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Abstract

The last few years have seen approaches trying to com-

bine the increasing popularity of depth sensors and the suc-

cess of the convolutional neural networks. Using depth as

additional channel alongside the RGB input has the scale

variance problem present in image convolution based ap-

proaches. On the other hand, 3D convolution wastes a large

amount of memory on mostly unoccupied 3D space, which

consists of only the surface visible to the sensor. Instead,

we propose SurfConv, which “slides” compact 2D filters

along the visible 3D surface. SurfConv is formulated as

a simple depth-aware multi-scale 2D convolution, through

a new Data-Driven Depth Discretization (D4) scheme. We

demonstrate the effectiveness of our method on indoor and

outdoor 3D semantic segmentation datasets. Our method

achieves state-of-the-art performance while using less than

30% parameters used by the 3D convolution based ap-

proaches.

1. Introduction

While 3D sensors have been popular in the robotics

community, they have gained prominence in the computer

vision community in the recent years. This has been

the effect of extensive interest in applications such as au-

tonomous driving [11], augmented reality [32] and urban

planning [47]. These 3D sensors come in various forms

such as active LIDAR sensors, structured light sensors,

stereo cameras, time-of-flight cameras, etc. These range

sensors produce a 2D depth image, where the value at every

pixel location corresponds to the distance traveled by a ray

from the sensor through the pixel location, before it hits a

visible surface in the 3D scene.

Recent success of convolutional neural networks for

RGB input images [24] have raised interests in using them

for depth data. One of the common approaches is to use

handcrafted representations of the depth data and treat them

as additional channels alongside the RGB input [13, 9].

Code&data: https://github.com/chuhang/SurfConv
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Figure 1. A 3D sensor captures a surface at a single time frame. 2D im-

age convolution does not utilize 3D information and suffers from scale

variance. 3D convolution solves scale variance, but suffers from non-

volumetric surface input where majority of voxels are empty. We propose

surface convolution, that convolutes 2D filters along the 3D surface.

While this line of work has shown that additional depth in-

put can improve performance on several tasks, it is not able

to solve the scale variance problem of 2D convolutions. In

the top of Fig. 1, we can see that for two cars at different

distances, the receptive fields of a point have the same size.

This means that models are required to learn to recognize
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the same object in different inputs.

To overcome this issue, an alternative is to represent the

data as a 3D grid and use 3D convolution on it [49]. For

such a dense representation, it requires huge computation

and memory resources. This limits the resolution in all three

dimensions. Furthermore, since 3D sensor captures the in-

formation of how far the objects are from the sensor at a

single frame, the visible surface of the scene occludes the

rest of the 3D volume. Thus, the information in the input

occupies an extremely small fraction (∼ 0.35%1) of the en-

tire volume. This results in the 3D convolution based ap-

proaches to spend a large fraction of time and memory on

the unoccupied empty space shown in the middle of Fig. 1.

We propose to reformulate the default 3D convolution as

Surface Convolution (SurfConv) for a single frame RGBD

input. Instead of “sliding” 3D filters in the voxel space,

we slide compact 2D filters along the observed 3D sur-

face. This helps us to exploit the surface nature of our

input and help the network learn scale-invariant represen-

tations (bottom of Fig. 1). A straight-forward implemen-

tation of surface convolutions is challenging since it re-

quires depth-dependent rescaling at every location, which

is a computational bottleneck. To address this problem, we

propose a Data-Driven Depth Discretization (D4) scheme,

which makes surface convolution practically feasible. We

use our approach to show state-of-the-art results on the

single-view 3D semantic segmentation task in KITTI [11]

and NYUv2 [40] benchmarks. To summarize, our main

contributions are:

• We propose Surface Convolution, that processes single

frame 3D data in accordance with its surface nature.

• We propose to realize Surface Convolution through a

Data-Driven Depth Discretization scheme, which of-

fers a simple yet effective solution that achieves state-

of-the-art single view 3D semantic segmentation.

