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Abstract

Diagrams often depict complex phenomena and serve as

a good test bed for visual and textual reasoning. How-

ever, understanding diagrams using natural image under-

standing approaches requires large training datasets of di-

agrams, which are very hard to obtain. Instead, this can

be addressed as a matching problem either between labeled

diagrams, images or both. This problem is very challenging

since the absence of significant color and texture renders lo-

cal cues ambiguous and requires global reasoning. We con-

sider the problem of one-shot part labeling: labeling multi-

ple parts of an object in a target image given only a single

source image of that category. For this set-to-set match-

ing problem, we introduce the Structured Set Matching Net-

work (SSMN), a structured prediction model that incorpo-

rates convolutional neural networks. The SSMN is trained

using global normalization to maximize local match scores

between corresponding elements and a global consistency

score among all matched elements, while also enforcing a

matching constraint between the two sets. The SSMN sig-

nificantly outperforms several strong baselines on three la-

bel transfer scenarios: diagram-to-diagram, evaluated on

a new diagram dataset of over 200 categories; image-to-

image, evaluated on a dataset built on top of the Pascal Part

Dataset; and image-to-diagram, evaluated on transferring

labels across these datasets.

1. Introduction

A considerable portion of visual data consists of illus-

trations including diagrams, maps, sketches, paintings and

infographics, which afford unique challenges from a com-

puter vision perspective. While computer vision research

has largely focused on understanding natural images, there

has been a recent renewal of interest in understanding visual

illustrations [24, 31, 51, 47, 52, 33, 55, 28]. Science and

math diagrams are a particularly interesting subset of visual

illustrations, because they often depict complex phenomena

grounded in well defined curricula, and serve as a good test
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Figure 1. Matching results by our SSMN model. Given source

images annotated by points with text labels, our model transfers

labels to the points in the target images. Colors indicate each la-

bel. Black (Gray in row 2) dots indicate unlabeled points. SSMN

is able to correctly label the target points in spite of significant geo-

metric transformations and appearance differences between object

parts in the source and target images of categories unobserved in

training.

bed for visual and textual reasoning [24, 35, 36, 26, 18].

Understanding diagrams using natural image under-

standing approaches requires training models for diagram

categories, object categories, part categories, etc. which re-

quires large training corpora that are particularly hard to ob-

tain for diagrams. Instead, this can be addressed by trans-
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ferring labels from smaller labeled datasets of diagrams

(within-domain) as well as from labeled datasets of natu-

ral images (cross-domain). Label transfer has previously

shown impressive results in a within-domain natural image

setting [29]. It is interesting to note that young children are

able to correctly identify diagrams of objects and their parts,

having seen just a few diagrammatic and natural image ex-

amples in story books and textbooks.

The task of label transfer is quite challenging, especially

in diagrams. First, it requires a fine grained analysis of a

diagram, but the absence of significant color or textural in-

formation renders local appearance cues inherently ambigu-

ous. Second, overcoming these local ambiguities requires

reasoning about the entire structure of the diagram, which

is challenging. Finally, large datasets of object diagrams

with fine grained part annotations, spanning the entire set of

objects we are interested in, are expensive to acquire. Moti-

vated by these challenges, we present the One-Shot Part La-

beling task: labeling object parts in a diagram having seen

only one labeled image from that category.

One-Shot Part Labeling is the task of matching elements

of two sets: the fully-labeled parts of a source image and the

unlabeled parts of a target image. Although previous work

has considered matching a single target to a set of sources

[25, 46], there is little prior work on set-to-set matching,

which poses additional challenges as the model must pre-

dict a one-to-one matching. For this setting, we propose

the Structure Set Matching Network (SSMN), a model that

leverages the matching structure to improve accuracy. Our

key observation is that a matching implies a transformation

between the source and target objects and not all transfor-

mations are equally likely. For example, in Figure 1 (top),

the matching would be highly implausible if we swapped

the labels of “wing” and “tail,” as this would imply a strange

deformation of the depicted bird. However, transformations

such as rotations and perspective shifts are common. The

SSMN learns which transformations are likely and uses this

information to improve its predictions.

