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Abstract

We introduce a new network structure for decomposing

an image into its intrinsic albedo and shading. We treat it as

an image-to-image transformation problem and explore the

scale space of the input and output. By expanding the out-

put images (albedo and shading) into their Laplacian pyra-

mid components, we develop a multi-channel architecture

that learns the image-to-image transformation function in

successive frequency bands in parallel, within each channel

is a fully convolutional neural network. This network ar-

chitecture is general and extensible, and has demonstrated

excellent performance on the task of intrinsic image de-

composition. We evaluate the network on two benchmark

datasets: the MPI-Sintel dataset and the MIT Intrinsic Im-

ages dataset. Both quantitative and qualitative results show

our model delivers a clear progression over state-of-the-art.

1. Introduction

There has been an emerging trend in representation

learning that learns to disentangle from an image the latent

codes accounting for various dimensions of the input, e.g.,

illumination, pose or attributes [2, 43, 47]. Yet one of the

preliminary forms of this problem – to decompose an image

into its intrinsic albedo and shading – has drawn less atten-

tion. Solution to the intrinsic image decomposition problem

would enable material editing, provide cues for depth esti-

mation, and provide a computational explanation to some of

the long standing problems in vision perception (e.g. light-

ness constancy). However, even with continuing progress

(e.g. [8, 25]), this problem still remains a challenging task.

Part of the difficulty lies in the under-determinedness

of this problem. Based on prior knowledge of albedo and

shading, the Retinex algorithm constrains the decomposi-

tion into a thresholding problem in the gradient domain.

This model is practical, but would fail to handle complex

material or geometry that has sharp edges or casts shadows

under strong point sources. Another part of the difficulty
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Figure 1. Given an input image, our lapPyrNet jointly produces

Laplacian pyramid components that collapse into the target albedo

and shading images in high quality. Our network features by a

multi-channel architecture that treats intrinsic image decomposi-

tion as image-to-image transformation in separate frequency bands

in the scale space.

lies in the complexity of the forward image generation pro-

cess – a process that transforms scene geometry, reflectance

and illumination into a 2D image via the dynamics of opti-

cal interactions and projection. Intrinsic image decomposi-

tion is partly trying to invert this process.

In this work, we treat the intrinsic decomposition process

with an image-to-image transformation framework, using a

deep neural network as a function approximator to learn the

mapping relations. While models of similar ideas have been

proposed (e.g. [37, 32]), our model explores the scale space

of the input and output images, and considers to simplify

the fitting of a single complex transformation by horizon-

tally expanding the function approximation pipeline into a

parallel set of sub-band transformations.

The contribution of this work is in developing a scale-

space decomposition network for intrinsic image genera-

tion. We do this by resuing the classical Gaussian and

Laplacian pyramid structure with learnable down/up sam-

plers. The result is a multi-branch network that pro-

duces a Level-Of-Detail decomposition of the output albedo

and shading. And the decomposition components are im-

plemented as sub-networks (one branch for each), which

in turn are collapsed to fit the target images (Figure 1).
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We propose novel loss functions that respect properties of

albedo and shading for edge preservation and smoothness.

We further implement a data augmentation scheme to fight

against the scarcity of labeled data – that is, we take inspi-

ration from breeder learning [36], and use a preliminarily

trained network to generate predictions from unlabeled im-

ages, and a synthesis procedure to perturb and generate new

data with exact ground truth labels for refining the model.

This data augmentation scheme is applicable to other net-

work training that learns to invert a generative process.

We have evaluated our model on the MPI-Sintel

dataset [7] and the MIT intrinsic image dataset [17]. Experi-

mental results demonstrate the effectiveness of the proposed

model and our network engineering components. Our final

model achieves state-of-the-art performance with a signifi-

cant margin over previous methods in a variety of evaluation

metrics.

2. Related work

Intrinsic images: A series of solutions have been

seen since Barrow and Tenenbaum first propose this prob-

lem [46], for example, the Retinex method [29, 18], learn-

ing based method using local texture and color cues [45],

and joint optimization using data-driven priors [4]. With

the advent of deep neural networks, solution to this prob-

lem has shifted to a pure data-driven, end-to-end training

with various forms of feed forward convolutional neural

networks. Direct Intrinsics [37] is a successful early exam-

ple of this type, using a (back then seemingly bold) multi-

layer CNN architecture to transform an image directly into

shading and albedo. Successive models include the work

of Kim et al. [25] that predicts depth and the other intrin-

sic components together with a joint convolutional network

that has shared intermediate layers and a joint CRF loss,

and the DARN [32] network that incorporates a discrimina-

tor network and the adversarial training scheme to enhance

of the performance of a “generator” network that produces

the decomposition results.

