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Abstract

We propose a new context-aware correlation filter based

tracking framework to achieve both high computational

speed and state-of-the-art performance among real-time

trackers. The major contribution to the high computational

speed lies in the proposed deep feature compression that

is achieved by a context-aware scheme utilizing multiple

expert auto-encoders; a context in our framework refers

to the coarse category of the tracking target according to

appearance patterns. In the pre-training phase, one expert

auto-encoder is trained per category. In the tracking phase,

the best expert auto-encoder is selected for a given target,

and only this auto-encoder is used. To achieve high tracking

performance with the compressed feature map, we intro-

duce extrinsic denoising processes and a new orthogonality

loss term for pre-training and fine-tuning of the expert auto-

encoders. We validate the proposed context-aware frame-

work through a number of experiments, where our method

achieves a comparable performance to state-of-the-art track-

ers which cannot run in real-time, while running at a signifi-

cantly fast speed of over 100 fps.

1. Introduction

The performance of visual trackers has vastly improved

with the advances of deep learning research. Recently, two

different groups for deep learning based tracking have

emerged. The first group consists of online trackers which

rely on continuous fine-tuning of the network to learn the

changing appearance of the target [25, 30, 35, 36, 40]. While

these trackers result in high accuracy and robustness, their

computational speed is insufficient to fulfil the real-time

requirement of online tracking. The second group is com-

posed of correlation filter based trackers utilising raw deep

convolutional features [6, 7, 10, 22, 27]. However, these fea-

tures are designed to represent general objects contained

in large datasets such as ImageNet [28] and therefore are

of high dimensionality. As the computational time for the
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Figure 1. Comparison of computational efficiency. This plot

compares the performance and computational speed of the proposed

tracker (TRACA) with previous state-of-the-art trackers using the

CVPR2013 dataset [37]. TRACA shows comparable performance

with the best performing non real-time trackers, while running at a

fast speed of over 100 fps.

correlation filters increases with the feature dimensionality,

trackers within the second group do not satisfy the real-time

requirement of online tracking either.

In this work, we propose a correlation filter based tracker

using context-aware compression of raw deep features,

which reduces computational time, thus increasing speed.

This is motivated by the observation that a lower dimen-

sional feature map can sufficiently represent the single target

object which is in contrast to the classification and detec-

tion tasks using large datasets that cover numerous object

categories. Compression of high dimensional features into

a low dimensional feature map is performed using autoen-

coders [11,24,32,39]. More specifically, we employ multiple

auto-encoders whereby each auto-encoder specialises in a

specific category of objects; these are referred to as expert

auto-encoders. We introduce an unsupervised approach to

find the categories by clustering the training samples ac-

cording to contextual information, and subsequently train
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one expert auto-encoder per cluster. During visual tracking,

an appropriate expert auto-encoder is selected by a context-

aware network given a specific target. The compressed fea-

ture map is then obtained after fine-tuning the selected expert

auto-encoder by a novel loss function considering the orthog-

onality of the correlation filters. The compressed feature map

contains reduced redundancy and sparsity, which increases

accuracy and computational efficiency of the tracking frame-

work. To track the target, correlation filters are applied to the

compressed feature map. We validate the proposed frame-

work through a number of self-comparisons and show that

it outperforms other trackers using raw deep features while

being notably faster at a speed of over 100 fps (see Fig. 1).

2. Related Works

Online deep learning based trackers: Recent trackers

based on online deep learning [25,30,35,36,40] have outper-

formed previous low-level feature-based trackers. Wang et

al. [35] proposed a framework simultaneously utilising shal-

low and deep convolutional features to consider detailed

and contextual information of the target respectively. Nam

and Han [25] introduced a novel training method which

avoids overfitting by appending a classification layer to a

convolutional neural network that is updated online. Tao et

al. [30] utilised a Siamese network to estimate the similari-

ties between the target’s previous appearance and the current

candidate patches. Yun et al. [40] suggested a new track-

ing method using an action decision network which can be

trained by a reinforcement learning method with weakly

labelled datasets. However, trackers based on online deep

learning require frequent fine-tuning of the networks, which

is slow and prohibits real-time tracking. David et al. [16]

and Bertinetto et al. [1] proposed pre-trained networks to

quickly track the target without online fine-tuning, but the

performance of these trackers is lower than that of the state-

of-the-art trackers.

