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Abstract

Automatic saliency prediction in 360◦ videos is critical

for viewpoint guidance applications (e.g., Facebook 360

Guide). We propose a spatial-temporal network which is

(1) weakly-supervised trained and (2) tailor-made for 360◦

viewing sphere. Note that most existing methods are less

scalable since they rely on annotated saliency map for train-

ing. Most importantly, they convert 360◦ sphere to 2D im-

ages (e.g., a single equirectangular image or multiple sep-

arate Normal Field-of-View (NFoV) images) which intro-

duces distortion and image boundaries. In contrast, we

propose a simple and effective Cube Padding (CP) tech-

nique as follows. Firstly, we render the 360◦ view on six

faces of a cube using perspective projection. Thus, it in-

troduces very little distortion. Then, we concatenate all six

faces while utilizing the connectivity between faces on the

cube for image padding (i.e., Cube Padding) in convolu-

tion, pooling, convolutional LSTM layers. In this way, CP

introduces no image boundary while being applicable to al-

most all Convolutional Neural Network (CNN) structures.

To evaluate our method, we propose Wild-360, a new 360◦

video saliency dataset, containing challenging videos with

saliency heatmap annotations. In experiments, our method

outperforms baseline methods in both speed and quality.

1. Introduction
The power of 360◦ camera is to capture the entire view-

ing sphere (referred to as sphere for simplicity) surround-

ing its optical center, providing a complete picture of the

visual world. This ability goes beyond the traditional per-

spective camera and the human visual system which both

have a limited Field of View (FoV). Videos captured us-

ing 360◦ camera (referred to as 360◦ videos) are expected

to have a great impact in domains like virtual reality (VR),

autonomous robots, surveillance systems in the near future.

For now, 360◦ videos already gained its popularity thanks

to low-cost hardware on the market, and supports of video

streaming on YouTube and Facebook.

Despite the immersive experience and complete view-

Figure 1. Saliency prediction in a 360◦ video. Panel (a) shows a

challenging frame in equirectangular projection with two marine

creatures. One is near the north polar and the other is near the hor-

izontal boundary. Panel (b) shows that Cubemap projection with

Cube Padding (CP) mitigate distortion and cuts at image bound-

aries. As a result, we predict high-quality saliency map on the

Cubemap. In panel (c), when visualizing our predicted saliency

map on equirectangular, both marine creatures are recalled. In

panel (d), desirable Normal Field of Views (NFoVs) are obtained

from high-quality saliency map.

point selection freedom provided by 360◦ videos, many

works recently show that it is important to guide viewers’

attention. [22, 27, 52, 51] focus on selecting the optimal

viewing trajectory in a 360◦ video so that viewers can watch

the video in Normal FoV (NFoV). [30, 29] focus on provid-

ing various visual guidance in VR display so that the view-

ers are aware of all salient regions. Most recently, Chou et

al. [10] propose to guide viewers’ attention according to the

scripts in a narrated video such as a tour guide video. Yu

et al. [64] propose to generate a highlight video according

to spatial-temporal saliency in a 360◦ video. All methods

above involve predicting or require the existence of spatial-

temporal saliency map in a 360◦ video.

Existing methods face two challenges in order to pre-

dict saliency on 360◦ videos. Firstly, 360◦ videos capture

the world in a wider variety of viewing angles compared

to videos with an NFoV. Hence, existing image [9, 24]
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or video [37] saliency datasets are not ideal for training

saliency prediction model. One way to overcome this chal-

lenge is to collect saliency dataset directly on 360◦ videos.

In this direction, Facebook [1] and Youtube [2] are collect-

ing users’ viewing history on 360◦ videos. However, there

is a chicken and egg problem. Without the ability to predict

saliency and provide attention guidance, users will only be

interested in viewing some popular 360◦ videos. Moreover,

these data are proprietary which are not publicly available

to the research community.

