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Abstract

We address the problem of affordance reasoning in di-

verse scenes that appear in the real world. Affordances re-

late the agent’s actions to their effects when taken on the

surrounding objects. In our work, we take the egocentric

view of the scene, and aim to reason about action-object

affordances that respect both the physical world as well as

the social norms imposed by the society. We also aim to

teach artificial agents why some actions should not be taken

in certain situations, and what would likely happen if these

actions would be taken. We collect a new dataset that builds

upon ADE20k [32], referred to as ADE-Affordance, which

contains annotations enabling such rich visual reasoning.

We propose a model that exploits Graph Neural Networks

to propagate contextual information from the scene in order

to perform detailed affordance reasoning about each object.

Our model is showcased through various ablation studies,

pointing to successes and challenges in this complex task.

1. Introduction

Autonomous agents are not simply passive observers but

need to be active in an environment. For example, we might

want them to fetch us dinner from a restaurant, take the dog

for a walk, or carry our bags at the airport. While this seems

futuristic today, we may quite likely see robots mingling

among us in the near future. In order to blend naturally

within the society, robots will need to act as humans would.

Thus, these agents will need to understand both, the affor-

dances and constraints imposed by the 3D environment, as

well as what actions are socially acceptable in a given scene.

For example, running into physical obstacles is dangerous

for an agent and thus should be avoided. Furthermore, sit-

ting on a chair with a purse on top is not appropriate as

the chair is likely reserved by someone else. Running in a

classroom during a lecture is also not conventional.

Introduced by Gibson [10], affordances define the rela-

tionship between an agent and the environment by means of

Relationship:	Socially	Forbidden

Explanation:	This	bag	belongs	to	the	

person	sitting	on	the	chair.

Consequence:	People	will	be	mad	

and	you	will	violate	the	law.

Relationship:	Socially	Forbidden

Explanation:	The	man	sitting	on	the	

chair	is	reading	his	 book.

Consequence:	The	man	will	be	mad	

and	you	will	violate	the	law.

Grasp

Relationship:	Physical	Obstacle

Explanation:	People	are	already	

sitting	on	the	chair.

Consequence:	People	on	the	chair	

will	get	hurt.

Sit

Relationship:	Positive Relationship:	Positive

Grasp

Relationship:	NegativeSit Run

Figure 1. Example of Affordance in Real World

the agent’s perception. Thus, they relate the agent’s actions

to their effects when taken upon the surrounding objects.

In our work, we are interested in reasoning about action-

object affordances that respect both the physical world as

well as the social norms imposed by the society. This is

a very challenging and unexplored problem. Understand-

ing such affordances cannot be determined by, for example,

building a simple knowledge base, as they are a function of

the complete dynamic scene around us.

We adopt the egocentric view, where a given photo is

considered as the current view of the agent. Given a set of

actions that the agent is aiming to take, our goal is to find

all objects/places in the scene for which taking such an ac-

tion would be safe and appropriate. We further aim to teach

the agent why certain objects, to which these actions could

normally be applied to, are considered an exception in the

current scene. Moreover, we want the agent to also under-

stand the most likely consequence to occur if this action

would in fact be taken with such an object.

Since no such information exists to date, we collect

a new dataset building upon ADE20k [32] containing 20

thousand images taken in various types of scenes. In par-

ticular, we first crowdsource typical affordances for action-

object pairs, thus giving us a list of all object classes to

which a particular action can normally be applied to. We

then mark all objects belonging to these classes in ADE20k

imagery, and ask annotators to mark exceptions, i.e., objects
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to which this action should not be taken in this particular

circumstance. We consider multiple types of exceptions,

such as “not safe”, “not physically possible”, or “socially

awkward”. For each exception, we further crowdsource an

explanation (reason) as well as the most probable conse-

quence, both taking the form of a natural language sentence.