Scale space and image pyramids: The investigation of im-

age scale space is no less old-fashioned than that of the

intrinsic image decomposition in vision. The studies of

Koenderink [27] in the 1980’s reveals a diffusion process

that “explicitly defines the deep structure of (an) image”

that relates to the DOG structure revealed in even earlier

studies [35]. Around the same time, Burt and Adelson pro-

posed the Laplacian pyramid structure that decomposes an

image into a hierarchical Level-Of-Detail (LOD) represen-

tation using successive Gaussian filtering and the DOG op-

erator [6]. Scale space decomposition also widely exists in

other fields of study, such as 3D graphics (e.g. [19]) and

numerical computing (e.g. [48]).

Deep convolutional networks provide a natural hierar-

chical feature pyramid for multi-scale information process-

ing. The feature pyramid network (FPN) makes predictions

from multi-level feature maps for object detection with top-

down communication [34]. Pinheiro et al. [40] propose a

two-way hierarchical feature aggregation network for object

segmentation. The work of Ghiasi et al. [16] produces seg-

mentation score maps with spatia-semantic trade-offs from

different network layers, and aggregates them into a final

segmentation map by pyramid collapsing. The work of

Lai et al. [28] utilizes a similarly deeply stacked network

and feature maps to generate image detail map of multi-

scales for image super-resolution. Notably, all of the above

work utilizes hierarchical features from a CNN network for

multi-scale processing. In generative modeling, a Laplacian

pyramid inspired GAN network is proposed by Denton et

al. [11] that learns generative modules in a Laplacian pyra-

mid structure for image generation.

Image-to-image transformation: There is a variety of vi-

sion tasks that can be formulated as image-to-image trans-

formation problem. Intrinsic image decomposition is one

such example. Isola et al. [23] recently introduced an

image-to-image translation network for several other tasks,

including image colorization, sketch-to-image, and image-

to-map generation. In this work, Isola et al. model the

image-to-image transformation as a conditional generative

process and use an adversarial loss for network training.

Note that a set of other vision tasks, such as dense pixel

labeling (e.g. object segmentation [1]), depth estimation

from single image [49], and the recent label-to-image syn-

thesis network ([9], also in [23]) can also be framed as the

image-to-image transformation problem, that is, to map pix-

els to pixels. Instead of hand engineering the mapping pro-

cess for each task individually, we engineered a generic, ex-

tensible network architecture that is tangential to the work

of Isola et al. [23] and features in exploiting the dimension

of scale-space decomposition for the form of input/output

transformation of this problem.

3. Method

Let us first consider the transformation of an input im-

age I to an output image A as a complex, highly nonlin-

ear, and pixel-wise nonlocal mapping function I → f(I).
It has been well demonstrated that deep convolutional neu-

ral networks are a general and practical parametrization and

optimization framework for a variety of such mapping rela-

tions (from image classification to image-to-language trans-

lation). Now, let us consider how to adapt the network ar-

chitecture to the image-to-image transformation problem, in

which the input and output are both images that have a nat-

ural Level-Of-Detail (LOD) pyramid structure, and that the

mapping function linking the input to the output may also

have a multi-channel decomposition based on the pyramid
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Figure 2. Network architecture reformation (see section 3.1).

hierarchy. In the next section (3.1) we are going to describe

our model reformation process from a ResNet architecture

that exploits this property to our final multi-channel hierar-

chical network architecture.

We write the Gaussian pyramid of an image I as

[I0, I1, ..., IK ], where I0 = I and K is the total number

of layers. We denote the k-th Laplacian pyramid layer by

Lk(I) = Ik − u(Ik+1) where u is the up-sample operator.

By definition, the Laplacian pyramid expansion of the im-

age is I = [L0(I),L1(I), ...,Lk−1(I), IK ], where L0(I)
is the detail layer of the original resolution and IK is the

lowest resolution layer defined in the Gaussian pyramid.

