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Figure 1: (a) Attribute variance heat maps of the 312 attributes in CUB birds [59] and the 102 attributes in SUN scenes [46]

(lighter color indicates lower variance, i.e., lower discriminability) and the t-SNE [34] visualizations of the test images

represented by all attributes (left) and only the high-variance ones (right). Some of the low-variance attributes (the lighter

part to the left of the cut-off line) discarded at training are still needed in discriminating unseen test classes. (b) Comparison

of reconstructed images using SAE [25] and our proposed SP-AEN method, which is shown to retain sufficient semantics for

photo-realistic reconstruction.

Abstract

We propose a novel framework called Semantics-

Preserving Adversarial Embedding Network (SP-AEN) for

zero-shot visual recognition (ZSL), where test images and

their classes are both unseen during training. SP-AEN

aims to tackle the inherent problem — semantic loss —

in the prevailing family of embedding-based ZSL, where

some semantics would be discarded during training if they

are non-discriminative for training classes, but could be-

come critical for recognizing test classes. Specifically, SP-

AEN prevents the semantic loss by introducing an indepen-

dent visual-to-semantic space embedder which disentan-

gles the semantic space into two subspaces for the two ar-

guably conflicting objectives: classification and reconstruc-

tion. Through adversarial learning of the two subspaces,

SP-AEN can transfer the semantics from the reconstructive

subspace to the discriminative one, accomplishing the im-

proved zero-shot recognition of unseen classes. Comparing

∗Corresponding Author

with prior works, SP-AEN can not only improve classifica-

tion but also generate photo-realistic images, demonstrat-

ing the effectiveness of semantic preservation. On four pop-

ular benchmarks: CUB, AWA, SUN and aPY, SP-AEN con-

siderably outperforms other state-of-the-art methods by an

absolute performance difference of 12.2%, 9.3%, 4.0%, and

3.6% in terms of harmonic mean values [62].

1. Introduction

Zero-shot visual recognition, or more generally, zero-

shot learning (ZSL), recognizes novel classes that are un-

seen at training stage. The community has reached a con-

sensus that ZSL is all about transferring knowledge from

seen classes to unseen classes; Despite that there are fruit-

ful ZSL methods, the transfer still follows the simple but

intuitive mechanism: although “raccoon” is unseen, we can

recognize it by checking if it satisfies the “raccoon sig-

nature”, e.g., visual attributes “striped tail” [13, 27, 67],

classeme “fox-like” [57, 30, 65, 52], or “raccoon” word vec-

tors [47, 37]. These attributes can be modeled at training
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Figure 2: Three investigated ZSL paradigms. (a) Con-

ventional visual-to-semantic mapping � trained on clas-

sification loss. (b) Semantic autoencoder [25], visual-to-

semantic � and semantic-to-visual � trained on both clas-

sification and reconstruction losses. (c) The proposed SP-

AEN, introducing an independent visual-to-semantic � and

an adversarial-style discriminator � between the two sub-

space embeddings (blue and green triangular).

stage and are expected to be sharable in both seen and un-

seen classes at test stage. After a decade of progress, the

transfer has evolved from primitive attribute classifiers [27]

to semantic embedding based framework [1, 14, 60], which

is prevailing due to its simple and effective paradigm (cf.

Figure 2 (a)): first, it maps images from visual space to

semantic space where all the classes reside; then, ZSL is re-

duced to a simple nearest neighbor search — the image is

assigned to the nearest class in embedding space.

The semantic transfer ability of this embedding-based

ZSL framework is limited by the semantic loss problem.

As shown in Figure 1, discarding the low-variance attributes

(i.e., less discriminative) is beneficial to classification at

training; However, due to the semantic discrepancy between

seen and unseen classes, these attributes would be discrim-

inative at test time, resulting in a lossy semantic space that

is problematic for unseen class recognition. The main rea-

son is that although the class embedding has rich semantic

meanings, it is still a lonely point in the semantic space,

where the mappings of many images will inevitably col-

lapse to it [36, 15]. One may consider the extreme case that

all the class embeddings are one-hot label vectors, degener-

ating to the traditional supervised classification, therefore,

no semantics can be transfered.