The Structured Set Matching Network (SSMN) is an

end-to-end learning model for matching the elements in two

sets. The model combines convolutional neural networks

(CNNs) into a structured prediction model. The CNNs

extract local appearance features of parts from the source

and target images. The structured prediction model max-

imises local matching scores (derived from the CNNs) be-

tween corresponding elements along with a global consis-

tency score amongst all matched elements that represents

whether the source-to-target transformation is reasonable.

Crucially, the model is trained with global normalization to

reduce errors from label bias [27] – roughly, model scores

for points later in a sequence of predictions matter less –

which we show is guaranteed to occur for RNNs and other

locally-normalized models in set-to-set matching (Sec.4).

Off-the-shelf CNNs perform poorly on extracting fea-

tures from diagrams [24, 52], owing to the fact that dia-

grams are very sparse and have little to no texture. Our key

insight to overcoming this is to convert diagrams to distance

transform images. The distance transform introduces mean-

ingful textures into the images that capture the location and

orientation of nearby edges. Our experiments show that this

introduced texture improves performance and enables the

use of model architectures built for natural images.

We compile three datasets: (1) a new diagram dataset

named Diagram Part Labeling (DiPART), which consists of

4,921 diagram images across 200 objects categories, each

annotated with 10 parts. (2) a natural image part labeling

dataset named Pascal Part Matching (PPM) built on top of

the popular Pascal Part dataset [6]. (3) a combination of the

above two datasets (Cross-DiPART-PPM) to evaluate the

task of cross-domain label transfer. The SSMN significantly

outperforms several strong baselines on all three datasets.

In summary, our contributions include: (a) presenting

the task of One-Shot Diagram Part Labeling (b) proposing

Structured Set Matching Networks, an end-to-end combi-

nation of CNNs and structured prediction for matching el-

ements in two sets (c) proposing converting diagrams into

distance transforms, prior to passing them through a CNN

(d) presenting a new diagram dataset DiPART towards the

task of one-shot part labeling (e) obtaining state-of-the-

art results on 3 challenging setups: diagram-to-diagram,

image-to-image and image-to-diagram.

2. Related Work

One-Shot Learning. Early work on one-shot learning in-

cludes Fei-Fei et al. [15, 16] who showed that one can take

advantage of knowledge coming from previously learned

categories, regardless of how different these categories

might be. Koch et al. [25] proposed using a Siamese net-

work for one-shot learning and demonstrated their model

on the Omniglot dataset for character recognition. More

recently Vinyals et al. [46] proposed a matching network

for one-shot learning, which incorporates additional context

into the representations of each element and the similarity

function using LSTMs. The SSMN model builds on match-

ing networks by incorporating a global consistency model

that improves accuracy in the set-to-set case.

Visual Illustrations. There is a large body of work in

sketch based image retrieval (SBIR) [51, 33, 47, 55, 14].

SBIR has several applications including online product

searches [51]. The key challenge in SBIR is embedding

sketches and natural images into a common space, and is

often solved with variants of Siamese networks. In SSMN,

each pair of source and target encoders with the correspond-

ing similarity network (Section 3.1) can be thought of as a

Siamese network. There also has been work in sketch clas-

sification [13]. More recently [52] proposed a CNN archi-

tecture to produce state-of-the-art results on this set. They

noted that off-the-shelf CNN architectures do not work well

for sketches, and instead proposed a few modifications. Our

analysis shows that converting diagrams to distance trans-
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Figure 2. Overview of the Structured Set Matching Network (SSMN) model.

form images allows us to use architectures resembling ones

designed for natural images. Work in understanding dia-

grams for question answering includes domains of science

[24, 26], geometry [35, 36] and reasoning [18]. Abstract

scenes have also been analyzed to learn semantics [58] and

common sense [44].

Part Recognition. There is a large body of work in detect-

ing parts of objects as a step towards detecting the entire

object including [6, 17, 57, 37, 2, 40] to name a few. In

contrast to these efforts (which learn part classifiers from

many training images), we focus on one-shot labeling.

Learning Correspondences and Similarity Metrics. La-

beling parts from a source image can be translated into a

correspondence problem, which have received a lot of at-

tention over the years. Recently, deep learning models have

been employed for finding dense correspondences [8, 20,

54, 21] and patch correspondences [53, 22]. The SSMN

differs from the majority of them due to its ability to jointly

reason over the set of elements in the source and target.