3.1. Network Architecture and Reformation

First, let us use a simplified network of two blocks (L

and H) to model the mapping I → f(I): L for the mapping

of the low frequency band, and H handles the mapping in

the high frequency band and whatever residuals that are left

out by L. With the skip connection and summation of the

output of L to the output of H , this network (Figure 2-a) is

an instantiation of the ResNet architecture [21].

Next, by applying Laplacian pyramid expansion on the

output, we can split the loss for (a) into two components:

the output of L is restrained to fit the low-frequency Gaus-

sian component, and that of H to fit the Laplacian detail

component separately (Figure 2-b). This reformed network

is equivalent to (a) but with tighter constraints.

A critical transition is from (b) to (c) – as it turns out

possible to re-wire the two stacked blocks into parallel

branches, by connecting the output of L to that of H with

summation, and adjusting the loss on H accordingly. The

resulted network structure (c) is equivalent to (b) – they

represent equivalent forms of the Laplacian decomposition

equation that have the residual component moved from lhs

to rhs with necessary sign change. The loss of L in (c) re-

mains the same as a regularizer and our experiments find it

is optional and is a barrier for numerical performance. The

network structure (c) is the building block for our final ex-

tended model.

The final model is illustrated in Figure 2-d, for which we

introduce multiple sub-network blocks H0, H1, ...HK−1

for the high frequency bands and one subnetwork block LK

for the low frequency, in analogy to the Laplacian pyramid

decomposition structure: the inputs to the network blocks

are down-sampled in cascade, and outputs of the network

blocks are up-sampled and aggregated from left to right to

form the target output. All of the parameters of the down-

sample and up-sample operators (the gray-shaded trape-

zoids in Figure 2) are learned in network. All of the network

blocks share the same architectural topology, which we re-

fer as “residual blocks” and describe in detail in section 3.2.

3.2. Residual Block

The residual blocks are end-to-end convolutional subnet-

works that share the same topology, and transform the in-

put in different scales to the corresponding Laplacian pyra-

mid components. Each residual block consists of 6 sequen-

tially concatenated Conv(3x3)-ELU-Conv(3x3)-ELU sub-

structures (Figure 3 (a-b)). Because we are predicting per-

pixel value from an input image, no fully connected lay-

ers are used. We adopt the skip connection scheme that

is popular in recent researches (e.g. [21], [34]), includ-

ing some variant of the DenseNet architecture by Huang et

al. [22]. Specifically, in each sub-structure, the output of the

last Conv is element-wise accumulated with a skip connec-

tion, and the result is the input to the last ELU unit. The

intermediate layers have 32 feature channels and output is a

3-channel image or residual image. A 1x1 Conv is added to

the skip connection path of the first and last layer for dimen-

sion expansion/reduction to match the output of the residual

path (Figure 3 (c)).

Instead of ReLU and Batch Normalization, we use Expo-

nential Linear Units (ELU) as our activation function [10],

because ELU can generate negative activation value when

x < 0 and has zero-mean activations, both of which im-

prove the robustness to noise and convergence in training

when our network becomes deeper. Besides, we removed

the BN layer because it can be partially replaced by ELU

which is 2x faster and more memory efficient.

3.3. Loss Function

The loss function is defined as follows:

L = λdLdata + λpLpercep + λtLtv (1)

which contains a Data loss, a feature-based Perceptual loss

and a Total Variation loss as regularization. The hyper pa-

rameters are empirically set as: λd = 1.0; λp =0.5; λt =
10−4.

Data loss: The data loss defines pixel level similarity

between the predicted image and the ground-truth. Instead
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Figure 3. Illustration of our Residual Block

of using the pixel-wise MSE, we employ the following

joint bilateral filtering (also known as cross bilateral

filtering[13, 39]) loss combined with the constraint that the

multiplication of the predicted albedo and shading should

match the input:

Ldata =
∑

C∈{A,S}

1

Np

∑

p∈C

||Jp − Cp||
2
2 + ||Ã∗S̃−I||22

(2)

Jp =
1

Wp

∑

q∈N (p)

Gσs
(||p− q||)Gσr

(|Cp − Cq|)C̃p (3)

Wp =
∑

q∈N (p)

Gσs
(||p− q||)Gσr

(|Cp − Cq|) (4)

The cross bilateral filtering loss ensures smoothness of

the output albedo and shading, and preserves sharp edges

for albedo and strong cast shadows in shading (e.g. Fig-

ure 1). In contrary, the alternative MSE loss tends to pro-

duce blurry edges across boundaries in the output, which is

also seen in [37] and [32] (see Figure 6). Here σs = 1.0,

σr uses the adaptive bilateral filtering mechanism, Gσs
and

Gσr
are the spatial and range Gaussian kernels, both with

neighborhood size 5x5.