An arguably possible solution is to preserve semantic-

s by reconstruction — the embedded semantic vector from

one image should be able to map the image back, where

any two semantic embeddings are expected to preserve suf-

ficient semantics to be apart, otherwise the reconstruction

would fail [24, 63, 69, 19]. However, reconstruction and

classification are essentially two conflicting objectives: the

former aims to preserve as many image details as possible

while the latter focuses on suppressing irrelevant ones. For

example, using only “head” and “torso” attributes might be

sufficient for “person” recognition while the color attributes

“red” and “white” are indeed disturbing. To further illus-

trate this, as shown in Figure 2 (b), suppose �: � → �
and �: � → � are two mapping transformations between

the visual and semantic spaces. For classification, we want

�, �′ ∈ � of the same class to be mapped to close semantic

embeddings �, �′ ∈ � , i.e., �(�) = � ≈ �′ = �(�′); For

reconstruction, we want �(�) ≈ � and �(�′) ≈ �′, which

is difficult to be satisfied as � ≈ �′. Therefore, joint train-

ing of the two objectives is ineffective to preserve semantics

(e.g., SAE [25]). For example, as illustrated in Figure 1 (b),

if we want to achieve good classification performance, the

reconstruction will fail generally.

To resolve this conflict, we propose a novel visual-

semantic embedding framework: Semantics-Preserving

Adversarial Embedding Network (SP-AEN). As illustrated

in Figure 2 (c), we introduce a new mapping � : � → �
and an adversarial objective [17] where the discriminator �
and encoder � try to make � (�) and �(�) indistinguish-

able. There are two benefits of introducing � and � to help

� preserve semantics: 1) Semantic Transfer. Even though

the semantic loss is inevitable by �, we can avoid it us-

ing � by borrowing ingredients from �(�) of other classes,

and the discriminator � will eventually transfer semantics

from � (�) to �(�) by tailoring the two semantic embed-

dings into the same distribution. For example, for a “bird”

image where the attribute “spotty” in �(bird) is lost, we

can retain it by using �(leapard) because “spotty” is a dis-

criminative and preserved attribute in “leopard” images. 2)

Disentangled Classification and Reconstruction. As the

reconstruction is only imposed to � and �, � is disentan-

gled to focus on classification. In this way, the conflict be-

tween classification and reconstruction is resolved because

the constraint �(�(�)) ≈ � and �(�(�′)) ≈ �′ is relaxed

to �(� (�)) ≈ � and �(� (�′)) ≈ �′, as � (�) and � (�′)
are not necessarily to be close with each other to comply

with the discriminative objective as �. As shown in Fig-

ure 1 (b), compared to the reconstruction style in Figure 2

(b) [25], our visual-semantic embedding �(� (�)) can re-

construct photo-realistic images, suggesting that the seman-

tic is better preserved.

We can deploy state-of-the-art network structures for SP-

AEN in a flexible plug-and-play and end-to-end fine-tune

fashion, e.g., � may use the powerful model for classifi-

cation [21], � and � may use the encoder and decoder of

the image generation architecture [11]. The overall archi-

tecture is illustrated in Figure 3 and will be detailed in Sec-

tion 4.1. We validate the effectiveness of SP-AEN on four

popular benchmarks: CUB [59], AWA [27], SUN [46], and

aPY [13], surpassing the state-of-the-art performances [62]
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by 12.2%, 9.3%, 4.0%, and 3.6% in harmonic mean val-

ues, respectively. To the best of our knowledge, SP-AEN

is the first ZSL model that empowers photo-realistic image

generation from the semantic space. We hope that it will fa-

cilitate the ZSL community for better visual investigations

of knowledge transfer.

2. Related Work

Zero-Shot Learning One main stream of ZSL is the

attribute-based visual recognition [13, 27, 49, 43, 10, 22]

where the attributes serve as an intermediate feature space

that transfer semantics across classes, supporting zero-shot

recognition of unseen classes. To scale up ZSL, embedding

based methods are prevailing [14, 2, 3, 49, 61, 55, 25, 31].