Correlation filter based trackers: The correlation filter

based approach for visual tracking has become increasingly

popular due to its rapid computation speed [2, 4, 5, 8, 17, 20,

23]. Henriques et al. [17] improved the tracking performance

by extending the correlation filter to multi-channel inputs and

kernel-based training. Danelljan et al. [8] developed a new

correlation filter that can detect scale changes of the target.

Ma et al. [23] and Hong et al. [20] integrated correlation

filters with an additional long-term memory system. Choi et

al. [5] proposed a tracker with an attentional mechanism

exploiting previous target appearance and dynamics.

Correlation filter based trackers showed state-of-the-

art performance when deep convolutional features were

utilised [6, 7, 10, 27]. Danelljan et al. [7] extended the reg-

ularised correlation filter [9] to use deep convolutional fea-

tures. Danelljan et al. [10] also proposed a novel correlation

filter to find the target position in the continuous domain to

incorporate features of various resolutions. Ma et al. [27]

estimated the target position by fusing the response maps

obtained from convolutional features of various resolutions.

However, even though each correlation filter works fast, raw

deep convolutional features have too many channels to be

handled in real-time. A first step towards decreasing the fea-

ture space was made by Danelljan et al. [6] by considering

the linear combination of raw deep features, however the

method still cannot run in real-time, and the deep feature

redundancy was not fully suppressed.

Multiple-context deep learning frameworks: Our pro-

posed tracking framework benefits from the observation that

the performance of deep networks can be improved using

contextual information to train multiple specialised deep

networks. Indeed, there are several works utilizing such a

scheme. Li et al. [21] proposed a cascaded framework de-

tecting faces through multiple neural networks trained by

samples divided according to the degree of their detection

difficulty. Vu et al. [33] integrated the head detection results

from two neural networks, one specialising in local informa-

tion and the other one in global information. Neural networks

specialising in local and global information have also been

utilised in the saliency map estimation task [34,43]. In crowd

density estimation, many works [26, 29, 42] have increased

their performance by using multiple deep networks with

different receptive fields to cover various scales of crowds.

3. Methodology

The proposed TRAcker based on Context-aware deep

feature compression with multiple Auto-encoders (TRACA)

consists of multiple expert auto-encoders, a context-aware

network, and correlation filters as shown in Fig. 2. The expert

auto-encoders robustly compress raw deep convolutional fea-

tures from VGG-Net [3]. Each of them is trained according

to a different context, and thus performs context-dependent

compression (see Sec. 3.1). We propose a context-aware

network to select the expert auto-encoder best suited for the

specific tracking target, and only this auto-encoder is running

during online tracking (see Sec. 3.2). After initially adapting

the selected expert auto-encoder for the tracking target, its

compressed feature map is utilised as an input of correlation

filters which track the target online. We introduce the general

concept of correlation filters in Sec. 3.3 and then detail the

tracking processes including the initial adaptation and the

online tracking in Sec. 3.4.

3.1. Expert Auto­encoders

Architecture: Auto-encoders have shown to be suitable

for unsupervised feature learning [18, 19, 32]. They offer a

way to learn a compact representation of the input while

retaining the most important information to recover the input

given the compact representation. In this paper, we propose

to use a set of Ne expert auto-encoders of the same structure,

480



�ሺ1ሻ
t=1

Initial ROI

Context-aware Network

VGG Network

Raw Convolutional 

Feature

Encoder

Expert 
Auto-encoder

Selection

Auto-encoder 

Adaptation

t≥2
�ሺtሻ

ROI Extraction

Decoder ��ሺ�ሻ�
ℎ

Initial Adaptation Process

Online Tracking Sequence

VGG Network

Raw Convolutional 

Feature

Encoder
Correlation 

Filters

�ሺtሻ
Response�’

Compressed 
Feature

Online Filter Update

Correlation Filter Tracking

�
Expert Auto-encoder

Encoder

Encoder

���
Decoder

1Decoder

Multiple Expert Auto-encoders

Figure 2. Proposed algorithm scheme. The expert auto-encoder is selected by the context-aware network and fine-tuned once by the ROI

patch at the initial frame (I(1)). For the following frames, we first extract the ROI patch (I(t)) centred at the previous target position. Then, a

raw deep convolutional feature (X) is obtained through VGG-Net, and is compressed by the fine-tuned expert auto-encoder. The compressed

feature (Z′) is used as the feature map for the correlation filter, and the target’s position is determined by the peak position of the filter

response. After each frame, the correlation filter is updated online by the newly found target’s compressed feature.

each covering a different context. The inputs to be com-

pressed are raw deep convolutional feature maps obtained

from one of the convolution layers in VGG-Net [3].

