposition. Moving objects are derained by tempo-
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rally aligning them using patch matching, while the mov-

ing camera effect is modeled using a frame transform vari-

able. Temporal derain methods can handle occlusions much

better than image-based methods; however, these methods

perform poorly for complex dynamic scenes shot from fast

moving cameras.

3. Proposed Model

Throughout the paper, scalars are denoted by italic

lower-case letters, 2D matrices by upper-case letters, 3D

tensors, functions, and operators by script letters.

Given a target derain video frame I0, we look at its im-

mediate past and future neighbor frames to create a sliding

buffer window of length nt: {Ii|i = [−nt−1
2 , nt−1

2 ]}. Here,

negative and positive i indicate past and future frames, re-

spectively. We only derain the Y luminance channel. The

derain output is used to update the history buffer (Fig. 2).

Such history update mechanism ensures cleaner derain for

heavy rainfall scenarios.

The system diagram for the proposed SPAC-CNN rain

removal algorithm is shown in Fig. 2. The algorithm can

be divided into two parts: first, video content alignment

is carried out at SP level, which consists two SP template

matching operations that produce two output tensors: the

optimal temporal match tensor T0, and the sorted spatial-

temporal match tensor T1. An intermediate derain output

Xavg is calculated by averaging the slices1 of the tensor T1.

Second, these two tensors will be prepared as input features

to a CNN to compensate the high frequency details lost in

Xavg caused by mis-alignment blur. The detail of each com-

ponent will be explained in this section.

3.1. Robust Content Alignment via Superpixel
Spatial­Temporal Matching

One of the most important procedure for video-based de-

rain algorithms is the estimation of content correspondence

between video frames. With accurate content alignment,

rain occlusions could be easily detected and removed with

information from the temporal axis.

3.1.1 Content Alignment: Global vs. Superpixel

The popular solution to compensate camera motion be-

tween two frames is via a homography transform matrix

estimated based on global consensus of a group of matched

feature points [4, 28]. Due to the reasons analyzed in Sec. 1,

perfect content alignment can never be achieved for all pix-

els with a global transform at whole frame level, especially

for dynamic scenes with large depth range.

The solution naturally turns to pixel-level alignment,

which faces no fewer challenges: first, feature points are

1A slice is a two-dimensional section of a higher dimensional tensor,

defined by fixing all but two indices [18].

(a) (b)

Figure 3: Rectangular and SP segmentation units.

sparse, and feature-less regions are difficult to align; more

importantly, rain streak occlusions will cause serious inter-

ferences to feature matching at single pixel level. Informa-

tion from larger areas are required to overcome rain inter-

ferences. This lead us to our final solution: to decompose

images into smaller depth consistent units.

The concept of SuperPixel (SP) is to group pixels into

perceptually meaningful atomic regions [2, 30, 21]. Bound-

aries of SP usually coincide with those of the scene con-

tents. Comparing Fig. 3(a) and (b), the SPs are very adap-

tive in shape, and are more likely to segment uniform depth

regions compared with rectangular units. We adopt SP as

the basic unit for content alignment.

3.1.2 Optimal Temporal Matching for Rain Detection

Let Pk denote the set of pixels that belong to the k-th SP

on I0. Let Xk ∈ R
nx×nx be the bounding box that covers

all pixels in Pk (Pk ⊂ Xk). Let Bk ∈ R
ns×ns×nt denote

a spatial-temporal buffer centered on Pk. As illustrated in

Fig. 2, Bk spans the entire sliding buffer window, and its

spatial range ns × ns is set to cover the possible motion

range of Pk in its neighboring frames.

Pixels within the same SP are very likely to belong to the

same object and possess identical motion between adjacent

frames. Therefore, we can approximate the SP appearance

in their adjacent frames based on its appearance in the cur-

rent frame via linear translations.

Searching for the reference SP is done by template

matching of the target SP at all candidate locations in Bk.

A match location is found at frame It′ according to:

(û, v̂) = argmin
u,v

∑

(x,y)∈Xk

|Bk(x+ u, y + v, t′) (1)

−Xk(x, y)|
2 ⊙MSP(x, y).

As shown in Fig. 4(d), MSP indicates SP pixels Pk in the

bounding box Xk. ⊙ denotes element-wise multiplication.

Each match at a different frame becomes a temporal slice

for the optimal temporal match tensor T0 ∈ R
nx×nx×nt :

T0(·, ·, t
′) = Bk(x+ û, y + v̂, t′), (x, y) ∈ Xk. (2)

Based on the temporal clues provided by T0, a rain mask

can be estimated. Since rain increases the intensity of its

covered pixels [9], rain pixels in Xk are expected to have

higher intensity than their collocated temporal neighbors in
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Figure 4: Illustration of various masks and matching tem-

plates used in the proposed algorithm.