These methods directly learn a mapping from the image

visual space to a semantic space, represented by semantic

vectors such as word vectors [37, 47, 42] or textual descrip-

tions [29, 12, 9]. Our proposed SP-AEN is an embedding

based ZSL that exploits the ranking based classification loss

as [14]. However, to the best of our knowledge, SP-AEN is

the first ZSL method that can reconstruct images from the

semantic embeddings. The evaluation used in the experi-

ments follows a similar setting for practical ZSL applica-

tions [8, 62]. Note that ZSL is also closely related to few-

shot learning [18] and domain adaptation [40, 45], where

both of them assume that a small number of training images

given in the test classes; however, no image is exposed to

test classes at training in ZSL.

Domain Shift and Hubness. Similar problems to the

semantic loss have been reported in other terms. Domain

shift [51, 15] is a generic problem that resides in all type-

s of visual recognition, where the data from train and test

are in different distributions. Hubness [36] states the phe-

nomenon that the mapped semantic embeddings from im-

ages would be collapsed to hubs, which are near many other

points without being similar to the class label in any mean-

ingful way. We believe that semantic loss is one of the main

reason for hubness, which can be alleviated by reconstruc-

tion [24, 63, 69, 19]. In this paper, we find that jointly train-

ing [25] reconstruction and classification is not effective to

preserve semantics. Another way of countering semantic

loss is to learn independent attribute classifiers [39], which

is not applicable when attribute annotation is unavailable.

Generative Adversarial Network (GAN). The idea of

GAN [17] is to train a generator that can fool a discrim-

inator to confuse the distributions of the generated and

true samples. In theory, this max-min training procedure

can lead the generator to perfectly model the data distribu-

tion. SP-AEN is similar to the GAN applied in the feature-

level [44, 58, 35, 53]. Recently, several ZSL models adop-

t generative model for data augmentation of unseen class-

es [38, 6]. However, they violate the ZSL assumption that

the unseen class is prohibitively seen at training.

Image Generation. We seek algorithms that can gener-

ate perceptually realistic images [16, 23, 5, 32, 33, 56]. Be-

sides pixel-level loss, these methods impose feature-level

reconstruction loss for preserving perceptual similarity or

adversarial loss to remove unreal artifacts. However, they

are based on image-to-image transformation while we re-

quires that the reconstruction is from the semantic embed-

ding. Our reconstruction network relates to image genera-

tion from a bottleneck layer [11, 41, 66, 48].

3. Formulation

We start by formalizing the ZSL task and then introduce

the training objectives of the proposed SP-AEN.

3.1. Preliminaries

Given a set of training set {��, ��}, where �� ∈ � is an

image represented in the visual space, and �� ∈ ℒ� is a class

label in the seen class set, the goal of ZSL is to learn a clas-

sifier which can generalize to predict any image � at test

stage to its correct label, which is not only in ℒ� but also

in the unseen class set ℒ�. As summarized in [62, 29],

almost all types of ZSL methods can be unified into the

embedding-based framework: we hope to find a visual-to-

semantic mapping �: � → � , where any class label � is

embedded as y� ∈ ℝ
� in the semantic space � (e.g., an

attribute space). Therefore, the predicted label �∗ can be

obtained by following simple nearest neighbor search:

�∗ = max
�∈ℒ

y
�
� �(�). (1)

In particular, if � ∈ ℒ�, it is the conventional ZSL setting;

if � ∈ ℒ� ∪ ℒ�, it is the generalized ZSL setting, which is

more practical for real applications. It is worth noting that

Eq. (1) is not necessarily a linear model; in fact, as we will

introduce in Section 4.1, it can also be highly non-linear in

nature by using deep neural networks to implement �.

3.2. Classification Objective

As label prediction in Eq. (1) is fundamentally a ranking

problem, we use a large-margin based ranking loss func-

tion for classification objective [14, 60], i.e., given a training

pair (�, �) we want a higher dot-product similarity between

y� and �(�) and a lower one for any wrongly labeled pair

(�, �′), and the similarity margin between the correct one

and the wrong one should be larger than a threshold:

���� =
∑

� ∕=�′

max{0, � − y
�
� �(�) + y

�
�′�(�)}. (2)

Where � > 0 is a hyperparameter for the margin. At each

iteration in stochastic training, only one �′ is randomly se-

lected from the unpaired labels.