To achieve a high compression ratio, we stack Nl encod-

ing layers which are followed by Nl decoding layers in the

auto-encoder. The l-th encoding layer fl is a convolutional

layer working as fl : R
w×h×cl → R

w×h×cl+1 , thus reduc-

ing the channel dimension cl of the input to latent channel

dimension cl+1 while preserving the resolution of the fea-

ture map. The output of fl is provided as input to fl+1 such

that the channel dimension c decreases as the feature maps

pass through the encoding layers. More specifically, in our

proposed framework one encoding layer reduces the channel

dimension in half, i.e. cl+1 = cl/2 for l ∈ {1, · · · , Nl}. By

denoting the (Nl − k + 1)-th decoding layer by gk in the ad-

verse way of fl, gk : Rw×h×ck+1 → R
w×h×ck expands the

input channel dimension ck+1 into ck to restore the original

dimension c1 of X at the last layer of the decoder, where k ∈
{1, · · · , Nl}. Then, the auto-encoder AE can be expressed

as AE(X) ≡ g1(· · · (gNl
(fNl

(· · · (f1(X))))) ∈ R
w×h×c1

for a raw convolutional feature map X ∈ R
w×h×c1 , and

the compressed feature map in the auto-encoder is defined

as Z ≡ fNl
(· · · (f1(X))) ∈ R

w×h×cNl+1 . All convolution

layers are followed by the ReLU activation function, and the

size of their convolution filters is set to 3× 3.

Pre-training: The pre-training phase for the expert auto-

encoders is split into three parts, each serving a distinct

purpose. First, we train the base auto-encoder AEo using

all training samples to find context-independent initial com-

pressed feature maps. Then, we perform contextual cluster-

ing on the initial compressed feature maps of AEo to find

Ne context-dependent clusters. Finally, these clusters are

used to train the expert auto-encoders initialised by the base

auto-encoder with one of the sample clusters.

The purpose of the base auto-encoder is twofold: Using

the context-independent compressed feature maps to cluster

the training samples and finding good initial weight parame-

ters from which the expert auto-encoders can be fine-tuned.

The base auto-encoder is trained by raw convolutional fea-

ture maps {Xj}
m
j=1 with a batch size m. The Xj is obtained

as the output from a convolutional layer involved in VGG-

Net [3] fed by randomly selected training images Ij from a

large image database such as ImageNet [28].

To make the base auto-encoder more robust to appear-

ance changes and occlusions, we use two denoising criteria

which help to capture distinct structures in the input distribu-

tion (illustrated in Fig. 3). The first denoising criterion is a

channel corrupting process where a fixed number of feature

channels is randomly chosen and the values for these chan-

nels is set to 0 (while the other channels remain unchanged),

which is similar to the destruction process of denoising auto-

encoders [32]. Thus all information for these channels is

removed and the auto-encoder is trained to recover this infor-

mation. The second criterion is an exchange process, where

some spatial feature vectors of the convolutional feature

are randomly interchanged. Since the receptive fields of

the feature vectors cover different regions within an image,

exchanging the feature vectors is similar to interchanging

regions within the input image. Thus, interchanging feature

vectors that cover the background region and target region
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(a) Channel corrupting process (b) Feature vector exchange process

Figure 3. Extrinsic denoising criteria. To increase robustness of

the compressed feature map in the pre-training, two extrinsic de-

noising criteria are applied to the raw deep feature map which is

the input of the auto-encoder. (a) In the channel corrupting process,

some randomly selected channels are set to zero. (b) In the ex-

change process, randomly chosen feature vectors are interchanged.

respectively leads to a similar effect as the background oc-

cluding the target. Therefore, the auto-encoders are trained

to be robust against occlusions. We denote {X̌j}
m
j=1 as the

mini-batch after performing the two denoising processes.

Then, the base auto-encoder AEo can be trained by minimis-

ing the distance between the input feature map Xj and its

output AEo(X̌j) with the noisy sample X̌j .
However, when we only consider the distance between

the input and the final output of the base auto-encoder,
we frequently observed an overfitting problem and unsta-
ble training convergence. To solve these problems, we de-
sign a novel loss based on a multi-stage distance which
consists of the distances between the input and the out-
puts obtained by the partial auto-encoders. The partial auto-

encoders {AEi(X)}Nl

i=1 contain only a portion of the en-
coding and decoding layers of their original auto-encoder
AE(X), while the input and output sizes match that of
the original auto-encoder, i.e. AE1(X) = g1(f1(X)),
AE2(X) = g1(g2(f2(f1(X)))), · · · when AE(X) =
g1(· · · (gNl

(fNl
(· · · (f1(X)))))). Thus, the loss based on the

multi-stage distance can be described as:

Lae =
1

m

m
∑

j=1

Nl
∑

i=1

‖Xj −AE
o
i (X̌j)‖

2
2, (1)

where AEo
i (X) is the i-th partial auto-encoder of AEo(X),

and recall that m denotes the mini batch size.