There has also been a fair amount of work on learning a

metric for similarity [4, 7, 39]. The appearance similar-

ity factor in the SSMN model builds on past work in this

area. Recently, Han et al. [21] have proposed incorporating

geometric plausibility into a model for semantic correspon-

dence, a notion that is also strongly leveraged by the SSMN.

Global Normalization with Neural Networks. Most work

on structured prediction with neural networks uses locally-

normalized models, e.g., for caption generation [23]. Such

models are less expressive than globally-normalized mod-

els (e.g., CRFs) [1] and suffer from label bias [27], which,

as we show in Sec 4, is a significant problem in set-to-set

matching. A few recent works have explored global nor-

malization with neural networks for pose estimation [42]

and semantic image segmentation [34, 56]. Models that per-

mit inference via a dynamic program, such as linear chain

CRFs, can be trained with log-likelihood by implementing

the inference algorithm (which is just sums and products)

as part of the neural network’s computation graph, then per-

forming backpropagation [19, 12, 50, 11, 32]. Some work

has also considered using approximate inference during

training [5, 42, 48]. Search-based learning objectives, such

as early-update Perceptron [9] and LaSO [10], are other

training schemes for globally-normalized models that have

an advantage over log-likelihood: they do not require the

computation of marginals during training. This approach

has recently been applied to syntactic parsing [1] and ma-

chine translation [49], and we also use it to train SSMN.

3. Structured Set Matching Network

The structured set matching network (SSMN) is a model

for matching elements in two sets that aims to maximise

local match scores between corresponding elements and

a global consistency score amongst all matched elements,

while also enforcing a matching constraint between the two

sets. We describe SSMN in the context of the problem of

one-shot part labeling, though the model is applicable to any

instance of set-to-set matching.

The one-shot part labeling problem is to label the parts

of an object having seen only one example image from

that category. We formulate this problem as a label trans-

fer problem from a source to a target image. Both images

are labeled with K parts, each of which is a single point

marked within the part as shown in Figure 2. Each part of

the source image is further labeled with its name, e.g., “tail.”

The model’s output is an assignment of part names to the

points marked in the target image, each of which much be

uniquely drawn from the source image.

There are several modeling challenges in the one-shot

part labeling task. First, the model must generalize to im-

ages of unseen categories, with parts that were never en-

countered during training. Thus, the model cannot sim-

ply learn a classifier for each part name. Second, spatially

close part locations and the absence of any color or textual

information in diagrams renders local appearance cues in-

herently ambiguous. Thus, part labeling cannot be decom-
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posed into independent labeling decisions for each target

part without losing valuable information. Third, pose vari-

ations between pairs of images renders absolute positions

ambiguous. To overcome the ambiguities, the model must

jointly reason about the relative positions of all the matched

parts to estimate whether the pose variation is globally con-

sistent. Finally, the model must enforce a 1:1 matching.

The SSMN addresses the above challenges by using a

convolutional neural network to extract local appearance

cues about the parts from the source and target images, and

using a structured model to reason about the entire joint

assignment of target parts to source parts without making

per-part independence assumptions. It is a non-probabilistic

model; thus, it is similar to a conditional random field [27]

with neural network factors, except its scores are not prob-

abilities. Figure 2 shows an overview of the SSMN applied

to the problem of one shot part labeling. The factor graph

representation shows the four factors is the SSMN:

1. Appearance similarity (fa) – Captures the local ap-

pearance similarity between a part in the source image

and a part in the target image. (Sec. 3.1)

2. Part appearance (fp) – Captures the appearance sim-

ilarity between a part in the target image and a name

assigned to it. In the one-shot setting, this is only valu-

able for parts seen a priori amongst object categories

in the training data. (Sec. 3.2)

3. Global consistency (fgc) – Scores whether the rela-

tionships between target parts are globally consistent

with those of the matched source parts, i.e. whether the

source-to-target transformation is reasonable (Sec. 3.3)

4. Matching constraint (fm) – Enforces that target labels

are matched to unique source labels.