We then design a model to generate such rich visual rea-

soning about an image in an automatic fashion. We exploit

Graph Neural Networks (GNNs) to reason about the affor-

dances about objects in images given actions of interest. We

build a graph based on an instance level semantic segmenta-

tion map, where the nodes are the objects in the image. We

encode the spatial relationship of pairs of nodes by connect-

ing adjacent objects with edges. The GNN model then takes

semantic feature representation of each object as its initial

node representation, and iteratively updates its hidden vec-

tors by propagating messages among the neighbors in the

graph. This allows us to capture contextual relationships in

the image in an efficient way. Our model then outputs an

action-object affordance for each node, as well as an expla-

nation and consequence using an RNN language model.

We showcase our model through various ablation stud-

ies, leading to insights about what type of information is im-

portant to perform such involved affordance reasoning. Our

dataset is available at http://www.cs.utoronto.

ca/˜cychuang/learning2act/.

2. Related Work

We review works most related to ours, focusing on affor-

dances, visual reasoning, and captioning.

Affordance Reasoning. A number of works investigated

learning and inferring object-action affordances [11, 26, 5,

18, 14, 33]. Most approaches are designed to learn typical

action-object affordances from visual or textual informa-

tion. In [11, 14], the authors learn visual cues that support a

particular action, such as sit, by imagining an actor interact-

ing with the object. [18] learns object-action affordances

by watching humans interacting with objects, while [26] in-

fers social interactions by observing humans in social con-

texts. In [5, 30, 33], the authors learn affordance relations

between actions and objects by either crowd-sourcing, min-

ing textual information, or parsing images. However, most

of these approaches treat affordances as static, i.e., appli-

cable to all situations, and mainly focus on learning what

object attributes imply certain affordances. In our work, we

specifically reason about scene-dependent exceptions, both

physical and social, and further aim to explain them. Re-

cently, [1] aimed at inferring object states, such as open or

close, which is an important cue for affordance reasoning.

Object state depends on the visual observation of the object

alone, while in our work we are interested in going beyond

this by reasoning about affordances in the scene as a whole.

Visual Description Generation. Describing visual con-

tent is a fundamental problem in artificial intelligence that

connects computer vision and natural language processing.

Image captioning approaches [2, 28, 29, 6, 7] generate a nat-

ural language sentences to describe an entire image. In [15],

the authors aim at both, generating region detectors and de-

scribing them in language, sharing some similarity with our

effort here. Recently, [3, 13] proposed a framework to gen-

erate explanations for their classification decisions. How-

ever, different from these works, we generate an explana-

tion per object and exploit dependencies between objects

in an image to perform this reasoning. [27] used graphs to

generate explanations for human interactions.

Graph Neural Networks. Several approaches apply deep

neural networks to graph structured data. One direction is

to apply CNNs to graphs in the spectral domain by utilizing

the graph Laplacian [4, 8, 17]. [9] designed a hash function

such that CNN can be applied to graphs. We here adopt the

Gated Graph Neural Networks [20] that define a GRU-like

propagation model on each node of the graph.

We are not the first to use GNNs to model dependencies

in vision tasks. In [19], the authors exploit a GGNN [20]

to predict situations from images in the form of an action

and role-noun assignments. [24] used GGNN to perform

semantic segmentation in RGB-D data. [22] defines graph

LSTM over the nested superpixels in order to perform scene

parsing. In our work, we exploit GGNN to model depen-

dencies among objects in order to produce affordances and

their explanations.

3. ADE-Affordance Dataset

Since we are not aware of existing datasets tackling vi-

sual reasoning about action affordances, we collected a new

dataset which we refer to as the ADE-Affordance dataset.

We build our annotations on top of the ADE20K [32].

ADE20k contains images from a wide variety of scene

types, ranging from indoor scenes such as airport terminal

or living room, to outdoor scenes such as street scene or zoo.

It covers altogether 900 scenes, and is a good representative

of the diverse world we live in. Furthermore, ADE20k has

been densely annotated with object instance masks, forming

likely one of the most comprehensive datasets to date.