Then, we cluster the training samples {Ij}
N
j=1 according

to their respective feature maps compressed by the base

auto-encoder, where N denotes the total number of training

samples. To avoid overfitting of the expert auto-encoders due

to a too small cluster size, we introduce a two-step clustering

algorithm which avoids small clusters.

In the first step, we find 2Ne samples which are chosen

randomly from the feature maps compressed by the base

auto-encoder (note that this is twice the amount of desired

clusters). We repeat the random selection 1000 times and

find the samples which have the largest Euclidean distance

amongst them as initial centroids. Then, all training samples

are clustered by k-means clustering with k = 2Ne using

the compressed feature maps. In the second step, among the

resulting 2Ne centroids, we remove the Ne centroids of the

clusters with the smallest number of included samples. Then,

Ne centroids remain, and we cluster the training samples

again using these centroids, which results in Ne clusters

including enough samples to avoid the overfitting problem.

We denote the cluster index for Ij as dj ∈ {1, ..., Ne}.

The d-th expert auto-encoder AEd is then found by fine-

tuning the base auto-encoder using the training samples with

contextual cluster index d. The training process (including

the denoising criteria) differs from the base auto-encoder

only in the training samples.

3.2. Context­aware Network

Architecture: The context-aware network selects the ex-

pert auto-encoder which is most contextually suitable for

a given tracking target. We adopt a pre-trained VGG-M

model [3] for the context-aware network since it contains a

large amount of semantic information from pre-training on

ImageNet [28]. Given a 224 × 224 RGB input image, our

context-aware network consists of three convolutional layers

{conv1, conv2, conv3} followed by three fully connected

layers {fc4, fc5, fc6}, whereby {conv1, conv2, conv3, fc4}
are identical to the corresponding layers in VGG-M. The

weight parameters of fc5 and fc6 are initialised randomly

with zero-mean Gaussian distribution. fc5 is followed by a

ReLU function and contains 1024 output nodes. Finally fc6

has Ne output nodes and is combined with a softmax layer to

estimate the probability for each of the expert auto-encoders

to be suited for the tracking target.

Pre-training: The context-aware network takes a training
sample Ij as input and outputs the estimated probabilities of
that sample belonging to cluster index dj . It is being trained

by a batch {Ij , dj}
m′

j=1 of image/cluster-index pairs where

m′ is the mini-batch size for the context-aware network. We
fix the weights of {conv1, conv2, conv3, fc4}, and train the
weights for {fc5, fc6} by minimising the multi-class loss
function Lpr using stochastic gradient descent, where

Lpr =
1

m′

m′

∑

j=1

H(dj , h(Ij)), (2)

H denotes the cross-entropy loss, and h(Ij) is the predicted

cluster index of Ij by the context-aware network h.

3.3. Correlation Filter

Before detailing the tracking process of TRACA, we

briefly introduce the functionality of conventional correla-

tion filters using a single-channel feature map. Based on the

property of the circulant matrix in the Fourier domain [13],

correlation filters can be trained quickly which leads to

high-performing trackers under low computational load [17].

Given the vectorised single-channel training feature map

z ∈ R
wh×1 and the vectorised target response map y ob-

tained from a 2-D Gaussian window with size w × h and
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variance σ2
y as in [17], the vectorised correlation filter w can

be estimated by:

w = F−1

(
ẑ⊙ ŷ

ẑ⊙ ẑ∗ + λ

)
, (3)

where ŷ and ẑ represent the Fourier-transformed vector of

y and ẑ respectively, ẑ∗ is the conjugated vector of z, ⊙
denotes an element-wise multiplication, F−1 stands for an

inverse Fourier transform function, and λ is a predefined

regularisation factor.

For the vectorised single-channel test feature map z′ ∈
R

wh×1, the vectorised response map r can be obtained by:

r = F−1
(
ŵ ⊙ ẑ

′∗
)
. (4)

Then, after re-building a 2-D response map R ∈ R
w×h

from r, the target position is found from the maximum peak

position of R.