T0. We first compute a binary tensor M0 ∈ R
nx×nx×nt to

detect positive temporal fluctuations:

M0 =

{

1 R(Xk, nt)− T0 ≥ ǫrain

0 otherwise
, (3)

where operator R(Φ, ψ) is defined as replicating the 2D

slices Φ ∈ R
n1×n2 ψ times and stacking along the thrid

dimension into a tensor of Rn1×n2×ψ . To robustly handle

re-occurring rain streaks, we classify pixels as rain when at

least 3 positive fluctuations are detected in M0. An initial

rain mask M̂rain ∈ R
nx×nx can be calculated as:

M̂rain(x, y) = [
∑

t

M0(x, y, t)] ≥ 3. (4)

Due to possible mis-alignment, edges of background

could be misclassified as rain. Since rain steaks don’t af-

fect values in the chroma channels (Cb and Cr), a rain-free

edge map Me could be calculated by thresholding the sum

of gradients of these two channels with ǫe. The final rain

mask Mrain ∈ R
ns×ns is calculated as:

Mrain = M̂rain ⊙ (1−Me). (5)

A visual demonstration of M̂rain, Me, and Mrain is shown in

Fig. 4(a), (b), and (c), respectively. In our implementation,

ǫrain is set to 0.012 while ǫedge is set to 0.2.

3.1.3 Sorted Spatial-Temporal Template Matching for

Rain Occlusion Suppression

The second round of template matching will be carried out

based on the following cost function:

E(u, v, t) =
∑

(x,y)∈Xk

|Bk(x+ u, y + v, t) (6)

−Xk(x, y)|
2 ⊙MRSP(x, y).

The rain-free matching template MRSP is calculated as:

MRSP =MSP ⊙ (1−Mrain). (7)

As shown in Fig. 4(e), only the rain-free background SP

pixels will be used for matching. Each candidate locations

in Bk (except current frame Bk(·, ·, 0)) are sorted in as-

cending order based on their cost E defined in Eq. (6).

The top nst candidates with smallest E will be stacked

as slices to form the sorted spatial-temporal match tensor

T1 ∈ R
ns×ns×nst .

The slices of T1(·, ·, t) are expected to be well-aligned

to the current target SP Pk, and is robust to interferences
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Figure 5: Illustration of feature preparation for the detail

recovery CNN.

from the rain. Since rain pixels are temporally randomly

and sparsely distributed within T1, when nst is sufficiently

large, we can get a good estimation of the rain free image

through tensor slice averaging, which functions to suppress

rain induced intensity fluctuations, and bring out the oc-

cluded background pixels:

Xavg =

∑

t T1(·, ·, t)

nst
. (8)

Fig. 5 gives a visual example of Xavg and its calculation

flow. We can see that all rain streaks have been suppressed

in Xavg after the averaging.

3.2. Detail Compensation for Mis­Alignment Blur

The averaging of T1 slices provides a good estimation

of rain free image; however, it creates noticeable blur due

to un-avoidable mis-alignment, especially when the cam-

era motion is fast. To compensate the lost high frequency

content details without reintroducing the rain streaks, we

propose to use a CNN model for the task.

3.2.1 Occluded Background Feature

Xavg from Eq. (8) can be used as one important clue to

recover rain occluded pixels. Rain streak pixels indicated by

the rain mask Mrain are replaced with corresponding pixels

from Xavg to form the first feature F1 ∈ R
nx×nx×1:

F1 = Xk ⊙ (1−Mrain) +Xavg ⊙Mrain. (9)

Note that the feature F1 itself is already a reasonable de-

rain output. However its quality is greatly limited by the

correctness of the rain mask Mrain. For false positive2 rain

2False positive rain pixels refer to background pixels falsely classified

as rain; false negative rain pixels refer to rain pixels falsely classified as

background.
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Figure 6: CNN architecture for compensation of mis-

alignment blur. Each convolutional layer is followed by a

rectified linear unit (ReLU).

pixels,Xavg will introduce content detail loss; for false neg-

ative pixels, rain streaks will be added back from Xk. This

calls for more informative features.

3.2.2 Temporal Consistency Feature

The temporal consistency feature is designed to handle false

negative rain pixels in Mrain, which falsely add rain streaks

back to F1. For a correctly classified and recovered pixel

(a.k.a. true positive) in Eq. (9), intensity consistency

should hold such that for the collocated pixels in the neigh-

boring frames, there are only positive intensity fluctuations

caused by rain in those frames. Any obvious negative inten-

sity drop along the temporal axis is a strong indication that

such pixel is a false negative pixel.