Secondly, most existing methods [22, 27, 52, 51] apply

their techniques to process images with the equirectangular

projection (referred to as equirectangular images). How-

ever, equirectangular images introduce image boundaries,

and create distortion significantly at the top and bottom re-

gions. Both of them lead to prediction artifacts and make

the learning task harder. An alternative is to divide the 360◦

sphere into multiple but “separate” perspective images. Al-

though it avoids distortion, it will introduce more image

boundaries. We can also divide the 360◦ sphere into multi-

ple “overlapping” perspective images. Then, we only take

the saliency prediction in a center sub-region in order to

combine all predictions onto the whole sphere. However,

this will require many more perspective images and signifi-

cantly slow down the prediction process. Recently, Su and

Grauman [50] propose a new training procedure and a new

network structure (i.e., spherical convolution) to overcome

this challenge. We argue that a simpler modification on ex-

isting CNN can overcome this challenge.

In this work, we propose a spatial-temporal network con-

sisting of a static model and a ConvLSTM module to form a

temporal model. The static model is inspired by [66] which

computes a class-wise activation map per image. We re-

move the global average pooling and convert the last fully

connected layer into a 1-by-1 convolutional layer to obtain

a static feature per image. Note that this static model is

weakly-supervised trained by only monocular image level

supervision, i.e. without 360◦ videos. After that, static fea-

tures at several timesteps are fed into a ConvLSTM [63]

module to aggregate temporal information. Our temporal

model is also designed to be trained in an unsupervised

manner. During training, our loss function mainly enforces

temporal consistency on two consecutive predicted saliency

maps given precomputed optical flow. Note that the Con-

vLSTM module and temporal consistency loss encourage

the predicted saliency map to be temporally smooth and

motion-aware.

Most importantly, our model is tailor-made for 360◦

videos (see Fig. 1). Firstly, we project the 360◦ sphere on

six faces of a cube, which introduces very little distortion.

Then, we concatenate all six faces as an input while utiliz-

ing the connectivity between faces on the cube for image

padding (referred to as Cube Padding (CP)) in convolution,

pooling, convolutional LSTM layers. In this way, CP intro-

duces no image boundary while utilizing existing CNN lay-

ers. To evaluate our method, we propose Wild-360, a new

360◦ video saliency dataset, containing challenging videos

with saliency heatmap annotations. According to experi-

mental results, our method outperforms all baselines in both

speed and quality.

We summarize our contributions as below:

1. We propose an weakly-supervised trained spatial-

temporal saliency prediction model. This ensures that our

approach is scalable in overcoming large viewpoint varia-

tion in 360◦ videos. To the best of our knowledge, it is the

first method to tackle the 360◦ video saliency map predic-

tion in an weakly-supervised manner.

2. We introduce Cube Padding tailor-made for 360◦ videos

to mitigate distortion and image boundaries. This mod-

ule is fast, effective, and generally applicable to almost all

existing CNN architectures.

3. We collect a new Wild-360 dataset with challenging

360 videos. One-third of our dataset is annotated with per-

frame saliency heatmap for evaluation. Similar to [1, 2], we

collect heatmap by aggregating viewers’ trajectories, con-

sisting of 80 viewpoints per-frame.

4. Experimental results show that our method outperforms

baseline methods both in speed and quality.

2. Related work
To better comprehend the proposed method and the po-

tential contributions, we discuss the recent developments of

relevant techniques, including saliency map prediction, lo-

calization via weakly-supervised or unsupervised learning,

and 360◦ vision.

Saliency map prediction. Predicting where humans look

in an image has been a popular task in computer vision.

[32, 19, 4, 57, 65, 44] focus on detecting salient regions in

images. [31, 23, 11, 43, 42, 8, 60, 59, 53] employ deep

learning to achieve much better results. For videos, [12,

18, 33, 48, 37, 28] rely on low-level appearance and motion

cues as inputs. In addition, [26, 17, 47, 34, 15] consider

information such as face, people, objects, etc. However, all

these approaches demand heavy saliency supervision while

our method requires no manual saliency annotations.

Weakly-supervised localization. Recent techniques typ-

ically leverage the power of CNNs to localize the targets

in an image, where the CNNs are only trained with image-

level labels. The approach in [41] designs a Global Max

Pooling (GMP) layer to carry out object localization by

activating discriminative parts of objects. Subsequently,

Zhou et al. [66] propose Global Average Pooling (GAP) to

achieve a much better result on activating the object regions.