3.1. Dataset Collection

We divide our annotation effort into three stages: 1) cre-

ating a knowledge base (KB) of typical action-object affor-

dance pairs, 2) marking KB objects in images with excep-

tion types (object class is in KB, however in this particular

scene the action cannot or should not be applied to the ob-

ject instance), and 3) collecting explanations and most prob-

able consequences for such special objects. We describe our

full collection pipeline in this section.
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Figure 2. Knowledge Base of action-object affordances

Collecting the Affordance Knowledge Base. While ob-

jects in ADE20k were annotated using an open vocabulary,

the authors also provide a list of 150 classes which cover

most of the objects in the dataset. In the first step of our

data collection, we asked AMT workers to list five most

typical actions for each of the 150 object classes. We asked

three workers per object class. We then chose three actions

which we found to be elementary for an agent, as well as

interesting: sit, run, grasp. For each action, we then com-

piled a list of all object classes from the AMT annotations.

For example, bottle is linked to action grasp, and floor is

linked to run and sit, among others. We further added a few

more objects to the list if we felt that it was not sufficiently

comprehensive. This list (compiled for each of the three

actions) forms our affordance knowledge base. Note that

this KB is not complete as it may miss objects outside the

150 classes. We augment our KB with such information in

the following stages of data collection. We show our KB in

Fig. 2. We then select 10, 000 images from ADE that con-

tains most object classes from our KB, and build our dataset

on top of this subset.

Annotating Exceptions in Images. We first carefully

considered the types of exceptions that prevent actions to

be taken with certain objects. In particular, we chose seven

different action-object relationships, one positive (the ac-

tion can be taken), one firmly negative (the action can never

be taken with this object class – this comes from our KB),

and five exception types (normally one could take an action

with this object class, however not with this particular ob-

ject instance). Table 1 lists our chosen set of relationships.

We then designed an annotation webpage which shows

the original image, as well as the image containing object

instance masks. The data for each action was collected sep-

arately to prevent bias. For each action, we marked all ob-

ject instances from its KB in green, indicating a potential

positive affordance, and the negative objects in blue (neg-

ative affordance). We asked the annotators to help a robot

understand which objects form the exception. We wrote de-

tailed visual instructions explaining what we want, with ad-

ditional examples further illustrating the task.

Relationship Description

Positive We can take this action to the object

Firmly Negative We can never take this action to the object

Object Non-functional The object lose some of its original function

Physical Obstacle Physical obstacles prevent you to take the action.

Socially Awkward It is not proper to take the action

Socially Forbidden It is strictly forbidden to take the action

Dangerous to ourselves/others Taking the action would harm ourselves or others

Table 1. Action-Object Relationship Categories

Sit Run Grasp

Images with Exception (%) 52.2 77.5 22.7

Objects with Exc. (%) wrt KB classes 23.2 41.7 13.0

Objects with Exc. (%) wrt all objects 4.33 4.35 1.96

Table 2. Statistics of exception annotations in our dataset

The annotator was requested to click on the object and

was required to select 1 out of 5 possible exception classes.

The annotator was also able to add positive affordances, by

clicking on any blue (negative) object, if they felt that the

object could in fact afford an action. We additionally asked

the annotators to select any green (positive) objects and add

exceptions to them if they felt that this type of object typi-

cally affords the action, but forms an exception in this case.

These are the objects that have been missed by our KB.

At the end of this data collection, we have all positive

action-object instances marked for each image, and for each

of the negative action-object instances we additionally have

the exception type, helping the agent to understand why the

action should not be taken.

Adding Explanations and Consequences. The previous

stage of data collection yields a broad exception category

for certain objects. Here, we are interested in obtaining a

more detailed understanding of the exception. In particu-

lar, we now show the annotator only the objects marked as

exceptions, and ask them to write an explanation as well as

a likely consequence for each of them. To illustrate, con-

sider an action grasp and an image that shows a woman

holding her purse. The exception type for the purse would

be marked as socially forbidden. Here, a plausible expla-

nation could be: One cannot take other people’s property.