2. Related Work

Deep 2D RGBD Representations. In the last few years,

2D CNNs have been used to create powerful feature de-

scriptors for images [24], and can learn complex patterns in

the data [57]. One of the approaches to extend the success

of these 2D convolutions to range data, is by projecting the

3D data into multiple viewpoints, each of which is treated

as a 2D input [4, 34, 39, 44]. However, the computation

time scales linearly with the number of views. Since a sin-

gle frame RGBD image sees only the unoccluded portion

of the 3D world, the visible surfaces from drastically differ-

ent viewpoints might not align with that of the input cam-

era viewpoint. Furthermore, reasoning about multiple view-

1Calculated with the standard 0.1m resolution for [11] and 0.02m res-

olution for [40]

points does not lead to a natural, interpretable 3D descrip-

tion of the scene into parts and their spatial relations [17].

Another alternative is to simply use handcrafted depth

representations and treat them as additional channels along-

side the RGB input. Such approaches have shown to im-

prove for tasks such as 3D shape retrieval [9, 50], seman-

tic segmentation [12, 13, 26, 29] and 3D object detec-

tion [3, 7, 8, 25].

3D Convolution. To handle the scale variance, 3D con-

volution learns the correlations directly in the 3D space. To

represent the point cloud information, input representations

such as occupancy grids [20, 31, 38] and TSDF [5, 10, 42,

53, 55] have been explored.

One of the key challenges in 3D convolution is the fact

that increasing the input dimensions by one can lead to sig-

nificant increase the memory budget. Thus, common prac-

tices are to either limit the input resolution to a low res-

olution grid, or have a higher resolution but with reduced

network parameters [43]. Since the range data is sparse in

nature, approaches such as [8, 37, 46] have also exploited it

to reduce the memory consumption of the activation maps.

However, these efforts are difficult to implement and are

nontrivial to scale to a wide variety of tasks in challenging

benchmarks.

Another disadvantage of using voxel grids is that it as-

sumes that the scene has an Euclidean structure and is not

invariant to transformations such as isotropy and non-rigid

deformations. This limitation is overcome by considering

the points as members of an orderless set, which are used

along a global representation [33, 35, 52] of the 3D volume.

Approaches such as [23, 45] have used a CRF for post-

processing the semantic segmentation prediction from a 3D

ConvNet. [36] used a 3D graph neural network to iteratively

improve the unary semantic segmentation predictions. Our

approach can be used to provide better a unary term for

these methods.

3D Surface based Descriptors. Convoluting in the volu-

metric space, a different approach would be to reason along

the surface of the 3D volumes. [21] introduced the idea of

spin images, which builds a 3D surface based descriptors

for object recognition. [19] learns a generative model to

produce object structure through surface geometry. [30, 1]

extended the idea of convolutions to non-Euclidean struc-

tures by learning anisotropic heat kernels which relates to

surface deformity. However, such methods require point

associations to learn the filters, which are difficult to obtain

for range data depicting natural scenes. [22] combines the

segmentation results of multiple views into a surface rep-

resentation of the 3D object. This is followed by a post-

processing step with a CRF which smoothens the labels

along the surface geometry. Such smoothening CRF can
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be used to further improve the results of our approach as

well.

Multi-Scale 2D Convolutions. To get better perfor-

mance, a host of approaches have used multi-scale input

to for tasks such as semantic segmentation [2, 27], optical

flow [48], and detection [15, 18]. Other approaches include

adaptively learning pixel-wise scale [6, 54], and upscaling

feature activations to combine multiple scales for the final

prediction [28, 56]. The key difference of such approaches

with ours is that these scales are arbitrary and do not utilize

the 3D geometry of the scene.

3. Method

An image from a single frame RGBD camera captures

only the visible surface of the 3D space. Instead of wasting

memory on the entire 3D volume, we introduce SurfConv,

which concentrates the computation only along the visible

surface. In Sec. 3.1 we derive SurfConv, which approx-

imates 3D convolution operation to a depth-aware multi-

scale 2D convolution. We justify the approximation as-

sumption and its implications in Sec. 3.2. In Sec. 3.3, we

describe the D4 scheme that determines the scales in a sys-

tematic fashion.