[58, 14, 5] instead consider using other pooling layers. Our

method treats the deep features from the last convolutional

layer, encoded with objectness clues, as saliency features

for further processing. Having obtained the spatial saliency
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maps by selecting maximum per-pixel responses, we can

then use these spatial heatmaps to learn or predict temporal

saliency. More recently, Hsu et al. [21] develop two cou-

pled ConvNets, one for image-level classifier and the other

for pixel-level generator. By designing a well-formulated

loss function and top-down guidance from class labels, the

generator is demonstrated to output saliency estimation of

good quality.

Unsupervised localization. One of the popular schemes

for designing unsupervised deep-learning model is to train

the underlying DNN with respect to the reconstruction loss.

The reconstruction loss between an input and a warped im-

age can be used for optical flow estimation [67] and for

single-view depth estimation [16]. Turning now our atten-

tion to the unsupervised learning methods for video object

segmentation, the two-stream neural network with visual

memory by Tokmakov et al. [55] is the current state-of-

the-art for the benchmark, DAVIS [45]. They generalize

the popular two-stream architecture with ConvGRU [7] to

achieve the good performance. Although the network archi-

tecture of our method is not two-stream, it does explore the

two-stream information sequentially, as shown in Figure 2.

That is, the ConvLSTM [63] adopted in our approach is

used to learn how to combine both spatial and temporal (in-

cluding motion) information. While both [55] and our work

use self-supervision from video dynamics, we specifically

focus on developing a general technique to solve the pole

distortion and boundary discontinuity in processing 360◦

videos.

360◦ Video. Different from the conventional, 360◦ videos

bring in a whole distinct viewing experience with immer-

sive content. The new way of recording yields, in essence,

a spherical video that allows the users to choose the viewing

directions for abundant scenarios as if they were in the cen-

ter of filming environment. In particular, techniques related

to virtual cinematography are introduced in [52, 51, 22, 27]

to guide the user to make the FoV selection when viewing a

360◦ video. Nevertheless, such a strategy targets selecting

a specific FoV and eliminates most of the rich content in a

360◦ video, while our proposed model generates a saliency

map to activate multiple regions of interest. Indeed only a

few attempts for estimating the saliency information in 360◦

videos have been made. The work by Monroy et al. [39] is

the first to tackle this problem. To generate a saliency map

for a 360◦ spherical patch, their method computes the cor-

responding 2D perspective image, and detect the saliency

map using model pre-trained on SALICON dataset. Tak-

ing account of where the spherical patch is located at, the

final result of saliency detection can be obtained by refining

the 2D saliency map. However, defects due to the image

boundaries are not explicitly handled. In SALTINET [6],

Assens et al. propose to predict scan-path of a 360◦ image

with heavy manual annotations. Unlike our approach, these

methods all require strong supervision.

Dataset. One of the main contributions of our work is

the effort to establish a new Wild-360 dataset. We thus

briefly describe the current status of major collections rel-

evant to (our) 360◦ video analysis. The MIT300 [9] in-

cludes 300 benchmark images of indoor or outdoor scenes,

collected from 39 observers using an eye tracker. It also

comes with AUC-Judd and AUC-Borji evaluation metrics,

which are adopted in our work. SALICON [24] has 10,000

annotations on MS COCO images, collected by a mouse-

contingent multi-resolution paradigm based on neurophys-

iological and psychophysical studies of peripheral vision

to simulate the natural viewing behavior of humans. The

Densely-Annotated VIdeo Segmentation (DAVIS) [45] is a

new dataset with 50 high-resolution image sequences with

all their frames annotated with pixel-level object masks.

DIEM [38] has, by far, collected data from over 250 partici-

pants watching 85 different videos, and the fixations are re-

ported with respect to the user’s gaze. Finally, the Freiburg-

Berkeley Motion Segmentation Dataset [40] comprises a to-

tal of 720 frames, annotated with pixel-accurate segmen-

tation annotation of moving objects. However, none of

the datasets motioned above provides ground truth saliency

map annotation on 360◦ videos to evaluate our proposed

method.

3. Our method
In this section, we present our overall method as shown

in Fig. 2, which consists of projection processes, static

model, temporal model and loss functions. We describe

Cube Padding and potential impacts in Sec. 3.2, our static

model in Sec. 3.3, temporal model in Sec. 3.4. Before that,

we first introduce the various notations used in our formu-

lation.