The likely consequence if one would still attempt to grasp

the purse would be: One could go to jail. We advised the

annotators to write sentences in third person.

Note that due to the somewhat subjective flavor of the

task, we collected annotations from three workers per im-

age for our test subset of the dataset, allowing more robust

evaluation of performance. For the train and val subsets, we

only collected annotation from one worker. We show a few

examples of complete annotations in Fig. 3.

3.2. Dataset Analysis

We analyze our dataset through various statistics. In Ta-

ble 2, we show the proportion of images that contain at least

one object with exception for each of the actions. For sit and
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Relationship:	Object	Non-functional

Explanation:	chairs	are	hanging	on	a	

wall.

Consequence:	would	get	hurt.

Sit

Relationship:	Socially	Awkward

Explanation:	middle	of	a	garage.

Consequence:	may	get	run	over.

Sit

Relationship:	PositiveSit

Relationship:	PositiveRun

Relationship:	Dangerous	to	Ourselves/Others

Explanation:	There	are	desks	 here	and	a	person.

Consequence:	You	could	injure	the	individual.

Run

Relationship:	Physical	Obstacle

Explanation:	Someone	is	already	sitting	in	that	chair.

Consequence:	You	can	hurt	that	person	by	sitting	on	

them.

Sit

Relationship:	Socially	Forbidden

Explanation:	He	needs	the	bag.

Consequence:	He	will	not	have	a	place	to	put	his	

computer

Grasp

Relationship:	PositiveSit Relationship:	Negative
Relationship:	Negative

Relationship:	Dangerous	to	

Ourselves/Others

Explanation:	It	is	a	road.

Consequence:	You	will	get	hit	by	a	car.

Run

Relationship:	PositiveRun

Relationship:	PositiveSit

Relationship:	PositiveSit

Relationship:	Negative

Figure 3. Examples of annotations from our ADE-Affordance dataset
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Figure 4. Exception distribution for each action
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Figure 5. Exception distribution for selected objects

#Sent. Vocab. Avg Len. #Sent./W.

Sit
Explanation 14221 3768 7.75 69.5

Consequence 14221 3636 7.76 75.8

Run
Explanation 13914 2182 6.89 108.6

Consequence 13914 2098 7.63 132.4

Grasp
Explanation 9785 2341 7.81 84.1

Consequence 9785 2178 7.88 63.6

Table 3. Statistics of explanation and consequence sentences.

Voca. stands for vocabulary. Sent. stands for sentences. W. stands

for words. Len. stands for length of sentences.

run, exceptions exist in more than 50% of images, showing

that special conditions are common in real world scenes.

We further computes the percentage of objects belonging to

classes in our KB that are assigned exceptions in images,

as well as the percentage of exceptions with respect to all

objects in our ADE-Affordance dataset.

Fig 4 shows the distribution of different exceptions

classes for the three actions. We can see that the ratio of

Socially Awkward is higher for sit and grasp while run has

more Physical Obstacle exceptions, indicating that we en-

counter different situations while taking different actions.

Fig 5 shows the distribution of different exceptions classes

for a few common objects in our dataset. We can see very

specific exception “signatures” for different objects.

Table 3 shows statistics of explanation/consequence sen-

tences for the three actions. The first two columns show

the number of sentences and non-stemmed vocabulary size,

respectively. We can observe that the sentences for the ac-

tion sit are more complex than for run and grasp. The forth

column is the average number of sentences per word.

We split our dataset into 8,011 training images, 1000 im-

ages in the validation set, and 1000 images in the testing set,

by balancing exception classes across the splits.

4. Affordance Reasoning with Graph Neural

Models

In this section, we propose a model to perform visual

reasoning about action-object affordances from images. We

first formalize the task, and introduce our graph-based neu-

ral model in the following subsection.