As mentioned in Section 1, the classification objective

���� essentially forces the semantic embedding �(�) of all
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Figure 3: The architecture of SP-AEN with corresponding kernel size c, number of fully-connected layer dimension fc, and

stride s of each convolutional layer. Same color indicates the same layer type.

the images close to same ground truth label embedding y,

resulting in the semantic loss that can be tackled by using

two additional objectives introduced next.

3.3. Reconstruction Objective

The reconstruction objective is to learn a semantic-to-

visual mapping �: � → � that reconstructs a semantic

embedding � ∈ � back to image such that ∥�(�) − �∥
is small. Recall that the reconstruction in the autoencoder

fashion � = �(�) conflicts with the classification objective,

therefore, we introduce an independent visual-to-semantic

mapping � for embedding reconstructive � = � (�). More-

over, being different from [25] where the visual space � is

a feature space from the output of a higher-layer in deep C-

NN [21, 54], we directly use the raw 256 × 256 × 3 RGB

color space for image reconstruction. The reason is that the

feature space from CNN is already a semantic space [64],

which is meant to have semantic loss since its construction.

By minimizing a reconstruction objective, � (�) is ex-

pected to preserve sufficient semantics so as to reconstruct

images. We follow the recent progress in generating photo-

realistic images [23, 11, 28]:

���� = ����� + ��������. (3)

����� = ∥� (� (� (�))) − �(�)∥2
2

is the feature-level (or

perceptual) loss that is shown to be effective in preserving

the perceptual similarity of two images, e.g., local structure

details. We use the conv5 of AlexNet [26] for �. ������ =
∥�(� (�)) − �∥2

2
is the pixel-level reconstruction loss that

stabilizes the reconstruction.

3.4. Adversarial Objective

Yet, the disentangled semantic embeddings �(�) and

� (�) are not interacted with each other for semantic trans-

fer, i.e., our goal is to combine the rich semantics preserved

in � (�) from multiple �(�′) across a variety of classes.

However, it is hard to hand-engineer a plausible combina-

tion rule for the dynamic � (�) and �(�) during training.

To this end, we apply the adversarial objective [17] to en-

courage �(�) to favor solutions that reside on the manifold

of � (�) that preserves semantics, by “fooling” a discrimi-

nator network � that outputs the probabilities that �(�′) is

as “real” as � (�):

���� = �� (log�(� (�))) + ��′ (log [1−�(�(�′))]) .
(4)

Where � tries to minimize ���� against � that tries to max-

imize it, i.e., �∗ = argmin� max� ���� .

Minimizing ���� is notoriously tricky due to the well-

known mode collapse problem [4]. In our case, the col-

lapse may happen if similar images � and �′, generally in

the same class, dominating ���� by ∥� (�) − �(�′)∥ ≈ 0
and thus leading to failed semantic transfer across classes.

To prevent this, we followed the strategy of WGAN [4].

We empirically find that this trick helps better gradient and

training stability.

3.5. Full Objective

Combining the three objectives introduced above, our

full objective of the proposed SP-AEN is:

�(�,�,�,�) = ����(�) + �����(�,�,�)

+ �����(�,�,�,�).
(5)
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Where � and � are trade-off parameters for different objec-

tives. The final goal is to solve:

�∗ = argmin
�,�,�

max
�

�(�,�,�,�). (6)

As illustrated in Figure 3. By considering � as the

encoder and � as the decoder, then the semantic embed-

ding � (�) can be considered as the bottleneck layer, reg-

ularized to match a supervised distribution �(�). In this

way, our SP-AEN is a supervised Adversarial Autoencoder

(AAE) [35]. Therefore, SP-AEN has the potential flex-

ibility to reform into other ZSL frameworks, e.g., semi-

supervised SP-AEN, by imposing another adversarial ob-

jective for � (�) to match a prior embedding space. We

leave this for our future work.