3.1. Notations
Given a 360◦ equirectangular 2D map M ∈ R

c×q×p

with the number of channels c, width p and height q, we

define a projection function P to transform M to a cube-

map representation M ∈ R
6×c×w×w with the edge length

of the cube set to w. Specifically, M is a stack of 6

faces {MB ,MD,MF ,ML,MR,MT }, where each face

M j ∈ R
c×w×w, and j ∈ {B,D,F, L,R, T} represents

the Back, Down, Front, Left, Right, and Top face, re-

spectively. We can further inverse transform M back to

M by M = P−1(M). Note that a RGB equirectangular

image I is, in fact, a special 2D map where c = 3 and

I ∈ R
6×3×w×w is a special cubemap with RGB value. For

details of the projection function P please refer to the sup-

plementary material.

3.2. Cube padding
Traditionally, Zero Padding (ZP) is applied at many lay-

ers in a Convolutional Neural Network (CNN) such as con-

volution and pooling. However, in our case, M consists of

6 2D faces in a batch, observing the whole 360◦ viewing
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Figure 2. Visualization of our system. Panel (a) shows our static model: (1) the pre-process to project an equirectangular image I to

a cubemap image I , (2) the CNN with Cube Padding (CP) to extract a saliency feature Ms, (3) the post-process to convert Ms into an

equirectangular saliency map OS . Panel (b) shows our temporal model: (1) the convLSTM with CP to aggregate the saliency feature

Ms through time into H , (2) the post-process to convert H into an equirectangular saliency map O, (3) our self-supervised loss function

to compute Lt given current Ot and previous Ot−1. Panel (c) shows the total loss to be minimized. Panel (d) shows the post-process

module including a max-pooling, inverse projection (P−1), and upsampling (U). Panel (e) shows the pre-processing module with cubemap

projection.

Figure 3. Illustration of Cube Padding (CP). In panel (a), we apply

CP for the face F which leverages information (in yellow rectan-

gles) on face T, L,R,D naturally rather than padding with zero

values (i.e., zero padding). Panel (b) shows that this can be done

in cubemap matric representation M ∈ R6×c×w×w. Panel (c)

shows how to fold the faces back to a cube.

sphere. If we put M to normal architecture with ZP in ev-

ery single layer, the receptive field will be restricted inside

each face, separating 360◦ contents into 6 non-connected

fields. To solve this problem, we use Cube Padding (CP) to

enable neurons to see across multiple faces by the intercon-

nection between different faces in M . For an input M , CP

takes the adjacent regions from the neighbor faces and con-

catenate them to the target face to produce a padded feature

map. Fig. 3 illustrates a case of target faceMF which is ad-

jacent with MR,MT ,ML and MD. CP then simply con-

siders the corresponding pads as shown in yellow patches

in Fig. 3 outside MF , where these pads are concatenated

with MF . Panel (a) in Fig. 3 illustrates that the yellow CP

patch on the cubemap in 3D is visually similar to padding

on sphere. Panel (b) shows the padding directions of MF

in M batch.

Although the padding size of CP is usually small, e.g.

only 1 pixel for kernel size=3 and stride=1, by propagating

M through multiple layers incorporated with CP, the recep-

tive field will gradually become large enough to cover con-

tents across nearby faces. Fig. 4 illustrates some responses

of deep features from CP and ZP. While ZP fails to have

responses near the face boundaries, CP enables our model

to recognize patterns of an object across faces.

To sum up, Cube Padding (CP) has following advan-

tages: (1) applicable to most kinds of layers in CNN (2)

the CP generated features are trainable to learn 360◦ spatial

correlation across multiple cube faces, (3) CP preserves the

receptive field of neurons across 360◦ content without the

need for additional resolution.

3.3. Static model
For each frame I of an input video sequence, our static

model feeds preprocessed I into the CNN. As shown in

panel (a) of Fig. 2, CP module is incorporated in every con-

volutional and pooling layers in our CNN. The static model

output MS is obtained by multiplying the feature map Mℓ

generated from the last convolutional layer with the weight

of the fully connected layer Wfc.

MS =Mℓ ∗Wfc (1)

where MS ∈ R
6×K×w×w, Mℓ ∈ R

6×c×w×w, Wfc ∈
R

c×K×1×1, c is the number of channels, w is correspond-
ing feature width, “∗” means the convolution operation and
K is the number of classes for a model pre-trained on a spe-
cific classification dataset. To generate a static saliency map
S, we simply pixel-wisely select the maximum value inMS
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Figure 4. Feature map visualization from VGG Conv5 3 layer.