3.4. Tracking Process

To track a target in a scene, we rely on a correlation

filter based algorithm using the compressed feature map of

the expert auto-encoders as selected by the context-aware

network. We describe the initial adaptation of the selected

expert auto-encoder in Sec. 3.4.1 followed by a presentation

of the correlation filter based tracking algorithm in Sec. 3.4.2.

3.4.1 Initial Adaptation Process

The initial adaptation process contains the following parts.

We first extract a region of interest (ROI) including the tar-

get from the initial frame, and the expert auto-encoder suit-

able for the target is selected by the context-aware network.

Then, the selected expert auto-encoder is fine-tuned using

the raw convolutional feature maps of the training samples

augmented from the ROI. When we obtain the compressed

feature map from the fine-tuned expert auto-encoder, some

of its channels represent background objects rather than the

target. Thus, we introduce an algorithm to find and remove

the channels which respond to the background objects.

Region of interest extraction: The ROI is centred

around the target’s initial bounding box, and is 2.5 times

bigger than the target’s size to cover the area nearby. We

then resize the ROI of width W and height H to 224× 224
in order to match the expected input size of the VGG-Net.

This results in the resized ROI I(1) ∈ R
224×224×3 for the

rgb domain. For grey-scale images, the grey value is repli-

cated three times to obtain I(1). The best expert auto-encoder

for the tracking scene is selected according to the contextual

information of the initial target using the context-aware net-

work h, and we can denote this auto-encoder as AEh(I(1)).

Initial sample augmentation: Even though we use two

denoising criteria as described earlier, we found that the

compressed feature maps of the expert auto-encoders show

a deficiency for targets which become blurry or are flipped.

Thus, we augment I(1) in several ways before fine-tuning

the selected auto-encoder. To tackle the blurriness prob-

lem, four augmented images are obtained by filtering I(1)

with Gaussian filters with variances {0.5, 1.0, 1.5, 2.0}. Two

more augmented images are obtained by flipping I(1) around

the vertical and horizontal axes respectively. Then, the raw

convolutional feature maps extracted from the augmented

samples can be represented by {X
(1)
j }7j=1.

Fine-tuning: The fine-tuning of the selected auto-

encoder differs from the pre-training process for the expert

auto-encoders. As there is a lack of training samples, the

optimisation rarely converges when applying the denoising

criteria. Instead, we employ a correlation filter orthogonality

loss Lad which considers the orthogonality of the correlation

filters estimated from the compressed feature map of the

expert auto-encoder, where Lad is defined as:

Lad =

7
∑

j=1

Nl
∑

i=1







∥∥X(1)
j −AEi(X

(1)
j )

∥∥2

2
+ λΘ

ci+1
∑

k,l=1

Θ(wjik,wjil)







,

(5)

where Θ(u,v) = (u · v)2/(‖u‖22‖v‖
2
2) and wjik defines

a vectorised correlation filter estimated by Eq.(3) using

the vectorised k-th channel of the compressed feature map

fi(· · · (f1(X
(1)
j ))) from the selected expert auto-encoder.

The correlation filter orthogonality loss allows increasing the

interaction among the correlation filters as estimated from

the different channels of the compressed feature maps. The

fine-tuning is performed by minimising Lad using stochastic

gradient descent. The differentiation of Lad is described in

Appendix A of the supplementary material.

Background channel removal: The compressed feature

map Z∀ can be obtained from the fine-tuned expert auto-

encoder. Then, we remove the channels within Z∀ which

have large responses outside of the target bounding box.

Those channels are found by estimating the channel-wise

ratio of foreground and background feature responses. First,

we estimate the channel-wise ratio of the feature responses

for channel k as

ratiok = ‖vec(Zk,∀
bb )‖1/‖vec(Z

k,∀)‖1, (6)

where Zk,∀ is the k-th channel feature map of Z∀ and Z
k,∀
bb

is obtained from Zk,∀ by setting the values out of the target

bounding box to 0 while the other values are untouched.

Then, after sorting all channels according to ratiok in de-

scending order, only the first Nc channels of the compressed

feature map are utilised as input to the correlation filters. We

denote the resulting feature map as Z ∈ R
S×S×Nc , where S

is the feature size.