3.1. Surface Convolution

Notation. We denote a point detected by the sensor as p.

Three scalars (px,py,pz) represents its position in 3D. Fol-

lowing the classic camera model, we set the sensor position

(aperture) at the origin, and the principal axis as the posi-

tive z direction. We define an image plane, and the distance

from the image plane to the camera aperture is defined as

the focal length. For simplicity, we rescale the coordinates

such that focal length is equal to 1. We can then compute

the image plane coordinates of point p as

pi =
px

pz

, pj =
py

pz
(1)

We denote the information (e.g. color intensity values)

of point p as Ip, and its semantic class label as Lp. At high

level, semantic segmentation can be formulated as

Lp = F(Ip′∈R(p)) (2)

where F is a function of choice (e.g. a convolutional neural

network), and R(p) defines a local neighborhood of point

p. We refer to R(p) as the receptive field at point p, as

commonly used in literatures. Different types of convolu-

tion take different forms of F and R. Next, we mainly focus

on the receptive field R, as it defines the local neighborhood

that affects the final segmentation decision.

Image Convolution. In image convolution, the receptive

field of point p is defined as Rimg(p) = {p′}, such that

Figure 2. A 2D illustration of our local planarity assumption. Gray curve

shows the visible surface, solid green line shows the approximation plane,

for the center point’s local neighborhood.

pi
′ ∈ [pi −∆img,pi +∆img]

pj
′ ∈ [pj −∆img,pj +∆img]

(3)

where ∆img defines the receptive field radius. We can see

that Rimg(p) defines a rectangle on the projected image

plane. The receptive field has the same number of pixels

regardless of the center point’s distance. Therefore, image

convolution suffers from the scale variance problem.

3D Convolution. To utilize the 3D information, espe-

cially in the depth dimension, 3D convolution has been in-

troduced. In 3D convolution, the receptive field can be de-

fined by trivially extending into all three spatial dimensions,

i.e. R3d(p) = {p′} such that

px
′ ∈ [px −∆3d,px +∆3d]

py
′ ∈ [py −∆3d,py +∆3d]

pz
′ ∈ [pz −∆3d,pz +∆3d]

(4)

This defines a 3D cuboid centered at point p, with radius

∆3d. In 3D convolution, the receptive field becomes inde-

pendent to depth and no longer suffers from scale variance.

However, for a single-frame 3D sensor, the actual 3D data is

essentially a surface back-projected from the image plane.

This means at any given 3D cubic receptive field, the major-

ity of space is empty, which makes training F difficult. To

address the sparsity problem, approaches have used Trun-

cated Signed Distance Function (TSDF) [55] and flipped-

TSDF [43] that fills the empty space, or decrease the voxel

resolution [8].

Local Planarity Assumption. We seek a solution that

directly operates along the visible surface, where the mean-

ingful information resides. To achieve this, we first intro-

duce the local planarity assumption. Then we show that

under this assumption, we can reformulate 3D convolution

as a depth-aware multi-scale 2D convolution. We name this

reformulated approximation as Surface Convolution (Surf-

Conv).

The local planarity assumption is defined as: All neigh-

bor points are approximated to have the same depth as the

receptive field center. Fig. 2 illustrates the approximation

assumption. Under this assumption, we have

pz
′ = pz, ∀p′ ∈ R3d(p) (5)

3004



Surface Convolution. Under the local planarity as-

sumption, we can transform the 3D convolution receptive

field into the SurfConv receptive field. Combining Eq. 1

and Eq. 4, we get

pi
′pz

′ = px
′ ∈ [px −∆3d,px +∆3d] (6)

Then we apply the local planarity assumption as in Eq. 7,

and get

pi
′ ∈ [

px −∆3d

pz

,
px +∆3d

pz

] (7)

We can further apply the projection matrix, and obtain the

final receptive field definition of SurfConv: Rsf (p) = {p′}
such that

pi
′ ∈ [pi −

∆sf

pz

,pi +
∆sf

pz

]

pj
′ ∈ [pj −

∆sf

pz

,pj +
∆sf

pz

]

(8)

where ∆sf = ∆3d defines the receptive field radius in the

3D space. In this way, the SurfConv receptive field de-

fines a square image region, whose size is controlled by the

center point’s depth. This means SurfConv is essentially

a depth aware multi-scale 2D convolution. This bridges

the 3D and 2D perspectives, and avoids the disadvantages

of either method. Compared to 2D convolution, SurfConv

utilizes 3D data and does not suffer from scale variance.