Perceptual loss: High-level semantic structures should be

preserved in the transformation process as well, so a CNN-

feature based perceptual loss [24, 12] is used. We make use

of the standard VGG-19 [44] network to extract semantic

information from neuron activations. Our perceptual loss is

defined as follows:

Lfeat =
∑

C∈{A,S}

∑

l

1

FlHlWl

||Φl(C̃)− Φl(C)||
2
2 (5)

where Φl(C) is the network activations of C at the

l-th layer that have size Fl × Hl × Wl, and l =
relu1 2, relu2 2, relu3 4 and relu4 4 are the VGG-19

network layers before pooling.

Total Variation loss: Lastly, we use a total variation term

to impose smoothness of the output results.

Ltv =
∑

C∈{A,S}

∑

i,j

|C̃i+i,j − C̃i,j |+ |C̃i,j+1 − C̃i,j | (6)

where i and j are image row and column indices.

Our final model is trained with the above loss on the

output of H0 combined with all outputs from lower level

branches (Figure 2-(d)). This constrains all network chan-

nels simultaneously and gradients can back-propagate and

dispatch more flexibly. Another training scheme, as we

mentioned in section 3.1, is to train the network from left

to right in an incremental manner (LK , HK−1, HK−2,

...), and every time has the loss defined for the corre-

sponding Gaussian pyramid level, e.g. loss(AK , ÃK),

loss(AK−1, ÃK−1), loss(A0, ...Ã0) for the albedo net-

work. This incremental training constrains the network to

output a near-perfect Gaussian pyramid, and that the sub-

network Hi, i = K − 1, ...0 outputs the expected Laplacian

detail layer. Figure 1 shows intermediate outputs of the net-

work trained in this scheme for illustration. Except we state

otherwise, the quantitative results are obtained using the si-

multaneous training scheme.

3.4. SelfAugmented Training

In this section, we describe a data augmentation strat-

egy for incorporating unlabeled images to self-augment our

network training process. We draw the inspiration from the

work of breeder learning [36]. The idea is to employ a for-

ward generative model to generate new training pairs for a

model by perturbing parameters produced by the model to

be augmented. This mechanism bears the spirit of Boostrap

to some extent and turns out to be quite effective. For ex-

ample, Li et al. [33] recently applied this strategy in an ap-

pearance modeling network by generating training images

from model’s predicted reflectance of unlabeled images.

We start with a preliminary network trained with a mod-

erately sized dataset that has ground-truth albedo and shad-

ing. We then apply the network to a set of new images

and obtain the estimated albedo Ã and shading S̃. With a

straightforward synthesis procedure, we can generate a new

image from the estimations. Note that by our loss defini-

tions, Ã and S̃ are not hard constrained to exactly match the

input image (as in [32]), so the new synthesized images will

deviate from the original ones.

To introduce further perturbation in the augmented

dataset, we additionally apply an Adaptive Manifold Filter-

ing (AMF, [15]) operation to Ã and S̃ and use the filtered

results to synthesize new data (see Figure 4). The AMF fil-

tering operator suppresses noise or unwanted details in Ã

and S̃ that may come from the input images or produced by

the premature network, and serves to “regularize” the man-

ifold of the new synthesized images and their ground-truth
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Figure 4. Our data augmentation process uses a preliminarily train

model to produce estimations for unlabeled data, and use the esti-

mation result to synthesize new data for self-augmented training.

label space so that the network is not misled to overfit capri-

cious details in the self-augmented training process.

4. Evaluation

In this section we describe evaluation of the model on

the MPI-Sintel dataset and the MIT Intrinsic Images dataset

and show results in Table 1-3 and Figure 5-6.