When Cube Padding (CP) is used (the first row), the response con-

tinuous through the face boundaries. However, when Zero Padding

(ZP) is used (the second row), the responses near the boundaries

vanished since each face is processed locally and separately. The

last row shows the corresponding cubemap images containing sev-

eral marine creatures across face boundaries.

along the class dimension.

S
j(x, y) = max

k
{M j

S(k, x, y)} ; ∀j ∈ {B,D, F, L,R, T} ,

(2)

where Sj(x, y) is the saliency score at location (x, y) of

cube face j, and the saliency map in equirectangular pro-

jection S can be obtained with S = P−1(S). To get the

final equirectangular output, we upsample S to O as shown

in Fig. 2 panel (d).

3.4. Temporal model
Convolutional LSTM. Motivated by studies [46, 35, 36],
human beings tend to put their attention on moving ob-
jects and changing scenes rather than static, we design our
temporal model to capture dynamic saliency in a video se-
quence. As shown in the light gray block in Fig. 2, we use
ConvLSTM as our temporal model, a recurrent model for
spatio-temporal sequence modeling using 2D-grid convolu-
tion to leverage the spatial correlations in input data, which
has been successfully applied to precipitation nowcasting
[63] task. The ConvLSTM equations are given by

it = σ(Wxi ∗MS,t +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗MS,t +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

gt = tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

Ct = it ◦ gt + ft ◦ Ct−1

ot = σ(Wxo ∗Mt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct) , (3)

where ◦ denotes the element-wise multiplication, σ(·) is

the sigmoid function, all W∗ and b∗ are model parame-

ters to be learned, i, f, o are the input, forget, and output

control signals with value [0, 1], g is the transformed in-

put signal with value [−1,−1], C is the memory cell value,

H ∈ R6×K×w×w is the hidden representation as both the

output and the recurrent input, MS is the output of the static

model (see Eq. (1)), t is the time index which can be used

in subscript to indicate timesteps.
We generate saliency map from Ht equivalent to Eq. (2).

S
j
t (x, y) = max

k
{Hj

t (k, x, y)} ; ∀j ∈ {B,D, F, L,R, T} ,

(4)

where S
j
t (x, y) is the generated saliency score at location

(x, y) of cube face j at time step t. Similar to our static

model, we upsample S to O to get the final equirectangular

output.

Temporal consistent loss. Inspired by [21, 67, 16] that

model correlation between discrete images in an self-

supervised manner by per-pixel displacement warping,

smoothness regularization, etc., we design 3 loss func-

tions to train our model and refine Ot by temporal con-

straints: temporal reconstruction loss Lrecons, smoothness

loss Lsmooth, and motion masking loss Lmotion. The total

loss function of each time step t can be formulated as:

Ltotal
t = λrL

recons
t + λsL

smooth
t + λmLmotion

t (5)

In the following equations, i.e. Eqs. (6)–(9), N stands
for the number of pixels along spatial dimensions of one
feature map, Ot(p) is the output at pixel position p at time
step t, and m is optical flow by [62]. Lrecons

t is computed
as the photometric error between the true current frame Ot

and the warped last frame Ot−1(p+m):

Lrecons
t =

1

N

N
∑

||Ot(p)−Ot−1(p+m)||2 (6)

The reconstruction loss is formed by an assumption:
the same pixel across different short-term time step should
have a similar saliency score. This term helps to refine the
saliency map to be more consistent in patches i.e. objects
with similar motion patterns. Lsmooth

t is computed by the
current frame and the last frame as:

Lsmooth
t =

1

N

N
∑

||Ot(p)−Ot−1(p)||
2

(7)

The smoothness term is used to constrain the nearby
frames to have a similar response without large changes. It
also restrains the other 2 terms with motion included, since
the flow could be noisy or drifting. Lmotion

t is used for mo-
tion masking:

Lmotion
t =

1

N

N
∑

||Ot(p)−O
m
t (p)||2 (8)

O
m
t =

{

0, if |m(p)| ≤ ǫ;

Ot(p), elsewhere.
(9)

We set ǫ in Eq. (9) as a small margin to eliminate the pixel

response where motion magnitude lowers than ǫ. If a pat-

tern in a video remains steady for several time steps, it is in-

tuitively that the video saliency score of these non-moving

pixels should be lower than changing patches.
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For sequence length of ConvLSTM set to Z, the aggre-

gated loss will be Ltotal =
∑Z

Ltotal
t . By optimizing our

model with these loss functions jointly to Ltotal throughout

the sequence, we can get the final saliency result by consid-

ering temporal patterns though Z frames.