The first three of these factors represent neural networks

whose parameters are learned during training. The fourth

factor is a hard constraint. Let m denote a matching where

m(i) = j if target part i is matched to source j. SSMN

assigns a score to m using these factors as:

f(m) = fgc(m) + fm(m) +
∑

i fa(m(i), i) + fp(m(i), i). (1)

3.1. Appearance Similarity

The appearance of each object part is encoded by an en-

coder network, a CNN whose architecture is akin to the

early layers of VGG16 [38]. The input to the CNN is an

image patch extracted around the annotated part and re-

sized to a canonical size. The output of the CNN is an

embedding of the local appearance cues for the correspond-

ing object part. The 2K object parts (from both the source

and target images) are each fed to 2K copies of the en-

coder with shared weights, producing 2K appearance em-

beddings. The model creates contextualized versions of

these embeddings by running a context network, a bidirec-

tional LSTM, over the source embeddings and, as an in-

dependent sequence, the target embeddings. Note that the

source and target points are given as sets, so we shuffle them

arbitrarily before running the LSTMs. The similarity score

between a source and target point is the dot product of their

contextualized embeddings. This produces K2 appearance

similarity scores (fa) as depicted by green boxes in Fig 2.

Due to the sparse nature of diagrams and the absence

of much color and texture information, CNN models pre-

trained on natural image datasets perform very poorly as

encoder networks. Furthermore, off the shelf CNN architec-

tures also perform poorly on diagrams, even when no pre-

training is used [52], and require custom modifications such

as larger filter sizes. Our key insight to overcoming this

problem is to convert diagrams to distance transform im-

ages, which introduces meaningful textures into the images

that capture the location and orientation of nearby edges.

This noticeably improves performance for diagrams, whilst

using the CNN architectures designed for natural images.

3.2. Part Appearance

In the one-shot setting, at test time, the model observes

a single fully labeled image from an object category, that

it has not seen before. However, some common part names

are likely to recur. For example, if various animal categories

appear across training, validation and test categories, parts

such as “leg” will recur. Thus, a model can benefit from

learning typical appearances of these common parts across

all types of images. The part appearance factor enables the

model to learn this kind of information.

Let pi be a parameter vector for the ith source part’s

name, and tj be the output of the encoder network for the

jth target part (Sec. 3.1). The part appearance model as-

signs a match score fp(i, j) between source i and target j:

fp(i, j) = wT
2 relu(W1[pi tj ]

T + b). Along with the layer

parameters, pi is also learned at training time. The model

has a separate parameter vector pi for each part name that

appears at least twice in the training data; all other parts are

mapped to a special “unknown” parameter vector.

3.3. Global Consistency

In addition to local appearance, consistency of the rela-

tions between matched source and target parts provides a

valuable signal for part set matching. However, these rela-

tions may be transformed in an unknown but systematic way

when moving from the source to the target. For example, if

the target is left-right flipped relative to the source, all parts

to the left of part x in the source should be on the right of x

in the target. Alternatively, the target may be drawn in a dif-

ferent style that affects the appearance of each part. Given

a matching, the global consistency factor learns whether the

implied source-to-target transformation is likely.

We factor the global consistency (fgc) into the sum of

two terms: structural consistency (fsc) for pose variations

and appearance consistency (fac) for style variations. Both

terms are neural networks that score entire matchings m us-

ing the same architecture, but different inputs and parame-

ters. The score for a matching is computed from a set of re-

lation vectors ∆(m)ij for each part pair i, j in the matching

3630



m, then applying fully connected layers and sum-pooling:

hij(m) = relu(W2 relu(W1∆(m)ij + b1) + b2),

f∗(m) =

|m|∑

i

|m|∑

j

wThij(m),
(2)

where ∗ could be sc or ac. For structural consistency (fsc),

∆(m)ij encode the relative positions of pairs of matched

parts. Recall that m(i) denotes the source part matched to

target part i. Let locs
m(i) and locti denote the x/y positions

of source part m(i) and target part i respectively. The rel-

ative positions of a pair of parts i, j are then encoded as

a 4-dim vector, ∆(m)ij = [locs
m(j) − locs

m(i), loc
t
j − locti].

For appearance consistency (fac), the ∆ vectors replaced by

[apps
m(j) − apps

m(i), app
t
j − appti], where apps

m(i) and appti
represent the appearance embeddings output by the encoder

network in Sec. 3.1.