The temporal slices in T0 establishes optimal temporal

correspondence at each frame, which embeds enough in-

formation for the CNN to deduce the above analyzed false

negative logic, therefore they shall serve as the second fea-

ture F2 ∈ R
nx×nx×(nt−1):

F2 = {T0(·, ·, t)| t = [−
nt − 1

2
,
nt − 1

2
], t 6= 0}. (10)

3.2.3 High Frequency Detail Feature

The matched slices in T1 are sorted according to their rain-

free resemblance to Xk, which provide good reference to

the content details with supposedly small mis-alignment.

We directly use the tensor T1 as the last group of features

F3 = T1 ∈ R
nx×nx×nst . This feature will compensate the

detail loss introduced by the operations in Eq. (9) for false

positive rain pixels.

In order to facilitate the network training, we limit the

mapping range between the input features and regression

output by removing the low frequency component (Xavg)

from these input features. Pixels in Xk but outside of the

SP Pk is masked out with MSP:

F̂1 = (F1 −Xavg)⊙MSP, (11)

F̂2 = (F2 −R(Xavg, nt − 1))⊙R(MSP, nt − 1),

F̂3 = (F3 −R(Xavg, nst))⊙R(MSP, nst).

The final input feature set is {F̂1, F̂2, F̂3}. The feature

preparation process is summarized in Fig. 5.

a1 a2 a3 a4
b1 b2 b3

a1

b1 b2 b3 b4

a2 a3 a4

Figure 7: 8 testing rainy scenes synthesized with Adobe Af-

ter Effects [1]. First row (Group a) are shot with a pan-

ning unstable camera. Second row (Group b) are from a

fast moving camera (speed range between 20 to 30 km/h)

3.2.4 CNN Structure and Training Details

The CNN architecture is designed as shown in Fig. 6. The

network consists of four convolutional layers with decreas-

ing kernel sizes of 11, 5, 3, and 1. All layers are fol-

lowed by a rectified linear unit (ReLU). Our experiments

show this fully convolutional network is capable of ex-

tracting useful information from the input features and ef-

ficiently providing reliable predictions of the content detail

Xdetail ∈ R
nx×nx×1. The final rain removal output will be:

Xderain = Xavg +Xdetail. (12)

For the CNN training, we minimize the L2 distance be-

tween the derain output and the ground truth scene:

E = [X̂ −Xavg −Xdetail]
2, (13)

here X̂ denotes the ground truth clean image. We use

stochastic gradient descent (SGD) to minimize the objective

function. Mini-batch size is set as 50 for better trade-off be-

tween speed and convergence. The Xavier approach [12]

is used for network initialization, and the ADAM solver

[17] is adpatoed for system training, with parameter settings

β1 = 0.9, β2 = 0.999, and learning rate α = 0.0001.

To create the training rain dataset, we first took a set

of 8 rain-free VGA resolution video clips of various city

and natural scenes. The camera was of diverse motion for

each clip, e.g., panning slowly with unstable movements, or

mounted on a fast moving vehicle with speed up to 30 km/h.

Next, rain was synthesized over these video clips with the

commercial editing software Adobe After Effects [1], which

can create realistic synthetic rain effect for videos with ad-

justable parameters such as raindrop size, opacity, scene

depth, wind direction, and camera shutter speed. This pro-

vides us a diverse rain visual appearances for the network

training.

We synthesized 3 to 4 different rain appearances with

different synthetic parameters over each video clip, which

provides us 25 rainy scenes. For each scene, 21 frames

were randomly extracted (together with their immediate

buffer window for calculating features). Each scene was

segmented into approximately 300 SPs, therefore finally we

have around 157,500 patches in the training dataset.
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Table 1: Rain removal performance comparison between different methods in terms of scene reconstruction PSNR/SSIM,

and F-measure for rain streak edge PR curves.

Camera

Motion

Clip

No.