4. Implementation

4.1. Architecture

The overall architecture is detailed in Figure 3. It is

an end-to-end network with the input of raw images and

ground truth class embeddings. The embedder � is based

on ResNet-101 [21] takes a cropped 224 × 224 × 3 im-

age as input and outputs a �-dimensional embedding vec-

tor, which is then fed into the classification loss function

in Eq. (2). � is based on AlexNet [26] appended with t-

wo more fully-connected blocks that take the raw image as

input and output a �-dimensional embedding vector, which

is fed into the subsequent reconstruction network �. We

adapt the architecture for � from [11] who has shown im-

pressive results for generating images from a bottleneck lay-

er. � contains five up-convolutional blocks with leaky Re-

LU [20] for transforming a vector into a 3-D feature map,

which is eventually equal to the RGB color map. In particu-

lar, we append two fully-connected layers as the head of �
that takes the embedding vector as input and then output a

4,096-dimensional vector that can match the input of [11].

� is a two-layer fully-connected layer plus a non-linear Re-

LU layer that takes the �-dimensional embedding vector as

input.

4.2. Training Details

For all the experiments in this paper, the training im-

ages are resized with its shorter side to 256; ten 224 × 224
cropped image data augmentation trick is adopted with per-

pixel mean subtraction [26]. For efficiency, we fixed the

ResNet-101 in �, and initialized the AlexNet-like block-

s in � with AlexNet and � with the pretrained genera-

tor [11]. Then, the rest of the modules was trained from

scratch with MSRA random initializer [20]. The learning

rate started from 1�−4 and is multiplied by 0.1 when the

error is plateaus. We use grid search to select parameter �
and �.

5. Experiments

5.1. Datasets

We used four popular benchmarks described as below .

In particular, we followed the new split provided by [62]

as the ILSVRC [50] 1K ImageNet classes, widely used as a

pre-training source for CNN features, have already included

the test classes in the conventional split of the benchmarks,

hence violating the fundamental assumption of ZSL that the

classes at test should be strictly unseen at training.

CUB [59]. It is the Caltech-UCSD-Birds 200-2011 dataset

of 11,788 bird images from 200 fine-grained classes. Each

image is annotated with 312 semantic attributes. The train

split has 7,057 images across 150 classes (50 classes for val-

idation); The test split has 1,764 images from the 150 seen

classes and 2,967 images from the 50 unseen classes.

SUN [46]. It is a fine-grained scene data of 14,340 images

across 717 scene classes. Each image is annotated with 102

semantic attributes. The train split has 10,320 images from

645 classes (65 classes for validation); The test split has

2,580 images from the 645 seen classes and 1,440 images

from the 72 unseen classes.

AWA [27]. It is the coarse-grained Animals with Attributes

dataset of 30,475 images from 50 animals. Each class is

annotated with 85 semantic attributes. The train split has

23, 527 images from 40 classes (13 classes for validation);

The test split has 5,882 images from the 40 seen classes and

7,913 images from the 10 unseen classes. In particular, we

used the AWA2 released by [62] as the images from the o-

riginal one are restricted due to photo copyright reasons.

aPY [13]. It is the coarse-grained Attribute Pascal and Ya-

hoo dataset of 12,051 images from 32 generic object class-

es (e.g., 20 Pascal classes and 12 popular Yahoo classes).

Each image is annotated with 64 semantic attributes. The

train split has 5,932 images from 20 classes (5 classes for

validation); The test split has 1,483 images from the 20 seen

classes and 7,924 from the 12 unseen classes.

For fair comparison and reproductivity, we used the class

label embeddings provided by [62], each of which is an L2-

normalized vector.

5.2. Settings and Evaluation Metrics

To evaluate the ZSL performances over all classes, we

applied the following three settings. 1) U→ U: The test im-

ages and the prediction labels set are limited to the unseen

classes; 2) S→ T: The test images are from the seen class-

es and the prediction labels set is the union of both seen

and unseen classes; 3) U→T: The test images are from the

unseen classes and the prediction labels set is the union of

both seen and unseen classes. Note that U→ U and U→ T

are also known as the conventional and the generalized ZSL

settings.