4. Training and Inference

Training. We train the SSMN by optimizing a structured

loss on the set of part-matched images using stochastic gra-

dient descent (SGD). Each iteration of SGD evaluates the

model on a single pair of images to compute a per-example

loss. Gradients are then backpropagated through the neural

networks that define the model’s factors.

Crucially, we train SSMN with global normalization.

We found locally-normalized models performed poorly on

set-to-set matching because they progressively begin to ig-

nore scoring information as the sequence continues. A

locally-normalized model, such as an RNN, would order

the target points and then learn a probability distribution

P (m(i) = j|m(i−1), ...,m(1)). After each prediction, the

space of possible source points for the remaining points de-

creases by 1 in order to guarantee a matching. This process

is problematic: note the probability for the final point is al-

ways 1, as there is only 1 source point remaining to choose

from. Thus, even if the model is confident that the final pair

does not match based on a pairwise similarity score, that in-

formation will be ignored entirely in its probabilities. This

problem is an instance of label bias [27], known to reduce

the accuracy of locally-normalized models. This observa-

tion is also consistent with that of Vinyals et al. [45, 46],

who observed that treating unordered sets as ordered se-

quences enables the use of RNN models, which provide im-

provements to matching performance; however the ordering

of elements passed to the RNNs matters.

Our training uses Learning as Search Optimization

(LaSO) framework [10], an objective function that is well-

suited to training globally-normalized models with in-

tractable exact inference. These models often rely on

beam search to perform approximate inference, as does

SSMN. During training, the LaSO objective penalizes the

model each time the correct labeling falls off the beam,

thereby training the model parameters to work well with

the beam search. Also, unlike other objectives for globally-

normalized models (e.g., log-likelihood of the matching),

LaSO’s gradient can be calculated without computing the

marginal distribution over matchings or the highest-scoring

matching. This is important as, in SSMN, both quantities

are intractable to compute exactly due to the global consis-

tency factor.

The LaSO objective function for a single training exam-

ple is as follows. Each training example inputs to the model

a pair of annotated images, and a label m∗ that represents

the correct part matching for the pair. The LaSO objective is

defined in terms of the intermediate results of a beam search

with beam size B in the model given the input. Let m̂i
t de-

note the ith highest-scoring matching on the beam after the

tth search step. Let m∗
t denote the correct partial matching

after t time steps. The LaSO objective function encourages

the score of m∗
t to be higher than that of the lowest-scoring

element on the beam at each time step of the search:

L(f) =

T∑

t=1

max(0,∆(m∗
t , m̂

i
t) + f(m̂B

t )− f(m∗
t )). (3)

This loss function is a margin-based objective, similar to

that of a structured SVM [43] or max-margin Markov net-

work [41]. The loss is 0 whenever the score of the correct

partial matching f(m∗
t ) is greater than that of the lowest-

scoring beam element f(m̂B
t ) by the margin ∆(m∗

t , m̂
i
t),

and nonzero otherwise. We set ∆(m∗
t , m̂

i
t) to be the num-

ber of incorrectly matched points in m̂i
t (We have omitted

the dependence of f on the input and model parameters for

brevity). At the last time step, B is set to 1 to encourage the

correct matching to have the highest score. If at any point

during the search the correct partial matching falls off the

beam, the search is restarted by clearing the search queue

and enqueuing only the correct partial matching.

Calculating the gradient of the neural network parame-

ters with respect to this loss function has two steps. The first

step is the forward computation, which runs beam search in-

ference in the SSMN on the input and the corresponding for-

ward passes of its constituent neural networks. After each

step of the beam search, the gradient computation checks

for a margin violation. If a margin violation is found, it is

recorded and the search is restarted from the correct partial

matching. If not, the beam search continues normally. The

output of the forward computation is a collection of mar-

gin violations and a value for the loss function. The second

step is the backward computation, which backpropagates

the loss through neural networks to compute the gradient.