3.4.2 Online Tracking Sequence

Correlation filter estimation & update: We first ob-

tain the resized ROI for the current frame t using the same

483



method as in the initial adaptation, i.e. the resized ROI is

centred at the target’s centre and its size is 2.5 times the

target’s size and resized to 224× 224. After feeding the re-

sized ROI to the VGG-Net, we obtain the compressed feature

map Z(t) ∈ R
S×S×Nc by inserting the raw deep convolu-

tional feature map of the VGG-Net into the adapted expert

auto-encoder.

Then, using Eq.(3), we estimate independent correlation

filters wk,(t) for each feature map Zk,(t), where Zk,(t) de-

notes the k-th channel of Z(t). Following [17], we suppress

background regions by multiplying each Zk,(t) with cosine

windows of the same size. For the first frame, we can es-

timate the correlation filters w̄k,(1) with Eq.(3) given by

Zk,(1). For the following frames (t > 1), the correlation

filters are updated as follows:

w̄k,(t) = (1− γ)w̄k,(t−1) + γwk,(t), (7)

where γ is an interpolation factor.

Tracking: After estimating the correlation filter, we need

to find the position [xt, yt] of the target in frame t. As we

assume that [xt, yt] is close to the target position in the

previous frame
(
[xt−1, yt−1]

)
, we extract the tracking ROI

from the same position as the ROI for the correlation filter

estimation of the previous frame. Then, we can obtain the

compressed feature map Z
′(t) for tracking using the adapted

expert auto-encoder. Inserting Z
′(t) and w̄k,(t−1) to Eq.(4)

then provides the channel-wise response map Rk,(t) (we ap-

ply the multiplication of cosine windows in the same manner

as for the correlation filter estimation).

We then need to combine Rk,(t) to the integrated response

map R(t). We use a weighted averaging scheme, where we

use the validation score sk as weight factor with

sk = exp
(
−λs‖R

k,(t) −Rk,(t)
o ‖22

)
, (8)

and R
k,(t)
o = G(pk,(t), σ2)S×S is a 2-D Gaussian window

with size S×S and variance σ2
y centred at the peak point

pk,(t) of Rk,(t). Then, the integrated response map is calcu-

lated as:

R(t) =

Nc∑

k=1

skRk,(t). (9)

Following [5], we find the sub-pixel target position p(t)

by interpolating the response values near the peak position.

Finally, the target position [xt, yt] is found as:

[xt, yt] = [xt−1, yt−1] + round([W,H]⊙ p(t)/S). (10)

Scale changes: To handle scale changes of the target, we

extract two additional ROI patches scaled from the previous

ROI patch size with scaling factors 1.015 and 1.015−1 re-

spectively in the tracking sequence. The new target scale is

chosen as the scale where the respective maximum value of

the response map (from the scaled ROI) is the largest.

Full occlusion handling: To handle full occlusions, a

re-detection algorithm is adopted. The overall idea is to

introduce a so-called re-detection correlation filter which is

not being updated and applied to the position of the target

at the time where an occlusion has been detected. A full

occlusion is assumed when a sudden drop of the maximum

response value R
(t)
max ≡ max(R(t)) is detected as described

by R
(t)
max < λreR̄

(t−1)
max with R̄

(t)
max = (1 − γ)R̄

(t−1)
max +

γR
(t)
max and R̄0

max = R1
max (note that this is the same γ as

in Eq.(7)). If that condition is fulfilled, the correlation filter at

time (t− 1) is used as re-detection correlation filter. During

the next Nre frames, the target position as determined by the

re-detection correlation filter is being used if the maximum

value of the re-detection filter’s response map is larger than

the maximum value of the response map obtained by the

normal correlation filter. Furthermore, w̄k,(t) are replaced by

the ones of the re-detection correlation filter, and the target

scale is reset to the scale when the occlusion was detected.

4. Experimental Result

4.1. Implementation

The feature response after the second convolution layer

(conv2) of VGG-M [3] was given to the auto-encoders as

raw convolutional feature input. The number of expert auto-

encoders was set to Ne = 10, and their depth to Nl = 2.

The mini-batch size for all auto-encoders was set to m = 10.

The learning rate for the base auto-encoder was set to 10−10,

and for expert auto-encoders to 10−9. The base auto-encoder

was trained for 10 epochs, and the expert auto-encoders were

fine-tuned for 30 epochs. The proportions for the two extrin-

sic denoising processes were set to 10% respectively. For

training the context-aware network, the mini-batch size and

the learning rate were set to m′ = 100 and 0.01, respec-

tively. The weight for the orthogonality loss term was set

to λΘ = 103, and the reduced channel dimension after the

background channel removal was Nc = 25. The parameters

for the correlation filter based tracker were set to σg = 0.05,

λ = 1.0, and γ = 0.025, and λs = 50. The parameters for

full occlusion handling, λre and Nre, were experimentally

determined to 0.7 and 50 using scenes with occlusions.