4.1. Experiment Setup

DataSet and Metrics The MPI-Sintel dataset[7] is com-

posed of 18 scene level computer generated image se-

quences, 17 of which contain 50 images of the scene and

one contains 40 images. We follow [37, 32] and use the

ResynthSintel version in our experiment because the data

satisfies the A × S = I constraint. Two types of train/test

split (scene split and image split) are used for head-to-head

comparison with previous work. The scene split splits the

dataset at scene level which takes half of the scenes for

training and the rest scenes for testing. The image split ran-

domly pick half of the images for training/testing without

considering their scene category. The original version of

the MIT Intrinsic dataset [17] has 20 object-level images

taking in a laboratory environment setup, each with 11 dif-

ferent lighting conditions. We use the same strategy of [5]

to split the data for direct comparison.

Evaluations are based on the following metrics:

si-MSE scale-invariant mean squared error (si-MSE) de-

fines the pixel-wise MSE up to a free scaling factor

(see [5]).

si-LMSE scale invariant local mean square error (si-

LMSE) measures the averaged si-MSE on local win-

dow patches as the window slides over the image with

a stride. The window size is usually set to 10% of the

image size along the larger dimension and stride is half

of the window size:

si-LMSE(Cgt, C̃) =
1

NW

∑

ω∈W

si-MSE(Cω
gt, C̃

ω)

LMSE The LMSE measure is the “normalized” si-LMSE

measure on albedo and shading together. We use this

metric on the MIT Intrinsic Images dataset. Local win-

dow size for si-LMSE is set to 20 (as in [18]):

LMSE =
1

2

si-LMSE(Sgt, S̃)

si-LMSE(Sgt, 0)
+

1

2

si-LMSE(Agt, Ã)

si-LMSE(Agt, 0)

DSSIM The structural similarity is quantized by dissim-

ilarity structural similarity index measure as 1−SSIM
2

(see [51] for SSIM definition).

Implementation Details We implemented our model in the

PyTorch framework with mini-batch size 8. In training, we

get the input image by randomly cropping patches of size

256 × 256 after scaling by a random factor in [0.8,1.2] and

using random horizontal flipping with probability 0.5. We

empirically construct 4 levels of pyramids and initialize all

the weights with the strategy of [20]. Besides, we adopt the

Adam [26] optimization method with a learning rate starting

at 10−4 and decreasing to 10−6. We use 2x the size of the

training data as the size of the augmentation data in both

experiments.

4.2. Evaluation on MPISintel Dataset

The evaluation results on the MPI-Sintel dataset are in

Table 1-2 and Figure 6. Again, our model produces favor-

able results over previous methods, especially in the scene

split where the network is less prone to “overfit” for the test

data.

Comparison with Previous Work: We first compare our

model with a series of previous methods, including the two

naive baselines Constant Shading and Constant Albedo, a

few of the traditional methods ([18, 30, 8, 5]), and the recent

up-to-date neural network based models ([38, 31, 25, 14]).

The result shows our model with/without data augmentation

both yield new state-of-the-art performance across all the

three metrics.

We do want to point out the quantitative result of all

methods (including ours) on the Sintel image split might

be misleading to some extent. This is because the image

sequences of the same scene category in the Sintel dataset

are very similar to each other, so by splitting all the data at

image level (images of the same scene type may appear in

both train and test sets), an over-fit network on the training

set will still appear to “perform” well on the test set. But

the scene split dataset will not have this problem. An inter-

esting result in the Tables is that the margin of our results
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Sintel image split
si-MSE si-LMSE DSSIM