The loss L is a sum of terms of the form f(m), and f(m)
is a sum of scores output by f ’s constituent neural networks

(Equation 1). Thus, the gradient ∂L
∂f

is simply a weighted

sum of the gradients of the constituent neural networks,

each of which can be calculated using standard backprop-

agation. The inputs with respect to which the gradients are

calculated, as well as each gradient’s weight in the sum, de-

pend on the the particular margin violations encountered in
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Figure 3. Challenges in the DiPART dataset. Local position and appearance cues are often insufficient to provide good matching.

the forward computation. We refer the reader to [49] for a

detailed description of the gradient computation for LaSO

in neural sequence-to-sequence modeling.1

Encoder Network Initialization. The encoder networks

(Section 3.1) are pre-trained by optimizing a surrogate ob-

jective. A bank of CNNs encode image patches of parts and

a bank of similarity networks compute the similarities be-

tween the appearance encodings (represented as a K × K

matrix in Figure 2, where K is number of parts). Each row

and each column of this matrix undergo a softmax opera-

tion followed by a K category cross-entropy objective. The

surrogate objective is the sum of these 2K cross-entropy

objectives. This surrogate objective encodes local appear-

ances, but is faster to train than the SSMN objective, and is

hence suitable for pre-training the appearance encoder net-

works. We refer to this surrogate objective as the appear-

ance matching network (AMN) objective.

Inference. Exact inference in SSMN is intractable due to

the global consistency factor, which defines a global score

for the entire matching.2 Thus, exact inference would re-

quire enumerating and scoring all K! permutations of K

parts. Instead, we use approximate inference via beam

search. As outlined above, SSMN is trained to ensure that

the beam search is a good approximate inference strategy.

The beam search starts by ordering target parts arbitrarily.

The search maintains a queue of partial matchings, which at

time step i− 1 consists of B partial matchings between the

first i−1 target parts and the source parts. The ith search step

generates several new matchings for each partial matching

on the queue by matching the ith target part with each un-

matched source part. The search computes a score for each

expanded matching and enqueues it for the next step. The

search queue is then pruned to the B highest-scoring par-

tial matchings. This is repeated until each target part has

been assigned to a source part label. The global consistency

factor is used to score partial matchings by generating the

relation vectors (in Eq.2) for the points matched thus far.

1 We implement SSMN using Probabilistic Neural Programs (PNP)

[30], a library for structured prediction with neural networks that provides

a generic implementation of LaSO.
2Without global consistency, exact inference in SSMN can be per-

formed with the Hungarian algorithm for maximum-weighted matching.

5. Datasets

DiPART Dataset. We present the Diagram Part Labeling

(DiPART) dataset, consisting of 4,921 images across 200

object categories. Categories span rigid objects (e.g., cars)

and non-rigid objects (e.g., animals). Images are obtained

from Google Image Search and parts are labelled by anno-

tators. DiPART is split into train, val and test sets, with no

categories overlapped. Since each pair of images within a

category can be chosen as a data point, the number of data

points is large (101,670 train, 21,262 val, and 20,110 test).

DiPART is challenging for several reasons. First, the ab-

sence of color and dense texture cues in diagrams renders

local appearance cues ambiguous. Second, having access

to only point supervision [3] at training time is challeng-

ing compared to having detailed segmentation annotations

for parts as in previous natural image datasets (e.g., Pascal

Part [6]). Third, parts for several categories are located very

close by, requiring very fine grained analysis of the texture-

sparse diagrams (Fig. 3-(c)). Fourth, the appearances and

locations of parts are generally not coherent across samples

within a category. Finally, the one-shot setting renders this

even more challenging.

Pascal Part Matching (PPM) Dataset. To evaluate SSMN

on labeling parts in natural images, we use images from the

Pascal Part dataset [6] with more than 10 parts and con-

vert part segments to point annotations using the centers of

mass. We called it Pascal Part Matching (PPM), which con-

sists of 74,660 train and 18,120 test pairs in 8 categories

with 10 parts.

Cross-DiPART-PPM Dataset. For cross domain match-

ing experiments, we find all overlapping categories and part

names between DiPART and Pascal Part Matching to make

Cross-DiPART-PPM. It consists of 5 categories with 4 parts

and 22,969 image-to-diagram pairs (18,489 train and 4,480

test).

More details about the datasets including download links as

well as more results can be found in the project page.