We used MATLAB and MatConvNet [31] to implement

the proposed framework. The computational environment

had an Intel i7-2700K CPU @ 3.50GHz, 16GB RAM, and

an NVIDIA GTX1080 GPU. The computational speed was

101.3 FPS in the CVPR2013 dataset [37]. We release the

source code along with the attached experimental results1.

4.2. Dataset

The classification image samples included in

VOC2012 [12] were used to pre-train the expert auto-

1https://sites.google.com/site/jwchoivision/
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Figure 4. Evaluation results. TRACA showed the best performance within the self-comparison, and the state-of-the-art performance

amongst real-time trackers in CVPR2013 [37] and TPAMI2015 [38] datasets. The numbers within the legend are the average precisions

when the centre error threshold equals 20 pixels (top row), or the area under the curve of the success plot (bottom row).

encoders and the context-aware network. To evaluate the

proposed framework, we used the CVPR2013 [37] (51

targets, 50 videos) and TPAMI2015 [38] (100 targets, 98

videos) datasets, which contain the ground truth of the target

bounding box at every frame. These datasets have been

frequently used [5, 10, 15, 17, 20, 25, 41] as they include

a large variety of environments to evaluate the general

tracking performance.

4.3. Evaluation Measure

As performance measure, we used the average precision

curve of one-pass evaluation (OPE) as proposed in [37].

The average precision curve was estimated by averaging the

precision curves of all sequences, which was obtained using

two sources: location error threshold and overlap threshold.

As representative scores of trackers, the average precisions

when the location error threshold equals 20 pixels and the

area under the curve of the success plot were used.

4.4. Self­comparison

To analyse the effectiveness of TRACA, we compare

TRACA with nine variants: no orth.-TRACA, pretrain-

TRACA, clean-TRACA, dropout-TRACA, random-TRACA,

l2-TRACA, label-TRACA, simple-TRACA, and single-

TRACA. In no orth.-TRACA, the weight factor λΘ for the or-

thogonality loss term is set to zero. Pretrain-TRACA skipped

the initial adaptation step and directly utilised the pre-

trained expert auto-encoder. Clean-TRACA used the expert

auto-encoders which were pre-trained without any extrin-

sic denoising process. Dropout-TRACA adopted a dropout

scheme instead of the proposed dimension corrupting pro-

cess, while keeping the feature vector exchange process.

Random-TRACA randomly selected the suitable expert auto-

encoder. l2-TRACA selected the best suitable expert auto-

encoder according to the smallest l2 generation error esti-

Table 1. Quantitative results on the CVPR2013 dataset [37]
Algorithm Pre. score Mean FPS GPU

P
ro

p
o

se
d

TRACA 89.8% 101.3 Y

l2-TRACA 87.7% 101.2 Y

random-TRACA 84.4% 99.5 Y

pretrain-TRACA 83.2% 98.8 Y

no orth.-TRACA 82.2% 101.2 Y

dropout-TRACA 78.5% 97.5 Y

label-TRACA 76.6% 97.2 Y

simple-TRACA 76.4% 94.1 Y

single-TRACA 76.2% 100.9 Y

clean-TRACA 75.4% 92.9 Y

R
ea

l-
ti

m
e

ACFN [5] 86.0% 15.0 Y

LCT [23] 84.8% 21.6 N

SCT [4] 84.5% 40.0 N

MEEM [41] 81.4% 19.5 N

SiamFC [1] 80.9% 86.0 Y

KCF [17] 74.2% 120.5 N

DSST [8] 74.0% 25.4 N

N
o

n
R

ea
l-

ti
m

e ECO [6] 93.0% 8.0 Y

ADNet [40] 90.3% 2.9 Y

C-COT [10] 89.9% 0.5 N

MUSTer [20] 86.5% 3.9 N

FCNT [35] 85.6% 3.0 Y

D-SRDCF [7] 84.9% 0.2 N

mated from the initial target. Label-TRACA utilised 20 class

labels of the pre-training dataset (VOC2012 [12]) as the con-

textual clusters. The expert auto-encoders of simple-TRACA

were trained and fine-tuned by minimising the Euclidean

distance between their inputs and final outputs, i.e. without

using the multi-stage distance. Single-TRACA utilised the

compressed feature map of the base auto-encoder2.