4.1. Problem Definition

We define the set of N actions as A = {ai}
N

i=1, where

N = 3 in our case. Given an image I , let M be the number

of object instances O = {oj}
M

j=1 that compose the scene.

These “objects” include discrete classes such as table and

chair, as well as “stuff” classes such as floor and road. Our

task is to predict and explain affordances A(ai,oj) for each

action-instance pair. In particular, A(ai,oj) includes the

following information:

1. Relationship: For each instance o
j , we categorize its

relationship with action a
i as rij ∈ [Rpos,Rneg,Rexc], in-

dicating the scene dependent affordance of ai and o
j . Here,

Rpos indicates that action a
i can be taken with object oj ,

while Rneg indicates that action a
i cannot be taken with o

j

under any condition (such as grasp with sky). Rexc con-

tains several types of exceptions indicating the special cir-

cumstances due to which the action cannot be taken.

2. Explanation: For each (ai,oj) pair for which r
i
j ∈

Rexc, we aim to explain the reason why the action cannot

be taken. This explanation is a natural language sentence.

3. Consequence: For each (ai,oj) pair for which r
i
j ∈
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Relationship: Socially Forbidden

Explanation: This bag belongs to 

the person sitting on the chair.

Consequence: People will be 

mad and you will violate the law.

Spatial Gated Graph Neural Network

…

t=1 t=2 t=T
LSTM."

LSTM.#

s

Output LayersFeature Extraction

…

class
vector

Resnet
vector

Global
Resnet vector

Figure 6. Model Architecture

Rexc, foresee the (negative) consequence if action a
i was to

be taken. This consequence is a natural language sentence.

These three entities serve as the essential information to

understand the dynamics in the real world and help us rea-

son about the proper way to interact with the environment.

4.2. Our Model

Action-object affordance depends on the contextual in-

formation in the scene. For example, we can not sit on the

chair occupied by another person, and we should not cross

the road with cars rushing upon it. Reasoning about the

affordances thus requires both, understanding the semantic

classes of all objects in the scene, as well as their spatial

relations. We propose to model these dependencies via a

graph G = (V, E). The nodes v ∈ V in our graph indi-

cate objects in the image, while the edges e ∈ E encode the

spatial relations between adjacent objects. We define two

objects to be adjacent if their boundaries touch.

Background. Gated Graph Neural Network (GGNN) is a

neural network that propagates information in a graph, and

predicts node or graph-level output. Each node of a GGNN

is represented with a hidden vector that is updated in a re-

current fashion. At each time step, the hidden state of a

node is updated based on its previous state and messages

received from the neighbors. After T propagation steps, the

hidden state at each node is used to predict the output.

Spatial GGNN for Affordance Reasoning. We adopt the

GGNN framework to predict and explain affordances. We

refer to our method as Spatial GGNN since our graph cap-

tures spatial relations between objects to encode context.

To initialize the hidden state for node v, we combine the

object class information and an image feature vector:

h0
v = g(Wcĉ)⊙ g(Wfφ(o

v))) (1)

where ĉ ∈ {0, 1}|C| corresponds to the one-hot encoding

of the object class and φ(ov) represents the feature vec-

tor. In our experiments, we either use the ground-truth class

or the predicted class using an instance segmentation net-

work [23]. We obtain φ(ov) by cropping the image patch

within the box defined by the object’s mask, and extract-

ing features from the last hidden layer of Resnet-50 [12]

features. Here, Wc and Wf map the object class and the

image feature vector to the space of the hidden representa-

tions. Note that ⊙ corresponds to element-wise multiplica-

tion, and g(·) is the non-linear function ReLU.

At time step t, the node’s incoming information is deter-

mined by the hidden state of its neighbors {v′ ∈ N (v)}:

xt
v =

∑

v′∈N (v)

Wph
t−1
v′ + bp (2)

The linear layer Wp and bias bp are shared across all nodes.