A S avg A S avg A S avg

Baseline: Constant Shading 5.31 4.88 5.10 3.26 2.84 3.05 21.40 20.60 21.00

Baseline: Constant Albedo 3.69 3.78 3.74 2.40 3.03 2.72 22.80 18.70 20.75

Color Retinex [18] 6.06 7.27 6.67 3.66 4.19 3.93 22.70 24.00 23.35

Lee et al. [30] 4.63 5.07 4.85 2.24 1.92 2.08 19.90 17.70 18.80

Barron & Malik [5] 4.20 4.36 4.28 2.98 2.64 2.81 21.00 20.60 20.80

Chen and Koltun [8] 3.07 2.77 2.92 1.85 1.90 1.88 19.60 16.50 18.05

Direct Intrinsic [38] 1.00 0.92 0.96 0.83 0.85 0.84 20.14 15.05 17.60

DARN [31] 1.24 1.28 1.26 0.69 0.70 0.70 12.63 12.13 12.38

Kim et al. [25] 0.7 0.9 0.7 0.6 0.7 0.7 9.2 10.1 9.7

Fan et al. [14] 0.67 0.60 0.63 0.41 0.42 0.41 10.50 7.83 9.16

Ours Sequential 0.83 0.74 0.79 0.58 0.54 0.56 7.61 7.91 7.76

Ours Hierarchical 0.81 0.78 0.79 0.58 0.58 0.58 8.18 7.16 7.62

Ours w/o Pyramid 0.92 1.37 1.15 0.65 1.15 0.90 8.44 10.96 9.70

Ours w/ MSE loss 0.72 0.62 0.67 0.62 0.46 0.50 7.98 6.37 7.18

Ours w/ ‘FPN’ input 0.73 0.60 0.67 0.49 0.43 0.46 6.84 6.76 6.80

Ours Final* 0.66 0.60 0.63 0.44 0.42 0.43 6.56 6.37 6.47

Ours Final+DA 0.61 0.57 0.59 0.41 0.39 0.40 5.86 5.97 5.92
Table 1. Quantitative Evaluation (×100) on the MPI-Sintel image split

Sintel scene split
si-MSE si-LMSE DSSIM

A S avg A S avg A S avg

Direct Intrinsic [38] 2.01 2.24 2.13 1.31 1.48 1.39 20.73 15.94 18.33

DARN [31] 1.77 1.84 1.81 0.98 0.95 0.97 14.21 14.05 14.13

Fan et al. [14] 1.81 1.75 1.78 1.22 1.18 1.20 16.74 13.82 15.28

Ours Sequential 1.61 1.56 1.58 1.05 1.11 1.08 10.24 11.90 11.07

Ours Hierarchical 1.59 1.51 1.55 0.98 1.01 0.99 8.70 9.55 9.13

Ours w/o Pyramid 1.82 2.01 1.92 1.01 1.39 1.20 14.43 14.27 14.35

Ours w/ MSE loss 1.47 1.44 1.46 0.92 0.95 0.93 9.48 10.97 10.23

Ours w/ ‘FPN’ input 1.46 1.40 1.43 0.96 0.97 0.97 8.50 9.30 8.90

Our Final* 1.38 1.38 1.38 0.92 0.93 0.92 8.46 9.26 8.86

Our Final+DA 1.33 1.36 1.35 0.82 0.89 0.85 7.70 8.66 8.18
Table 2. Quantitative Evaluation (×100) on the MPI-Sintel scene split

to previous results is larger in the scene split (Table 2) than

the image split (Table 1). In the Tables, even though we

hold a fairly moderate margin on the image split, the mar-

gin we hold on the scene split is up to 25% in si-MSE and

43% in DSSIM, showing that our network can generalize

significantly better for this more challenging data split.

From Sequential to Parallel Architecture: An impor-

tant network architecture reformation we described in sec-

tion 3.1 is from the sequential structure to the multi-branch

parallel structure (Figure 2-(a) to (c)). This reformation flat-

tens a deeply stacked network into a set of parallel channels,

therefore alleviates the issues of gradient back-propagation.

The row (Ours Sequential) displays the result by the se-

quential architecture (a) in Figure 2. It shows this archi-

tecture produces comparable performance against previous

works, but suboptimal to our final model, especially in the

DSSIM metric (7.76 and 11.07 down to 6.47 and 8.86).

Hierarchical Optimization vs Joint Optimization: An-

other architectural optimization in our work is removing the

constraint (loss) at each Laplacian pyramid level (Figure 2-

(c)), and simultaneously train all the network channels with

a single loss constraint (Figure 2-(d)). We call the opti-

mization scheme in the latter case joint optimization, and

that of the former hierarchical optimization. A figure is in-

cluded in the supplemental material explaining more details

of the hierarchical optimization. In Table 1-2, it shows a

10%− 15% improvement by the joint optimization scheme

across all metrics.

Self-Comparison on other Factors: We also have a set

of controlled self-comparison with respect to other factors,

including the pyramid structure, loss function, alternating

network input, and data augmentation.