The results of the comparison with these nine trackers

are shown in Table 1 and Fig. 4 (a). The results of random-

TRACA and l2-TRACA show decreased performance which

reflects the importance of the context-aware network. In the

2For fair comparison, we train the base auto-encoder for 20 epochs in

the case of single-TRACA.
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TRACA (Proposed) ACFN MEEM DSST KCF

Lemming Couple

Jumping FaceOcc2

Figure 5. Qualitative results. The used sequences are Lemming,

Couple, Jumping, FaceOcc2, CarDark, and Soccer from the left-top.

result of pretrain-TRACA, the performance was reduced

by 6.6% when the expert auto-encoder was not adapted

initially. The initial adaptation ignoring the orthogonality

loss term (no orth.-TRACA) further decreased the perfor-

mance by 1% compared to pretrain-TRACA. When the

extrinsic denoising processes were not applied, the track-

ing performance reduced dramatically (14.3%) according

to the result of clean-TRACA. Similarly, as shown in the

result of dropout-TRACA, the proposed dimension corrupt-

ing process made the expert auto-encoders more robust than

a dropout scheme (11.3% performance reduction). When

the multi-stage distance was not used, the performance was

reduced by 13.4% as shown in the result of simple-TRACA.

Single-TRACA showed a dramatic reduction in the tracking

performance (13.6%), which demonstrates that the multiple-

context scheme was effective to compress the raw deep con-

volutional feature for a specific target. Finally, the track-

ing performance was reduced dramatically in label-TRACA

(13.2%), which shows that clustering in feature space is

beneficial when training the expert auto-encoders.

4.5. Comparison with State­of­the­art Trackers

The results of the state-of-the-art methods, including

ECO [6], ADNet [40], ACFN [5], C-COT [10], SiamFC [1],

FCNT [35], D-SRDCF [7], SCT [4], LCT [23], and DSST [8]

were obtained from the authors. In addition, the results of

MUSTer [20], MEEM [41], and KCF [17] were estimated

using the authors’ implementations3.

In Table 1, the precision scores of the algorithms on

the CVPR2013 dataset are presented along with the com-

putational speed and whether they make use of a GPU.

Fig. 4 (b-c) compares the performances of the real-time

trackers, where TRACA demonstrates state-of-the-art per-

formance in both the CVPR2013 and TPAMI2015 datasets

while running at over 100 fps. Some qualitative results are

shown in Fig. 5.

4.6. Further Analysis

The context in the proposed framework refers to a coarse

category of the compressed feature maps encoding the target

3For fair comparison, the computational time was estimated by the same

computer as TRACA and included the image resizing time.

Cluster 1 Cluster 10Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Figure 6. Top-5 images for each contextual cluster. Each column

represents one context category and consists of the five samples

within Caltech256 [14] that have the highest scores of the context-

aware network for this category. The results confirm that the con-

textual clusters represent the category of appearance patterns.

object appearance. To illustrate the context in practice, we

extracted the five samples with the highest scores within the

context-aware network for each contextual category using

Caltech256 [14]. As shown in Fig. 6, the contextual clusters

categorise the samples according to appearance patterns.

In Appendix B, we evaluate the impact of the chosen tar-

get layer of VGG-Net and the number of contextual clusters

on the proposed framework. In Appendix C, we analyse the

correlation matrix among various computer vision datasets,

which was obtained by estimating the correlation among the

histograms of the results from the context-aware network.

5. Conclusion
In this paper, a new visual tracking framework based

on context-aware deep feature compression using multiple

auto-encoders was proposed. Our main contribution is to in-

troduce a context-aware scheme which includes expert auto-

encoders specialising in one context, and a context-aware

network which is able to select the best expert auto-encoder

for a specific tracking target. This leads to a significant speed-

up of the correlation filter based tracker utilising deep con-

volutional features. Our experiments lead to the compelling

finding that our framework achieves a high-speed tracking

ability of over 100 fps while our framework maintains a

competitive performance compared to the state-of-the-art

trackers. We expect that embedding our context-aware deep

feature compression scheme will be integrated with other

trackers utilising raw deep features, which will increase their

robustness and computational efficiency. In addition, the

scheme can be utilised as a way to avoid the overfitting prob-

lem in other computer vision tasks where only few training

samples are available, such as in image k-shot learning and

image domain adaptation. As a future work, we will jointly

train the expert auto-encoders and the context-aware network

to potentially further increase the performance due to the

correlation between the contextual clustering and the feature

compression.
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