4. Dataset
For the purpose of testing and benchmarking saliency

prediction on 360◦ videos, a first and freshly collected

dataset named Wild-360 is presented in our work. Wild-

360 contains 85 360◦ video clips, totally about 55k frames.

60 clips within our dataset are for training and the rest 25

clips are for testing. All the clips are cleaned and trimmed

from 45 raw videos obtained from YouTube. We manu-

ally select raw videos from keywords “Nature”, “Wildlife”,

and “Animals”; these keywords were selected in order to

get videos with the following aspects: (i) sufficiently large

number of search results of 360◦ video on YouTube, (ii)

multiple salient objects in a single frame with diverse cate-

gories, (iii) dynamic contents inside the videos to appear in

regions of any viewing angles including polar and borders.

The Wild-360 dataset is also designed to be diverse in ob-

ject presence and free from the systematic bias. We rotate

each testing video in both longitude and latitude angle to

prevent the center-bias in ground truth saliency.

Recently, [1, 2] both announced to collect saliency

heatmap of 360◦ videos by aggregating the viewers’ tra-

jectories during manipulation with view ports. To adopt

the similar approach, but also giving the global perspec-

tive to viewers to easily capture multiple salient regions

without missing hot spots, we adopt HumanEdit interface

from [52]. HumanEdit, as the Wild-360 labeling platform,

encourages labelers to directly record attention trajectories

based on their intuition. 30 labelers were recruited to label

the videos in testing set, and they were asked to annotate

from several viewing angles ψ ∈ {0◦, 90◦, 180◦}. There-

fore, there are about totally 80 viewpoints in a single frame.

During annotation, videos and 3 rotation angles are shuf-

fled to avoid order effect. In this setting, various positions

could be marked as salient regions. Similar to [54], we fur-

ther apply Gaussian mask to every viewpoint to get aggre-

gated saliency heatmap. Typical frames with ground truth

heatmap (GT) are shown in the supplementary material. In

order to foster future research related to saliency prediction

in 360 videos, we plan to release the dataset, once the paper

is published.

5. Experiments
We compare our saliency prediction accuracy and speed

performance with many baseline methods. In the following,

we first give the implementation details. Then, we describe

the baseline methods and evaluation metric. Finally, we re-

port the performance comparison.

5.1. Implementation details
We use ResNet-50 [20] and VGG-16 [49] pretrained on

ImageNet [13] to construct our static model. For temporal

model, we set Z of ConvLSTM to 5 and train it for 1 epoch

with ADAM optimizer and learning rate 10−6. We set the

hyperparameters of temporal loss function to balance each

term for steady loss decay. We set λr = 0.1, λs = 0.7,

λt = 0.001. To measure the computational cost and quality

performance of different settings, we set w = 0.25p, where

w and p is the width of the cubemap and equirectangular

image respectively. Moreover, the width of the equirect-

angular is 2 times the height of the equirectangular image,

q = 0.5p. This setting is equivalent to [3] and fixes the total

area ratio between cubemap and equirectangular image to

0.75. We implement all the padding mechanism rather than

using built-in backend padding for fair comparison.

To generate ground truth saliency map of Wild-360, re-

ferring to [54] and heatmap providers [1], the saliency dis-

tribution was modeled by aggregating viewpoint-centered

Gaussian kernels. We set σ = 5 to lay Gaussian inside the

NFoV for invisible boundaries. To avoid the criterion being

too loose, only locations on heatmap with value larger than

µ+ 3σ were considered “salient” when creating the binary

mask for the saliency evaluation metrics, e.g. AUC.

5.2. Baseline methods
Our variants.

Equirectangular (EQUI) — We directly feed each equirect-

angular image in a 360◦ video to our static model.