Compared to 3D convolution, SurfConv not only saves the

preprocessing step of filling empty voxels, but also enables

learning compact, parameter-efficient convolution 2D filters

that directly targets the real-world scale of the input data.

In SurfConv, pz ∈ R is a continous variable. This means

for each point, we need to dynamically resize the receptive

field based on its size determined by Eq. 9, before passing

it to the recognition module F that takes fixed size input.

This is computationally inefficient in practice. To address

this problem, we further replace the continues depth with a

set of discretized values, i.e. pz ∈ {z1, z2, ...zN }. We refer

to N as the level of SurfConv. With the discretized depth,

we can cache N levels of the image pyramid. Note that

since we are interested in surface convolution, each pixel in

the original RGBD image belongs to exactly one level of the

pyramid. Fig. 3 shows a toy example of our discretization

process.

3.2. Bridging 3D and 2D Convolution

In SurfConv, we discretize the z dimension into N lev-

els and maintain the full resolution in x and y dimensions.

Thus, our surface convolution can be seen as a deformed

version of general 3D convolution, where SurfConv has

coarser z resolution consisting of N levels, and divides the

original camera

SurfConv at z1

SurfConv at z2

Figure 3. A toy example of discretized SurfConv. In each row, left side

shows the scene and projection plane in cyan, right side shows the image.

Green bars show boundaries separating discretization levels. At each Sur-

fConv level, only points that have depth within the level are visible. The

blue and red objects remain equal-sized to SurfConv, despite their different

depth.

3D space into a z-stretched voxel grid. The memory con-

straints of current day GPUs limits the resolution of the in-

put. In 3D convolution, the 3D space is discretized simi-

larly in all three axes. This results in large grids and low-

ered maximum feasible resolution. In contrast, SurfConv

maintains the full resolution along axes parallel to the im-

age projection plane (x and y), and have a much coarser

resolution for the axis perpendicular to the image plane (i.e.

z). In an RGBD image, the information only resides along

the visible surface. This motivates the lower z resolution,

because information is scarce along this direction. Practi-

cally, SurfConv can be simply implemented with a depth-

aware multi-scale 2D convolution. Each depth level con-

sists a proportionally scaled version of the input, masked to

contain points within its depth range. Standard 2D CNN

training is applied to all levels simultaneously. Therefore,

SurfConv can easily benefit from networks pre-trained on a

variety of large-scale 2D image datasets.

3.3. D4: Data­Driven Depth Discretization

To obtain a set of discretized depth levels, uniform bins

are sub-optimal. This is because in single-viewpoint input
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Figure 4. Point depth distribution at different environment. The distribu-

tion leans heavily to the lower side due to occlusion and sensor resolution.

Statistics obtained from NYUv2 [40] and KITTI [11].

data, near points significantly out-number far points due

to occlusion and decreasing resolution over depth. Fig. 4

shows actual depth distributions from real indoor and out-

door data. Therefore, uniform bins result in unbalanced data

allocation between levels, i.e. the first few levels have al-

most all points, while the last few levels are almost empty.

To address this problem, we introduce the D4 scheme.

Instead of dividing levels evenly, we compute level bound-

aries such that all levels contribute the same amount of in-

fluence to the segmentation model F. First, we define the

importance function of a point as

Θ(p) = pz
γ (9)

where we refer to γ as the importance index. We use the

importance function to assign a weight to each input point,

then we find N discretization levels such that all levels pos-

sess the same amounts summed importance.