We followed [62] and used the per-class top-1 accuracy

1047



SUN (0.9851) CUB (0.9575) AWA (0.7459) aPY (0.5847)

Setting U→U U→T S→T H U→U U→T S→T H U→U U→T S→T H U→U U→T S→T H

DAP [27] 39.9 4.2 25.1 7.2 40.0 1.7 67.9 3.3 46.1 0.0 84.7 0.0 33.8 4.8 78.3 9.0

IAP [27] 19.4 1.0 37.8 1.8 24.0 0.2 72.8 0.4 35.9 0.9 87.6 1.8 36.6 5.7 65.6 10.4

SSE [68] 51.5 2.1 36.4 4.0 43.9 8.5 46.9 14.4 61.0 8.1 82.5 14.8 34.0 0.2 78.9 0.4

CONSE [43] 38.8 6.8 39.9 11.6 34.3 1.6 72.2 3.1 44.5 0.5 90.6 1.0 26.9 0.0 91.2 0.0

SYNC [7] 56.3 7.9 43.3 13.4 55.6 11.5 70.9 19.8 46.6 10.0 90.5 18.0 23.9 7.4 66.3 13.3

CMT [55] 39.9 8.1 21.8 11.8 34.6 7.2 49.8 12.6 37.9 0.5 90.0 1.0 28.0 1.4 85.2 2.8

CMT★ [55] — 8.7 28.0 13.3 — 4.7 60.1 8.7 — 8.7 89.0 15.9 — 10.9 74.2 19.0

LATEM [61] 55.3 14.7 28.8 19.5 49.3 15.2 57.3 24.0 55.8 11.5 77.3 20.0 35.2 0.1 73.0 0.2

DeViSE [14] 56.5 16.9 27.4 20.9 52.0 23.8 53.0 32.8 59.7 17.1 74.7 27.8 39.8 4.9 76.9 9.2

ALE [2] 58.1 21.8 33.1 26.3 54.9 23.7 62.8 34.4 62.5 14.0 81.8 23.9 39.7 4.6 73.7 8.7

SJE [3] 53.7 14.7 30.5 19.8 53.9 23.5 59.2 33.6 61.9 8.0 73.9 14.4 32.9 3.7 55.7 6.9

ESZSL [49] 54.5 11.0 27.9 15.8 53.9 12.6 63.8 21.0 58.6 5.9 77.8 11.0 38.3 2.4 70.1 4.6

SAE [25] 40.3 8.8 18.0 11.8 33.3 7.8 54.0 13.6 54.1 1.1 82.2 2.2 8.3 0.4 80.9 0.9

SP-AEN 59.2 24.9 38.6 30.3 55.4 34.7 70.6 46.6 58.5 23.3 90.9 37.1 24.1 13.7 63.4 22.6

Table 1: Performances (accuracy% and H%) of all the comparing methods under the three settings on the four datasets.

Cosine similarity between the attribute variances of the disjoint train images and test images are given in brackets. As

demonstrated in Figure 1, lower similarity indicates larger semantic loss.

as the evaluation metric, where the prediction using Eq. (1)

is successful if the predicted class is the correct ground

truth. We averaged the accuracies of all classes. For gen-

eralized ZSL setting, we also used the recently proposed

harmonic mean (�) [62] of accuracies on seen classes ℒ�

(����→� ) and unseen classes ℒ� (����→� ) :

� = 2×����→� ×����→� /(����→� +����→� ). (7)

� offers a comprehensive metric in the practical ZSL case:

in many real applications, the test image would belong to

any class from both seen and unseen sets, and it is required

that the accuracy should be high on both of them. Note that

we slightly abuse the setting notations: U→ U, S→ T, U→
T as the accuracy calculated in the corresponding setting.