Cubemap+ZP (Cubemap) — As Sec. 3.2 mentioned, our

static model takes the six faces of the cube as an input

to generate the saliency map. However, unlike CP, Zero

Padding (ZP) is used by the network operations, i.e. con-

volution, pooling, which causes the loss of the continuity of

the cube faces.

Overlap Cubemap+ZP (Overlap) — We set FoV = 120◦ so

that each face overlaps with each other by 15◦. This variant

can be seen as a simplified version of CP that process with

larger resolution to cover the content near the border of each

cube face. Note that this variant has no interconnection be-

tween faces, which means only ZP is used.

EQUI + ConvLSTM — We feed each equirectangular im-

age to our temporal model to measure how much better the

temporal model improves over static model.

Existing methods.

Motion Magnitude — As Sec. 3.4 mentioned, most salient

regions in our videos are non-stationary. Hence we directly

use the normalized magnitude of [62] as saliency map to see

how much motion clue contributes to video saliency.

Consistent Video Saliency — [61] detects salient regions in

spatio-temporal structure based on the gradient flow and en-

ergy optimization. It was the state-of-the-art video saliency

detection methods on SegTrack [56] and FBMS [40].

SalGAN — [42] proposed a Generative Adversarial Net-

work (GAN) to generate saliency map prediction. SalGAN
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Figure 5. Speed of static methods. h-axis represents image resolu-

tion, v-axis represents FPS. As the resolution increase, the speed

of Ours Static becomes closer to Cubemap. Besides, Ours Static

exceeds EQUI and Overlap in FPS for all the tested resolutions.

Figure 6. Speed of temporal methods. h-axis represents image res-

olution, v-axis represents FPS. Ours is faster than EQUI + ConvL-

STM.

is the current state-of-the-art model on well-known tradi-

tional 2D saliency dataset SALICON [24] and MIT300 [9].

Note that this work focuses on saliency prediction on single

image and needs ground truth annotations to do supervised

learning. Hence, it cannot be trained on our dataset.

5.3. Computational efficiency
To compare the inference speed of our approach with

other baselines with common resolution scale of 360◦

videos, we conduct an experiment to measure the Frame-

Per-Second (FPS) along different resolutions. Fig. 5 shows

the speed of static methods including Cubemap, EQUI,

Overlap, and our static model (Ours Static). Fig. 6 shows

the speed comparison between two methods using ConvL-

STM: EQUI+ConvLSTM and our temporal model (Ours).

The left and right side of both figures is for ResNet-50 and

VGG-16, respectively. The resolutions are set from 1920

(Full HD) to 3840 (4K). The result of Fig 5 shows that Ours

Static is slower than Cubemap but faster than Overlap and

EQUI. Note that at the same amount of time, Ours Static has

the ability to compute with a frame much larger than EQUI.

Additionally, Fig. 6 shows that Ours is significantly faster

than EQUI+ConvLSTM. We evaluate the computational ef-

ficiency on NVIDIA Tesla M40 GPU.

5.4. Evaluation metrics
We refer to the MIT Saliency Benchmark [9] and report

three common metrics:

AUC-Judd (AUC-J). AUC-Judd [25] measures differences

between our saliency prediction and the human labeled

ground truth by calculating the true positive and false posi-

tive rate for the viewpoints.

VGG-16 CC AUC-J AUC-B

Cubemap 0.338 0.797 0.757

Overlap 0.380 0.836 0.813

EQUI 0.285 0.714 0.687

EQUI + ConvLSTM 0.330 0.823 0.771

Ours Static 0.381 0.825 0.797

Ours 0.383 0.863 0.843

ResNet-50 CC AUC-J AUC-B

Cubemap 0.413 0.855 0.836

Overlap 0.383 0.845 0.825

EQUI 0.331 0.778 0.741

EQUI + ConvLSTM 0.337 0.839 0.783

Ours Static 0.448 0.881 0.852

Ours 0.420 0.898 0.859

Baselines CC AUC-J AUC-B

Motion Magnitude [62] 0.288 0.687 0.642

ConsistentVideoSal [61] 0.085 0.547 0.532

SalGAN [42] 0.312 0.717 0.692
Table 1. Saliency prediction accuracy in CC, AUC-J, and AUC-

B. Our methods (bold font) consistently outperform all baseline

methods. See Sec. 5.2 for the baseline methods compared.