Intuitively, with γ = 0, all points are equally important

regardless of their depth. As result, all levels are allocated

with same number of image pixels. With γ = 2, a point’s

influence is proportional to the back-projected 3D surface

area it covers. As result, all levels have equal amount of

total 3D surface area after the discretization and allocation.

Ideally, γ = 2 seems the optimal setting because it

divides the visible surface area evenly to different lev-

els. However, we argue that γ should instead be a hyper-

parameter. Data quality decreases over distance for sensors,

i.e. the farther an object is, the less detailed measurement a

sensor receives. A farther object occupies a smaller field of

view from the sensor’s viewpoint. This means lower reso-

lution, hence lower capture quality. Additionally, in sensors

such as stereo cameras and Microsoft Kinect, precision de-

creases as depth increases, making farther points inherently

more noisy. Therefore, in order to learn the best recognition

model, there exists a tradeoff between trusting near clear

data, and paying attention to adapt to far noisy data. In other

words, the best index is determined by γ̂ = 2 − ζ, where ζ
quantifies this near-far tradeoff. It is difficult to analytically

compute ζ, because it depends on the actual sensor configu-

ration and scene properties. Therefore, we tune ζ, hence γ,

through validation on the actual data.

4. Experimental Results

We demonstrate the effectiveness of our approach by

showing results on two real-world datasets (KITTI [11] and

NYUv2 [40]) for the 3D semantic segmentation task.

4.1. Experimental Setup

CNN model. We use the skip-connected fully convolu-

tional architecture [29] with two different backbones:

1. ResNet-18 [16]: We modify the size of all convolu-

tional kernels to 3 × 3 and experiment with different

number of feature channels in each layer. We try light

and heavy weight versions where the number of fea-

ture channels are 1/4, 1/2, same, or twice of the num-

ber of original channels. The input to our network is

a 6-channel RGB+HHA [13] image. This network has

been trained from scratch, similar to the baseline 3D

convolution based approaches.

2. VGG-16 [41]: We particularly choose this model be-

cause it is conventionally used in previous work on the

NYUv2 dataset [29, 14]. The input to this network is

the standard RGB image. This model has been pre-

trained on the Imagenet dataset.

Using the light weight models, we show that our per-

formance is competitive (NYUv2) or better (KITTI) than

the state-of-the-art 3D convolution based approaches even

with about a quarter of their parameters. Since the memory

requirement of our network is low compared to 3D convo-

lution based approaches, we can take advantage of heavier

models to further improve our performance. Moreover, our

approach can take advantage of pre-trained weights on ex-

isting large scale 2D datasets. For training our networks, we

follow FCN-8s and use the logarithm loss function.

Baselines. We compare our approach with Conv3D [45,

43], PointNet [33], and DeformCNN [6]. For Conv3D, we

use the SSCNet architechture [43], and train it with three

variations of gravity-aligned voxel input: RGB, flipped-

TSDF, and both. We follow [43] and use the maximum

possible voxel resolution that can fit a single-sample batch

into 12GB memory, which results in a 240×144×240 voxel

grid (with 2cm resolution) on NYUv2, and a 400×60×320

voxel grid (with 10cm resolution) on KITTI. The points that

fall into the same voxel are given the same predicted label

in inference.

For PointNet, we directly use the published source code,

and train it on three types of input: original point cloud,

gravity-algined point cloud, and RGB plus gravity align-

ment. We randomly sample points from the point cloud as

suggested in the paper. Specifically, we set the sample num-

ber as 25K, which fills 12GB memory with batch size 8.