5.3. Comparisons with State-of-The-Arts

Comparing Methods. We compared SP-AEN with a

variety of ZSL methods as reported in [62]. These meth-

ods fall into two categories. 1) embedding based: De-

ViSE [14], ALE [2], SJE [3], ESZSL [49], LATEM[61],

CMT/CMT∗ [55], SAE [25]. As SP-AEN does, this catego-

ry maps images into the semantic embedding space where

all class labels reside. Note that CMT★ is CMT with nov-

elty detection and hence is not applicable for U→U setting.

To the best of our knowledge, SAE is the only ZSL method

that uses reconstruction to tackle the semantic loss prob-

lem. 2) attribute based: DAP [27], IAP [27], SSE [68],

CONSE [43], and SYNC [7]. These methods are based

on an intermediate inference of attributes in ZSL. Note that

this category cannot be applied in generic class embeddings

without the attribute annotations.

Results. Table 1 summarizes the performances (accura-

cy% and H%) of all the comparing methods under the three

settings on the four datasets. We have the following two key

observations: 1) Using the generalized ZSL setting metric

(U→T and H), SP-AEN significantly outperforms the best

competitors by around 4% to 12%. In particular, we can

clearly see that the performance gap between SP-AEN and

others becomes larger as the cosine similarity between the

attribute variances of the disjoint train and test splits. As

larger cosine similarity indicates smaller semantic loss, it

demonstrates the effectiveness of SP-AEN in alleviating the

semantic loss of ZSL. 2) Under the conventional ZSL set-

ting (U→U), in most cases, SP-AEN achieves the best per-

formance. This is reasonable as the search space of label

prediction is merely limited to the unseen sets, however, the

semantic loss may cause the semantic mapping of unseen

class images very similar to one of the seen classes, result-

ing in incorrect recognition.

Method SUN CUB AWA aPY

DirectMap 0.079 0.069 0.075 0.085

SAE 0.285 0.281 0.259 0.275

SplitBranch 0.070 0.058 0.059 0.076

SP-AEN 0.053 0.040 0.047 0.055

Table 3: The mean squared pixel-level loss between the in-

put images and its reconstructed images of various recon-

struction settings over four datasets.

5.4. Ablation Studies

5.4.1 Conflict between Classification & Reconstruction

To validate our key motivation for the design of SP-AEN:

The conflict between classification and reconstruction, as

illustrated in Figure 6. We propose three possible architec-

tures that can achieve the semantic-to-visual reconstruction

as SP-AEN: 1) DirectMap: For each input image, we use

� to get its discriminative semantic embedding and then
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Figure 4: Example reconstruction results of various architectures on CUB, SUN, AWA and aPY respectively.

SUN CUB AWA aPY

Setting U→U U→T S→T H U→U U→T S→T H U→U U→T S→T H U→U U→T S→T H

Cls. Only 56.8 17.2 29.0 21.6 52.2 23.5 55.0 32.9 60.2 17.5 76.7 28.5 35.8 5.5 72.9 10.2

Full Obj. 59.2 24.9 38.6 30.3 55.4 34.7 70.6 46.6 58.5 23.3 90.9 37.1 24.1 13.7 63.4 22.6

Table 2: Performances (accuracy% and H%) of all the comparing methods under the three settings on the four datasets.

Figure 6: Three reconstruction architectures evaluated.

Dashed line indicates fixed parameters at training.

use � to map it back to the image space. In this architec-

ture, we fix � and train �. DirectMap is used to evalu-

ate how much reconstructive semantics are preserved in the

discriminatively trained semantic embedding. 2) SAE [25]:

We adapt the SAE architecture using our image reconstruc-

tor � as the decoder and � as the encoder. The bottleneck

layer as semantic embedding is used for classification. We

jointly train E and G. 3) SplitBranch: We split the seman-

tic output of encoder E into two branches, and only the first

semantic embedding branch is used for classification. T-

wo semantic embedding branches are concatenated after t-

wo respective fully-connected layers. The merged semantic

representation is fed to decoder G to reconstruct image.