AUC-Borji (AUC-B). AUC-Borji score uniformly and ran-

domly samples image pixels as negative and defines the

saliency map values above the threshold at these pixels as

false positives.

Linear Correlation Coefficient (CC). The linear correla-

tion coefficient is a distribution based metric to measure the

linear relationship of given saliency maps and the view-

points. The coefficient value is bounded between -1 and

1, representing the linear dependencies between our output

and ground truth.

5.5. Saliency comparison
From saliency comparison shown in Table. 1, we ob-

serve the following: (1) Our temporal model is the best

in all evaluation metrics except one where our static model

is better; (2) ConvLSTM improves performance since typi-

cally EQUI+ConvLSTM outperforms EQUI and Ours out-

performs Ours Static. Typical examples are shown in Fig. 7,

where we compare EQUI, Ours Static, with Ours. Our tem-

poral model typical predicts smooth saliency map in time

and is more effective to salient regions on image boundaries

or in the top/bottom part of the image.

5.6. NFoV piloting
We use Wild-360 dataset and a set of Drone videos to

demonstrate our result. Our scenario is to generate class

specific NFoV trajectory. We use our per-frame saliency

feature M to get the score of each sampled viewing angle

by average all the scores inside its corresponding NFoV on

M. Then O is extracted by M(ĉ), where ĉ is a class index

decided by user. To link per-frame NFoV’s to a trajectory
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Figure 7. Qualitative examples. In each block, consecutive frames of various methods, ground truth, and raw videos are shown in the left

panel. We highlight regions for comparison using white dash rectangles. In the right panel, one example is zoom-in (red box) and two

salient NFoVs (yellow boxes) are rendered. Our temporal method (Ours) significantly outperforms others in overcoming distortion, image

boundaries, and smoothness in time. See more examples in supplementary materials.

Figure 8. NFoV piloting results. The left and right sides show the result of Wild-360 dataset and Drone data, respectively. Panel (a) shows

a video frame with targeted FoV drawn in orange. Panel (b) shows EQUI (top) and Ours Static (bottom) saliency maps. Panel (c) shows

NFoVs in multiple time steps with white dash boxes indicating the targeted regions. NFoV Piloting with Ours Static in all 4 videos is more

capable to capture the target regions.

Methods win / loss

Ours Static vs. EQUI 95 / 65

Ours Static vs. Cubemap 97 / 63

Ours vs. Ours Static 134 / 26

Ours vs. GT 70 / 90

Table 2. Human evaluation results. We have 16 viewers watching

10 clips in each row so the number of wins and losses combined

is 160. The result shows that Ours Static outperforms other static

baselines; Ours outperforms Ours Static and is comparable to GT.

by saliency score, we use AUTOCAM [52] to find a feasi-

ble path of salient viewpoints. Fig. 8 shows that the NFoV

tracks we generated are able to capture salient viewpoints

better than equirectangular.

5.7. Human evaluation
We design 4 user tests and compare our methods with

different image formats (Ours Statics vs. EQUI and Our

Static vs. Cubemap) and the performance of our temporal

model (Ours vs. Ours Static and Ours vs. GT). Settings

of the 4 tests are shown in Table. 2. In each test, we pick

10 different clips from the Wild-360 test set and generate

saliency map prediction from 2 different methods. We ask

16 viewers to select the saliency map prediction which (1)

activates on salient regions more correctly, (2) is smoother

across frames. We further conduct a two-tailed binomial

test and it shows that Ours Static is statistically superior

to EQUI and Cubemap with p-value < 0.05. This implies

that Ours Static is a strong preference over using EQUI and

Cubemap. Moreover, Ours significantly outperforms Ours

Static with p-value < 0.01. When compared with ground

truth, the p-value is 0.13 which implies that the saliency

map generated by Ours is comparable with ground truth.

6. Conclusion

We propose a novel spatial-temporal network which is

(1) weakly-supervised trained without 360◦ supervision and

(2) tailor-made for 360◦ viewing sphere, where a simple and

effective Cube Padding (CP) technique is introduced. On a

newly collected Wild-360 dataset with challenging videos

and saliency heatmap annotations, our method outperforms

state-of-the-art methods in both speed and quality.
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