After aggregating the information, the hidden state of the

node is updated through a gating mechanism similar to the

Gated Recurrent Unit (GRU) as follows [20]:

ztv = σ(Wzx
t
v + Uzh

t−1
v + bz),

rtv = σ(Wrx
t
v + Urh

t−1
v + br),

ĥt
v = tanh(Whx

t
v + Uh(r

t
v ⊙ ht−1

v ) + bh),

ht
v = (1− ztv)⊙ ht−1

v + ztv ⊙ ĥt
v (3)

While maintaining its own memory, each node can ex-

tract useful information from incoming messages.

Output. After T propagation steps, we extract node-level

hidden states hT
v . Before feeding to the output layer, we

combine each hT
v with the first hidden state and a global fea-

ture derived from the image. We compute the global feature

φ(I) by feeding the full image into Resnet-50. The feature

fed into the output layer is then computed as follows:

ho
v = g(Who[h

T
v , h

0
v, φ(I)]) (4)

To predict relationship, we use two FC layers s and softmax:

ps = softmax(s(ho
v)) (5)

For each (ai,oj) pair whose predicted relationship is in

Sneg , we further use the standard captioning RNN archi-

tecture to generate an explanation ye and a consequence yc:

ye = LSTMe(h
o
v)

yc = LSTMc(h
o
v) (6)

Note that the networks for predicting the outputs are shared

across all nodes.
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Learning. We use the cross-entropy loss function for re-

lationship prediction, as well as for predicting each word

in the explanation/consequence. The GGNN is then trained

with the back-propagation through time (BPTT) algorithm.

5. Experiments

In this section, we first provide implementation details,

and then perform an extensive evaluation of our approach.

Model Training. To train our model we use the graph

derived from the ground truth segmentation map. We set

the number of propagation steps in all GGNN networks to

T = 3 except for the ablation study. For relationship pre-

diction, we train the network using Adam [16] with mini-

batches of 128 samples. Initial learning rate is 1×10−3 and

we decay it after 10 epochs by a factor of 0.85. The LSTM

for explanation and consequence generation is trained using

Adam with mini-batches of 32 samples and initial learning

rate of 3 × 10−4. In all experiments, the hidden size of

MLP, GGNN and LSTM is set to 128. Local and global im-

age feature are derived using the Resnet-50 [12] pre-trained

on Imagenet [25]. To extract the local feature for each ob-

ject, we extend the object’s bounding box by a factor of 1.2
in order to include contextual information. In all our exper-

iments, we train different models for each task (i.e., models

for relationship classification and explanation generation do

not share parameters) in order to eliminate the effect across

tasks during evaluation. We also show the effect of training

the model jointly on all tasks later in the section.

Data Processing. For explanation and consequence, we

prune the vocabulary by dropping words with frequency

less than 2. We share the vocabulary for explanation and

consequence within each action, however, we do not share

the parameters of their LSTMs.

Baselines. Since there is no existing work on our task, we

compare to a number of intelligent baselines:

KB: We exploit the information in our knowledge base

as the weakest baseline. Note that this baseline does not

exploit any visual information. When presented with the

class of the object instance, it simply predicts the posi-

tive/negative relationship by looking up the KB.

Unaries: We obtain a unary model (graph without

edges) by using T = 0 steps of propagation in our GGNN.

This model thus only uses each object’s features to perform

prediction, and allows us to showcase the benefit of model-

ing dependencies in our model.

Chain RNN: An unrolled RNN can be seen as a spe-

cial case of a GGNN [21], where the nodes form a chain

with directed edges between them. In chain RNN the nodes

only receive information from their (left) neighbor. For this

baseline, we randomly choose the order of nodes.

Method
Sit Run Grasp

mAcc mAcc-E mAcc mAcc-E mAcc mAcc-E

KB 0.656 0.281 0.662 0.284 0.590 0.253

Unaries 0.730 0.428 0.714 0.434 0.594 0.289

Chain RNN 0.727 0.441 0.720 0.412 0.610 0.289

FC GGNN 0.733 0.438 0.711 0.407 0.596 0.309

Spatial GGNN 0.745 0.461 0.730 0.452 0.604 0.310

Table 4. Relationship Prediction using ground-truth segmentation.