Rain DSC-ICCV15 [22] DDN-CVPR17 [8] VMD-CVPR17 [24] SPAC-Avg SPAC-CNN

PSNR SSIM F PSNR SSIM F PSNR SSIM F PSNR SSIM F PSNR SSIM F PSNR SSIM

panning

unstable

camera

a1 28.46 0.94 0.38 25.61 0.93 0.47 28.02 0.95 0.47 26.96 0.92 0.39 24.78 0.87 0.51 29.78 0.97

a2 28.09 0.95 0.33 27.11 0.95 0.44 27.38 0.95 0.51 24.80 0.93 0.40 26.34 0.89 0.51 30.09 0.96

a3 27.84 0.93 0.43 25.08 0.92 0.45 27.41 0.94 0.42 26.45 0.90 0.40 24.72 0.85 0.54 29.75 0.96

a4 31.48 0.95 0.34 28.82 0.95 0.53 32.47 0.97 0.55 29.55 0.94 0.48 29.90 0.93 0.54 34.82 0.98

avg. a 28.97 0.94 0.37 26.66 0.94 0.47 28.82 0.95 0.49 26.94 0.92 0.42 26.44 0.89 0.53 31.11 0.97

camera

speed

20-30

km/h

b1 28.72 0.92 0.42 28.78 0.92 0.53 29.48 0.96 0.35 24.09 0.84 0.47 26.35 0.89 0.55 31.19 0.96

b2 29.49 0.90 0.43 29.58 0.92 0.50 30.23 0.95 0.43 25.81 0.89 0.50 28.83 0.93 0.57 34.05 0.98

b3 31.04 0.95 0.33 29.55 0.95 0.53 31.39 0.97 0.43 26.12 0.90 0.48 29.55 0.94 0.53 33.73 0.98

b4 27.99 0.92 0.50 29.10 0.93 0.51 29.83 0.96 0.48 25.90 0.88 0.53 28.85 0.92 0.58 33.79 0.97

avg. b 29.31 0.92 0.42 29.25 0.93 0.52 30.23 0.96 0.42 25.48 0.88 0.50 28.40 0.92 0.56 33.19 0.97

4. Performance Evaluation

We set the sliding video buffer window size nt = 5.

Each VGA resolution frame was segmented into around 300

SPs using the SLIC method [2]. The bounding box size was

nx = 80, and the spatial-temporal buffer Bk dimension was

ns × ns × nt = 30×30×5. MatConvNet [31] was adopted

for model training, which took approximately 54 hours to

converge over the training dataset introduced in Sec. 3.2.4.

The training and all subsequent experiments were carried

out on a desktop with Intel E5-2650 CPU, 56GB RAM, and

NVIDIA GeForce GTX 1070 GPU.

4.1. Quantitative Evaluation

To quantitatively evaluate our proposed algorithm, we

took a set of 8 videos (different from the training set), and

synthesized rain over these videos with varying parameters.

Each video is around 200 to 300 frames. All subsequent

results shown for each video are the average of all frames.

To test the algorithm performance in handling cameras

with different motion, we divided the 8 testing scenes into

two groups: Group a consists of scenes shot from a panning

and unstable camera; Group b from a fast moving camera

(with speed range between 20 to 30 km/h). Thumbnails and
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Figure 9: Visual comparison for different rain removal methods on real world rain data.
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Figure 10: Rain edge pixel detection precision-recall curves

for different rain removal methods.

the labeling of each testing scene are shown in Fig. 7.

Four state-of-the-art methods were chosen for compar-

ison: two image-based derain methods, i.e., discrimina-

tive sparse coding (DSC) [22], and the deep detail network

(DDN) [8]; one video-based method via matrix decompo-

sition (VMD) [24]. The intermediate derain output XAvg is

also used as a baseline (abbr. as SPAC-Avg).

4.1.1 Rain Streak Edge Precision Recall Rates

Rain fall introduces edges and textures over the background.

To evaluate how much of the modifications from the derain

algorithm contributes positively to only removing the rain

pixels, we calculated the rain streak edge precision-recall

(PR) curves. Absolute difference values were calculated

between the derain output against the scene ground truth.

Different threshold values were applied to retrieve a set of

binary maps, which were next compared against the ground

truth rain pixel map to calculate the precision recall rates.

Average PR curves for the two groups of testing scenes

by different algorithms are shown in Fig. 10. As can be

seen, for both Group a and b, SPAC-CNN shows consis-

tent advantages over SPAC-Avg, which proves that the CNN

model can efficiently compensate scene content details and

suppress influences from rain streak edges.

Video-based derain methods (i.e., VMD and SPAC-CNN)

perform better than image-based methods (i.e., DSC and

DDN) for scenes in Group a. With slow camera mo-

tion, temporal correspondence can be accurately estab-

lished, which brings great advantage to video-based meth-

ods. However, with fast camera motion, the performance of

VMD deteriorates seriously for Group b data: rain removal

is now at the cost of background distortion. Image-based

methods show its relative efficiency in this scenario. How-

ever, SPAC-CNN still holds advantage over image-based

methods at all recall rates for Group b data, which shows

its robustness for fast moving camera.