Reconstruction Results. Figure 4 shows some recon-

structed images and Table 3 reports the reconstruction loss-

es of the unseen images in the test splits of the four dataset-

s. We can have the following observations: 1) On CUB

and SUN, the images reconstructed by DirectMap are close

to SP-AEN, which have the highest quality. However, on

AWA and aPY, the reconstruction quality of DirectMap sig-

nificantly drops. Again, this is due to the semantic loss

between train and test set, as the attribute variance cosine

similarities of AWA and aPY are much larger than those

of CUB and SUN. 2) If we jointly train the discriminative

� and reconstructive � as in SAE, the reconstruction fails

in all examples; If we jointly train them as in SplitBranch,

we can observe significant quality improvement, closing to

SP-AEN. However, we find that the weight for merging the

semantic embedding of the classification branch is almost

zero, meaning the contribution of the semantic embedding

for reconstruction is minor. Therefore, the semantic trans-

fer is ineffective. This motivates us to use adversarial loss

in SP-AEN to allow semantic transfer and high-quality re-

construction at the same time.

5.4.2 Effectiveness of � and �

Since the score of seen classes is usually larger than that of

unseen classes, a calibrated stacking rule [8] to solve it by

subtracting a bias for seen classes to solve it:

�∗ = max
�∈ℒ�∪ℒ�

y
�
� �(�)− � [� ∈ ℒ�] .

Where the indicator function [⋅] indicates whether or not

� is a seen class and � ∈ ℝ is a calibration factor. This cal-

ibrated stacking rule represents a middle ground between

aggressively classifying each data point into seen classes

and conservatively classifying every data point into unseen
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Figure 5: Reconstruction results of different � in AWA, CUB, SUN and aPY respectively. The left image in the red bounding

box represents the original images, and decreases weights � in Eq. 5 from left to right.

classes. By varying the calibration factor �, we can compute

a series of classification accuracies (����→� and ����→� )

and plot the Seen-Unseen accuracy Curve (SUC). The Area

Under Seen-Unseen Accuracy Curve (AUSUC) is always

used as a performance metric to show the balance capa-

bility between this two conflicting objectives ����→� and

����→� in the generalized ZSL.

Figure 7: The Seen-Unseen accuracy Curve (SUC) [8] of

SUN, CUB, AWA and aPY respectively. The blue line rep-

resents SP-AEN with whole loss objectives and the orange

line represents SP-AEN with only classification loss objec-

tive. The cross denotes direct stacking when calibration fac-

tor � = 0.

Table 2 reports ablative results of SP-AEN without the

reconstruction � and discriminator � (Cls. Only) . We can

observe that by using adversarial training, we can signifi-

cantly improve the � value by over 10% on all datasets.

Figure 7 shows the AUSUC [8] of SP-AEN model with full

objective (Full Obj.) and with only classification objective

(Cls. Only)1. We can observe that SP-AEN (Full Obj.) is

1The performance results on Table 2 and Figure 7 are based on different

hyper parameters setting. For results in Table 2, � and � are set to 10 and

consistently larger than model(Cls. Only) over all dataset-

s. Both two types of metrics consistently demonstrates that

SP-AEN enables effective semantic transfer. Figure 5 illus-

trates shows that by lowering the trade-off of � compared

to �, the reconstruction quality will reduce.

6. Conclusions

We proposed a novel embedding based ZSL framework

called Semantics-Preserving Adversarial Embedding Net-

work (SP-AEN) to tackle the semantic loss problem in ZSL,

which was rarely addressed by prior works. SP-AEN solves

this problem by a novel visual reconstruction paradigm:

1) Introducing an independent visual-to-semantic mapping

and then the reconstruction from the semantic space to the

visual space would not affect the classification objective,

whose contradiction to the reconstruction objective is ex-

tensively validated in this paper. 2) Semantic transfer can

be achieved by adversarial learning between the two inde-

pendent semantic embeddings. The first step preserves the

semantics via reconstruction, while the second step enables

semantics transfer across classes. We validated the effec-

tiveness of SP-AEN through extensive comparative and ab-

lative experiments on four ZSL benchmarks.

Our future works may focus on 1) incorporating gen-

erative models into SP-AEN so as to hallucinating photo-

realistic images for unseen or even synthesized classes,

and 2) developing new ZSL frameworks such as semi-

supervised SP-AEN by imposing a prior semantic space.
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