6. Experiments

Set-up. Training neural networks with global normalization

typically requires pre-training with log-likelihood to obtain

good results [1, 49]. In training the SSMN, we pretrained it
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Diagram to Diagram Image to Image Image to Diagram

Figure 4. Qualitative results from our SSMN model. In each pair of images, the labeled source images is on the left and the target is on the

right. A green box indicates a correct match and a red box indicates an incorrect match.

source target 3rd search step 4th search step 5th search step

Figure 5. Visualization of expected part locations during the search by the structural consistency factor (fsc). The example has both the

varying pose and a non-trivial transformation of source to target part locations. The matched parts of each diagram are represented by the

color-coded points. Each color-coded heatmap shows the score assigned by the structural factor to every location in the diagram for the

unmatched part with the same color. For visual clarity, we display 5 of the 10 parts.

using the appearance matching network (AMN) surrogate

objective (Sec 4), then fixed the weights of the convolu-

tional layers while retraining the remainder of the network

with 1 epoch of LaSO with a beam size parameter of 5 in

most experiments unless mentioned (as described in Sec 4).

We found that additional training epochs did not improve

accuracy, presumably because pre-training brought the pa-

rameters close to a good solution. At test time, we ran the

SSMN with a beam size of 100 in all experiments, except

the ones that measured accuracy at different beam sizes. We

chose this number based on experiments on the validation

set which found that accuracy plateaued beyond 100.

The encoder network uses two convolutional layers (64

filters of 3×3 and 96 filters of 3×3), each followed by 2×2
max pooling with stride of 2. This is followed by two fully

connected layers, with 128 and 64 hidden units respectively.

The context network is a single layer bidirectional LSTM

with 50 hidden units. We train the network using SGD with

momentum and decay and 10−4 initial learning rate.

Note that the datasets we used in all the evaluations have

no categories overlaps in train and test splits. It is a chal-

lenging set-up that matching the appearances of source and

target that are never seen in training phase.

Baselines. We compare SSMN to the following baselines.

Nearest Neighbor (RGB) computes matches using local

appearance cues only by comparing raw image patches cen-

tered on the part’s point using a euclidean metric.

Affine Transform baseline selects the matching of points

that minimizes the error of a least-squares fit of the tar-

get part locations given the source part locations. This is

not scalable to compute exactly, as it requires running a

least-squares fit for every matching (3.7 million for 10 part

Methods \ Dataset DiPART PPM

Random 10.0% 10.0%

Nearest Neighbor (RGB) 29.4% 11.1%

Affine Transform 32.1% 26.9%

UCN [8] 38.9% 20.2%

Matching Network (MN) [46] 41.3% 40.2%
x MN+Hungarian 45.6% 42.7%

Appearance Matching Network+NN 35.7% 42.3%

SSMN-fgc 44.7% 40.6%

SSMN (Ours) 58.1% 46.6%

Table 1. Accuracies of SSMN and other methods on both datasets.

matchings). We ran this approximately using beam search

with width equal to 100.

Matching Network (MN) [46] independently predicts a

source point for each target point. This network runs the

appearance matching network described in Section 3.1, i.e.

the encoder network with bidirectional LSTMs, to score

each source given a target. The network is trained by feed-

ing these scores into a K-way softmax then maximizing

log-likelihood. A limitation of MN is that it does not en-

force a 1:1 matching, hence may yield an invalid solution.

MN + Hungarian solves this problem by finding the max-

imum weighted matching given the matching network’s

scores. In contrast to the SSMN, this baseline uses the Hun-

garian algorithm as a post-processing step and is not aware

of the matching constraint during training.

Appearance Matching Network + NN computes nearest

neighbor matches using only appearance cues by the Ap-

pearance Matching network. Source and target points are

fed into the encoders and matched using cosine similarity.

Universal Correspondence Network (UCN) [8] originates
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from the the semantic correspondence (SC) matching liter-

ature. Minimal post processing was required to adapt it to

our task and compute an accuracy metric comparable to the

SSMN and other baselines. Best results were obtained when

fine tuning their pre-trained network on our datasets.

Table 1 compares the accuracy of SSMN with the above

baselines on the test sets for the DiPART and PPM datasets.