For DeformCNN, we replace res5 layers with de-

formable convolution as recommended in [6]. We try jointly
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3d RGB # of para. infer./ms IOUimg Accimg IOUsurf Accsurf

Conv3D [45, 43]

ftsdf no 233k 8 12.43 50.05 12.69 53.34

no yes 238k 10 12.36 48.44 12.66 51.29

ftsdf yes 241k 11 13.19 49.85 13.65 52.89

PointNet [33]

xyz no 1675k 118 6.25 46.44 5.82 47.46

xyz-G no 1675k 118 6.54 46.88 6.16 47.85

xyz-G yes 1675k 117 6.87 47.35 6.47 48.21

DeformCNN [6] HHA yes 101k 6 12.82 55.05 11.67 54.12

SurfConv1 HHA yes 65k 5 12.31 53.74 11.27 54.24

SurfConv4-γ1.0 HHA yes 65k 26 12.01 52.19 11.98 55.44

SurfConv4-γ2.0 HHA yes 65k 24 13.10 53.48 12.79 55.99
Table 1. Training different models from scratch on NYUv2 [40]. All models are trained till convergence for five times, and average perfor-

mance is reported. All training are performed in a data-augmentation-free fashion, but thorough searching in the training hyper-parameter

space is guaranteed. We mark the best and second best method in blue and red. Compared to Conv3D [45, 43], SurfConv achieves close

IOU performance and better Acc performance, while using 30% number of parameters. Compared to PointNet [33], SurfConv achieves 6%

improvement across all measures, while only using less than 5% number of parameters. Compared to DeformCNN [6] SurfConv achieves

better or close measurements with 64% number of parameters. Furthermore, when pre-training with ImageNet, SurfConv achieves a huge

boost in performance (10% improvement in all metrics as shown in Fig. 5).

training all layers of DeformCNN, as well as training with

deformation offset frozen before the joint training. We re-

port measurements of the latter for its better performance.

For fair comparison, we further augment DeformCNN to

use depth information by adding extra HHA channels.

SurfConv with a single level is equivalent to the FCN-

8s [29] baseline. All models are trained using the original

data as-is, without any augmentation tricks.

Metrics. For all experiments, we use the pixel-wise accu-

racy (Acc) and the intersection over union (IOU ) metrics.

We report these metrics on both pixel-level (Accimg and

IOUimg) and surface-level (Accsurf and IOUsurf ). For

the surface level metrics, we weigh each point by its sur-

face area in 3D to compute the metrics. To reduce model

sensitivity to initialization and random shuffling order in

training, we repeat all experiments five times on a Nvidia

TitianX GPU, and report the average model performance.

4.2. NYUv2

NYUv2 [40] is a semantically labeled indoor RGB-D

dataset captured by a Kinect camera. In this dataset, we

use the standard split of 795 training images and 654 testing

images. We randomly sample 20% rooms from the training

set as the validation set. The hyper-parameters are chosen

based on the best mean IOU on the validation set, which

we then use to evaluate all metrics on the test set. For the

label space, we use the 37-class setting [13, 36]. To obtain

3D data, we use the hole-filled dense depth map provided

by the dataset. Training our model over all repetitions and

hyper-parameters takes a total of 950 GPU hours.

The result is shown in Table 1. Compared to Conv3D,

SurfConv achieves close performance on IOU and better

performance on accuracy, while using 30% of its number

of parameters. Compared to PointNet, SurfConv achieves

6% improvement across all metrics, while only using less

Figure 5. Mean performance and standard deviation of NYUv2 finetun-

ing. Comparing to the vanilla CNN model (i.e. SurfConv1), 4-level Sur-

fConv is able to improve on both image-wise and surface-wise metrics. r

denotes the reweighted version.

than 5% of its number of parameters. Compared to the

latest scale-adaptive architecture DeformCNN, SurfConv is

more suitable for RGBD images because it uses depth in-

formation more effectively, achieving better or close perfor-

mance while using fewer parameters. Having more number

of weights (VGG-16 architecture) and pre-training with Im-

agenet gives us a huge boost in performance (Fig. 5).

Comparing SurfConv with different levels trained from

scratch in Table 1, it can be seen that the 4-level model is

slightly better or close to the 1-level model in image-wise

metrics, and significantly better in surface-wise metrics.