Pyramid structure The row (Ours w/o Pyramid) displays

result using a single-channel network, i.e. we use a single
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residual block to produce output from input directly without

having the multi-band decomposition structure. The results

in Table 1 and Table 2 show that our counterpart model with

the pyramid structure improves over than 30% compared to

controlled setting by turning this feature off. Note the net-

work complexity grows sub-linearly up to a constant factor

as the number of pyramid layer increases.

Loss function: The row (Ours w/ MSE loss) displays result

by replacing our loss function with the classical MSE loss.

It turns out the quantitative error with the MSE loss does not

degrade by a large factor in the scale-invariant MSE metrics.

However, qualitative results in supplemental material do re-

veal the MSE loss produces results with blurry edges. The

structure-based metric (DSSIM) also shows a clearer mar-

gin (from 10.23 to 8.86 in the scene split) between the MSE

loss and our loss.

CNN features as input We further investigate the affect of

having Gaussian pyramid image components as input of our

network in this task, as most existing multi-scale deep net-

works (e.g. [34, 40, 16, 28]) use multi-scale features pro-

duced by a CNN network. The row (Ours w/ ‘FPN’ input)

shows the result that takes CNN features as input follow-

ing exactly the FPN network [34]. The comparison shows

our final model holds a slight but unclear advantage, mean-

ing that the high level features of a CNN still well preserve

much of the necessary semantic information for our pixel-

to-pixel transformation network.

Data augmentation The last row in Table 1-2 shows the ef-

fect of our data augmentation. We obtain a set of cartoon

clips crawled from the Web that share similar property with

the MPI dataset (see an example in Figure 4). The size of

the augmentation data is set to 2 times of the labeled train-

ing data. Further increasing the augmentation data size did

not produce important improvement in our experiment.

4.3. Evaluation on MIT Intrinsic Images Dataset

We also evaluated the performance of our model against

a set of previous methods on the MIT Intrinsic Images

dataset. The results are shown in Table 3 and Figure 5. In

this set of experiments, we conducted data augmentation in

two different setups: Ours + DA and Ours + DA+. The

difference is in the data that we take for the augmentation.

Ours + DA is by the ordinary setting where the augment-

ing data is searched from the web by a set of similar object

category names the dataset provides. In Ours + DA+, in-

stead, we generate the augmenting dataset from the same set

of objects (depth and reflectance) of the MIT Intrinsic Im-

ages dataset under new illumination conditions (spherical

harmonic illuminations from [3] and the rendering method

by [41]). This creates a dataset that highly resembles the

original dataset and is practically impossible to acquire in

real case. In other words, it sets a ceiling for the quality

of augmentation data. The results in Table 3 shows that

Input Shi	et	al.	[35] Direct	Intrinsic	[33] Fan	et	al.	[10] Ours Ground	Truth

Figure 5. Qualitative results on the MIT Intrinsic dataset examples.

Top three rows are albedo; the bottom three rows are shading.

Mit Intrinsic Data
si-MSE LMSE

Albedo Shading Average Total

Zhou et al. [50] 0.0252 0.0229 0.0240 0.0319

Barron et al. [5] 0.0064 0.0098 0.0081 0.0125

Shi et al. [42] 0.0216 0.0135 0.0175 0.0271

Direct Intrinsic et al. [38] 0.0207 0.0124 0.0165 0.0239

Fan et al. [14] 0.0127 0.0085 0.0106 0.0200

Ours* 0.0089 0.0073 0.0081 0.0141

Ours + DA 0.0085 0.0064 0.0075 0.0133

Ours + DA+ 0.0074 0.0061 0.0068 0.0121

Table 3. Evaluation on the MIT Intrinsic Images dataset.

both augmentation setups are effective, and the latter one

gives clue to the limit we can get from the data augmenta-

tion scheme we introduced for this task.

5. Conclusion

We have introduced a Laplacian pyramid inspired neu-

ral network architecture for intrinsic images decomposition.

The network models the problem as image-to-image trans-

formation and expands the input and output in their scale

space. We have conducted experiments on the MPI Sintel

and MIT dataset and produced state-of-the-art quantitative

results and good qualitative results. For future work, we

expect the proposed network architecture to be tested and

refined on other image-to-image transformation problems,

e.g., pixel labeling or depth regression.
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