4.1.2 Scene Reconstruction PSNR/SSIM

We calculated the reconstruction PSNR/SSIM between dif-

ferent state-of-the-art methods against the ground truth, and

the results are shown in Table 1. The F-measure for rain
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Table 2: Derain PSNR (dB) with different features absent.

Clip

No.

F̂2+F̂3

(w/o F̂1)

F̂1+F̂3

(w/o F̂2)

F̂1+F̂2

(w/o F̂3)
F̂1+F̂2+F̂3

a1 25.28 28.87 27.63 29.78

b4 28.62 31.97 32.99 33.79

streak edge PR curves are also listed for each data.

As can be seen, SPAC-CNN is consistently 5 dB higher

than SPAC-Avg for both Groups a and b. SSIM is also at

least 0.06 higher. This further validates the efficiency of the

CNN detail compensation network.

Video based methods (VMD and SPAC-CNN) show great

advantages over image-based methods for Group a data

(around 2dB and 5dB higher respectively than DSC). For

Group b, image-based methods excel VMD, however SPAC-

CNN still hold a 3dB advantage over DDN, 4dB over DSC.

4.1.3 Feature Evaluation

We evaluated the roles different input features play in the

final derain PSNR over two testing data a1 and b4. Three

baseline CNNs with different combinations of features as

input were independently trained for this evaluation. As

can be seen from the results in Table. 2, combination of the

three features F̂1+ F̂2+ F̂3 provides the highest PSNR. F1

proves to be the most important feature. Visual inspection

on the derain output show both F̂2+F̂3 and F̂1+F̂3 leaves

significant amount of un-removed rain. Comparing the last

two columns, it can be seen that F̂3 works more efficiently

with a1 than b4, which makes sense since the high fre-

quency features are better aligned for slow cameras, which

led to more accurate detail compensation.

4.2. Visual Comparison

We carried out visual comparison to examine the derain

performance of different algorithms. Fig. 8 shows the de-

rain output for the testing data a.3, b.1, and b.4. Two con-

secutive frames are shown for b.1 and b.4 to demonstrate

the camera motion. As can be seen, image-based derain

methods can only handle well light and transparent rain oc-

clusions. For those opaque rain streaks that cover a large

area, they fail unavoidably. Temporal information proves to

be critical in truthfully restoring the occluded details.

It is observed that rain can be much better removed by

video-based methods. However the VMD method creates

serious blur when the camera motion is fast. The derain

effect for SPAC-CNN is the most impressive for all meth-

ods. The red dotted rectangles showcase the restored high

frequency details between SPAC-CNN and SPAC-Avg.

Although the network has been trained over synthetic

rain data, experiments show that it generalizes well to real

world rain. Fig. 9 shows the derain results. As can be seen,

the advantage of SPAC-CNN is very obvious under heavy

rain, and robust to fast camera motion.

Table 3: Execution time (in sec) comparison for different

methods on deraining a single VGA resolution frame.

DSC [22] DDN [8] VMD [24]
SPAC-CNN

SPAC-Avg CNN

Matlab Matlab Matlab C++ Matlab

236.3 0.9 119.0 0.2 3.1

4.3. Execution Efficiency

We compared the average runtime between different

methods for deraining a VGA resolution frame. Results are

shown in Table 3. As can be seen SPAC-Avg is much faster

than all other methods. SPAC-CNN is much faster than

video-based method, and it’s comparable to that of DDN.

5. Discussion

For SPAC-CNN, the choice of SP as the basic operation

unit is key to its performance. When other decomposition

units are used instead (e.g., rectangular), matching accuracy

deteriorates, and very obvious averaging blur will be intro-

duced especially at object boundaries.

Although the SP template matching can only handle

translational motion, alignment errors caused by other types

of motion such as rotation, scaling, and non-ridge trans-

forms can be mitigated with global frame alignment before

they are buffered (as shown in Fig. 2) [27]. Furthermore,

these errors can be efficiently compensated by the CNN.

When camera moves even faster, SP search range ns
needs to be enlarged accordingly, which increases compu-

tation loads. We have tested scenarios with camera speed

going up to 50 km/h, the PSNR becomes lower due to

larger mis-alignment blur, alignment error is also possible

as showcased in blue rectangles in Fig. 9. We believe a

re-trained CNN with training data from such fast moving

camera will help improve the performance.

6. Conclusion

We have proposed a video-based rain removal algorithm

that can handle torrential rain fall with opaque streak oc-

clusions from a fast moving camera. SP have been utilized

as the basic processing unit for content alignment and oc-

clusion removal. A CNN has been designed and trained

to efficiently compensate the mis-alignment blur introduced

by deraining operations. The whole system shows its effi-

ciency and robustness over a series of experiments which

outperforms state-of-the-art methods significantly.
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