Using pre-trained network (Fig. 5), our 4-level SurfConv

achieves better performance than the vanilla single-level

model (FCN-8s [29] baseline), especially in the surface-

wise metrics. We also explore a SurfConv variant where

the training loss for each point is re-weighted by its area of

image-plane projection, marked by r. This makes the train-

ing objective closer to Accimg . The re-weighted version

achieves slightly better image-wise performance, at the cost

of having slightly worse surface-wise performance.

4.3. KITTI

KITTI [11] provides parallel camera and LIDAR data

for outdoor driving scenes. We use the semantic segmenta-
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NYUv2-37class KITTI-11class
Figure 6. Average improved percentage of per-class surface IOU, using multi-level SurfConv over the single-level baseline, with the exact same CNN

model F (Eq. 2). Models are trained from scratch. On NYUv2, we improve 27/37 classes with 1.40% mean IOU increasement. On KITTI, we improve 8/11

classes with 4.31% mean IOU increasement.

NYUv2-37class KITTI-11class
Figure 7. Same as Fig. 6, but finetuning from ImageNet instead of training from scratch. On NYUv2, multi-level SurfConv improves 26/37 classes with

0.99% mean IOU increasement, from the single-level baseline. On KITTI, multi-level SurfConv improves 11/11 classes with 9.86% mean IOU increasement.

tion annotation provided in [51], which contains 70 training

and 37 testing images from different scenes, with high qual-

ity pixel annotations in 11 categories. Due to the smaller

dataset size and lack of standard validation split, we di-

rectly validate all compared methods on the held-out test-

ing set. To obtain dense points from sparse LIDAR input,

we use a simple real-time surface completion method that

exhaustively join adjacent points into mesh triangles. The

densified points are used as input for all methods evaluated.

The smaller size of KITTI allows us to thoroughly explore

different settings of SurfConv levels, influence index γ, as

well as CNN model capacity. Our KITTI experiments take

a total of 750 GPU hours.

Baseline comparisons. Table 2 lists the comparison with

baseline methods. SurfConv outperforms all comparisons

in all metrics. In KITTI, the median maximum scene

depth is 75.87m. This scenario is particularly difficult for

Conv3D, because voxelizing the scene with sufficient res-

olution would result in large tensors and makes training

Conv3D difficult. On the contrary, SurfConv can be eas-

ily trained because its compact 2D filters do not suffer from

insufficient memory budget. DeformCNN performs better

than image convolution (i.e. SurfConv1) for its deforma-

tion layers that adapts to object scale variance. However,

multi-level SurfConv achieves more significant improve-

ment, demonstrating its capablity of using RGBD data more

effectively.

IOUimg Accimg IOUsurf Accsurf
Conv3D [45, 43] 17.53 64.54 17.38 62.58

PointNet [33] 9.41 55.06 9.07 64.38

DeformCNN [6] 34.24 79.17 27.51 73.36

SurfConv1 33.67 79.13 26.56 72.04

SurfConv-best 35.09 79.37 30.65 75.97
Table 2. Training from scratch on KITTI [11, 51]. All methods are

tuned with thorough hyper-parameter searching, then trained five

times to obtain average performance.

Model capacity. We study the effect of CNN model ca-

pacity across different SurfConv levels. To change the

model capacity, we widen the model by adding more feature

channels, while keeping the same number of layers. This re-

sults in 4 capacities that has {20,22,24,26}×65k parameters.

We empirically set γ = 1 for all models in this experiment.

Fig. 8 shows the result. It can be seen that a higher level

SurfConv models have better or similar image-wise per-

formance, while being significantly better in surface-wise

metrics. In general, the performance increases as SurfConv

level increases. This is because higher SurfConv level en-

ables closer approximation to the scene geometry.

Finetuning. Similar to our NYUv2 experiment, we com-

pare multi-level SurfConv with the single-level baseline.

The relatively smaller dataset size allows us to also thor-

oughly explore different γ values (Fig. 9). It can be seen

that with a good choice of γ, multi-level SurfConv is able to
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Figure 8. Exploring the effect of model capacity with different SurfConv levels, on the KITTI dataset. Using exactly the same model (F in Eq. 2), multi-

level SurfConv achieves significantly better surface-wise performance, while maintaining better or similar image-wise performance. All models are trained

from scratch using γ = 1 for five times. Base level of model capacty (i.e. 20) has 65k parameters.