The nearest neighbor baselines (both RGB and Appear-

ance Matching Network) perform poorly, since they only

use appearance cues with no contextual information and no

matching constraint. The MN models outperforms all other

baselines in both datasets. It clearly demonstrates that using

sequential context, even in a set environment yields good re-

sults, consistent with the findings in [46]. Enforcing a 1:1

matching constraint via the Hungarian algorithm further im-

proves this model. SSMN also outperforms UCN on both

datasets. The SSMN outperforms other baselines because

of its ability to model global consistency among the source

and target sets. Training with global normalization is crucial

for this improvement: if we train SSMN with local normal-

ization, accuracy drops significantly (SSMN-fgc).

Effect of Beam Size. Fig. 6 shows the test accuracies as a

function of inference beam size. SSMN outperforms base-

lines even for beam sizes as low as 10, and saturates beyond

100. Note that even a beam size of 100 represents a tiny

fraction (0.0027%) of the search space of matchings (10!).

0  20 40 60 80 100 120

Test Beam Size

40

45

50

55

60

A
cc

u
ra

cy
 o

n
 D

iP
A

R
T

 (
%

)

36

38

40

42

44

46

48

A
cc

u
ra

cy
 o

n
 P

P
M

 (
%

)

DiPART

Pascal Part Matching (PPM)

Figure 6. Accuracy as a function of inference beam size.

Distance Transform (DT). We propose using DT images as

inputs to our encoder networks, as opposed to the original

diagrams. We compared the two approaches using just the

appearance matching network, in order to isolate appear-

ance cues from structural cues. Using DT images provides

an accuracy of 38.4% where as the original image produces

33.5%, a noticeable improvement. An interesting observa-

tion was that when we swept the space of filter sizes to find

the best performing one for each configuration, the best fil-

ters for the original image were 15× 15 as reported in [52]

but the best filters for the DT image was 3 × 3, which is

consistent with CNN architectures built for natural images.

Does General Part Appearance Help? 51% of part names

in the validation and 54% in the test set appear in the train-

ing set of DiPART. Hence one might expect the part ap-

pearance factor (fp) in SSMN to help significantly. An ab-

lation study found that removing it caused very little drop

in validation accuracy (within 0.1%). This shows that, even

though part names overlap significantly, part appearance

cues do not always transfer between categories; e.g., a head

of an elephant and a giraffe look significantly different.

Qualitative Analysis. Figure 4 shows qualitative examples

and Figure 5 visualizes SSMN’s search procedure.

Matching Variable Numbers of Parts. DiPART and PPM

are setup to contain a fixed number of parts across images

and a complete 1:1 matching between source and target sets.

However, SSMN makes no such strict assumptions and can

also be used in a relaxed setups. We modified DiPART to

contain 9 parts in the source and 8 parts in the target image.

7 of these have a 1:1 matching and 1 part in each set has

no correspondence in the counterpart. Table 2 compares

SSMN to the strongest baseline (MN+Hungarian). As 1:1

matching is not guaranteed, the Hungarian algorithm only

marginally improves accuracy over MN while SSMN still

provides large improvements.

MN MN+Hungarian SSMN

Test Accuracy 31.1% 31.5% 38.2%

Table 2. Accuracies in DiPART with varying part setup.

Cross Domain Matching. We evaluate cross domain

matching on Cross-DiPART-PPM. This is the most chal-

lenging among the three setups. By using different encoder

network architecture for source and target, we demon-

strate that SSMN is able to transfer labels across domains

(images-to-diagrams) reasonably well. Since global ge-

ometric consistencies are preserved regardless of visual

signatures, the SSMN outperforms the strongest baseline

(Table 3). In this setup, the part classification term (fp,

Sec. 3.2) drops performance since the part classifiers do

not generalize across domains. Thus, SSMN without fp
(SSMN-fp) provides further improvements.

Random MN MN+Hungarian SSMN SSMN-fp
Test Accuracy 25% 28.0% 26.4% 30.8% 33.1%

Table 3. Cross domain accuracies (Cross-DiPART-PPM data)

More results can be found in the supplementary material.

7. Conclusion

We consider the challenging task of one-shot part label-

ing, or labeling object parts given a single example image

from the category. We formulate this as set-to-set matching,

and propose the Structured Set Matching Network (SSMN),

a combined structured prediction and neural network model

that leverages local appearance information and global con-

sistency of the entire matching. SSMN outperforms strong

baselines on three challenging setups: diagram-to-diagram,

image-to-image and image-to-diagram.
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