Figure 9. Finetuning from an ImageNet pre-trained CNN using different importance index value γ and different SurfConv levels, on the KITTI dataset. All

models are trained five times. Only three RGB channels are used in this experiment.

Figure 10. Exploring the effect of γ when training different levels of SurfConv from scratch. All models are trained five times with capacity 2
6
×65k.

achieve significant improvement over the single-level base-

line in all image-wise and surface-wise metrics, while us-

ing exactly the same CNN model (F in Eq. 2). Comparing

NYUv2 and KITTI, it can be seen that our improvement

on KITTI is more significant. We credit this to the larger

depth range of KITTI data, where scale-invariance plays an

important role in segmentation success.

4.4. Influence of γ

The influence index γ is an important parameter for Sur-

fConv. We therefore further explore its effects. The optimal

values of γ can be different depending on whether the model

has been trained from scratch or it has been pre-trained, as

shown in Table 1 and Fig. 5. On NYUv2, γ = 1 is better

for finetuning and γ = 2 is better for training from scratch.

The pre-trained models are adapted to the Imagenet dataset

where most objects are clearly visible and close to camera.

The γ = 1 setting weighs the farther points less, which re-

sults in a larger number of points at the discretized bin with

the largest depth value. In this way, the model is forced to

spend more effort on low-quality far points. The observa-

tion of lower optimal γ on pre-trained networks is further

verified by our KITTI results, where γ = 0 and γ = 0.5
achieve best results for pre-trained and from-scratch net-

works respectively. In KITTI, good γ values are in general

lower than in NYUv2. We attribute this to the fact that in

KITTI, besides having a larger range of depth values, the

peak of the depth distribution (Fig. 4) occurs much earlier.

5. Conclusion

We proposed SurfConv to bridge and avoid the issues

with both 3D and 2D convolution on RGBD images. Sur-

fConv was formulated as a simple depth-aware multi-scale

2D convolution, and realized with a Data-Driven Depth Dis-

cretization scheme. We demostrated the effectiveness of

SurfConv on indoor and outdoor 3D semantic segmentation

datasets. SurfConv achieved state-of-the-art performance

while using less than 30% parameters used by 3D convolu-

tion based approaches.
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ing shape correspondence with anisotropic convolutional

neural networks. In NIPS, 2016. 2

[2] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-

tention to scale: Scale-aware semantic image segmentation.

In CVPR, 2016. 3

[3] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun.

3d object proposals using stereo imagery for accurate object

class detection. TPAMI, 2017. 2

[4] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d

object detection network for autonomous driving. In CVPR,

2017. 2

[5] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,

and M. Nießner. Scannet: Richly-annotated 3d reconstruc-

tions of indoor scenes. CVPR, 2017. 2

[6] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable convolutional networks. In ICCV, 2017. 3, 5, 6,

7

[7] Z. Deng and L. J. Latecki. Amodal detection of 3d objects:

Inferring 3d bounding boxes from 2d ones in rgb-depth im-

ages. In CVPR, 2017. 2

[8] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner.

Vote3deep: Fast object detection in 3d point clouds using

efficient convolutional neural networks. In ICRA, 2017. 2, 3

[9] Y. Fang, J. Xie, G. Dai, M. Wang, F. Zhu, T. Xu, and

E. Wong. 3d deep shape descriptor. In CVPR, 2015. 1,

2

[10] L. Ge, H. Liang, J. Yuan, and D. Thalmann. 3d convolutional

neural networks for efficient and robust hand pose estimation

from single depth images. In CVPR, 2017. 2

[11] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. IJRR, 32(11):1231–1237, 2013.

1, 2, 5, 6, 7

[12] K. Guo, D. Zou, and X. Chen. 3d mesh labeling via deep

convolutional neural networks. TOG, 35(1):3, 2015. 2

[13] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning
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