FC GGNN: We simply fully connect all nodes to all

other nodes without considering their spatial relationships

in the image. All other settings are the same as in our model.

Note that in this model, all objects contribute equally to

each of the objects, and thus the contextual information con-

tained in the neighboring objects is not fully exploited.

Evaluation Metrics. Due to the complex nature of our

prediction task, we design special metrics to evaluate per-

formance. For relationship prediction, we calculate two

metrics: mean accuracy (mAcc), and mean accuracy with

exceptions (mAcc-E). For mAcc, we consider all exceptions

as one class and calculate mean accuracy among 3 classes:

positive, firmly negative, and the exception class. For

mAcc-E, we treat different exceptions as different classes

and calculate mean accuracy across all seven classes (Ta-

ble 1). When evaluating on test, we calculate each metric

for each of the three GT labels, and compute the average.

For explanation and consequence generation, we use

four metrics commonly used for image captioning: Bleu-4,

Meteor, ROUGE, and CIDEr. On the test set, we calculate

accuracy wrt each GT sentence and take the average.

5.1. Results

In all experiments, we select the model based on its ac-

curacy on the val set, and report the performance on the test

set. In order to separate the effect of doing both, instance

segmentation as well as visual reasoning on the detected

objects, we first evaluate our approach using ground-truth

instance segmentation.

Relationship Prediction. We first consider the task of

predicting the relationship between a chosen action and

each object. Table 4 reports the performance. We use KB to

set the lower bound for the task. By comparing our model to

the Unaries baseline, we show that aggregating information

from neighboring nodes increases the performance. The re-

sults also suggest that our graph that respects spatial rela-

tionships in images utilizes the contextual information bet-

ter than the fully-connected and the chain graphs.

Examples in Fig. 7 show that our model is able to cor-

rectly predict exceptions by utilizing spatial information. In

the first row, we can see that Unaries and FC GGNN fail to

predict physical obstacle due to the lack of spatial context.

Without correct order, Chain RNN also fails to accurately

detect the exception for each object.
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Negative Socially	ForbiddenPhysical	ObstaclePositive Socially	Awkward

Seg +	Spatial	GGNN

Figure 7. Relationship Prediction for different models. Columns 2-6 use GT segmentation, while the last column also predicts segmentation.

Method
Sit Run Grasp

mAcc mAcc-E mAcc mAcc-E mAcc mAcc-E

KB 0.228 0.098 0.196 0.084 0.128 0.055

Unaries 0.280 0.156 0.240 0.190 0.130 0.059

Chain RNN 0.272 0.152 0.241 0.172 0.130 0.058

FC GGNN 0.278 0.157 0.246 0.179 0.131 0.064

Spatial GGNN 0.280 0.162 0.238 0.192 0.130 0.065

Table 5. Relationship Prediction with real segmentation results.

Explanation Generation. We now consider generating

explanations for each object with exception. The perfor-

mance is shown in Table 6. GGNN structured models

consistently outperform the other baselines for all actions.

Leveraging spatial information can further improve the per-

formance in various settings.

Consequence Generation. We finally consider generat-

ing most probable consequences for each object with ex-

ception. We report the performance in Table 7. Our model

outperforms the baselines in most metrics while some of

the baselines also achieve good performance. This phe-

nomenon might be due to the uncertainty of ground truth

since sometimes the consequences do not necessarily de-

pend on the neighboring objects for every action. However,

we can see that for grasp contextual information helps.

For both explanation and consequence generation, we

found that the size of our dataset limits the diversity of the

output sentences. Our model tends to describe similar situa-

tions with the same sentence. However, different from typ-

ical image captioning, we are able to generate explanations

and consequences that depend on the inter-object context.

Qualitative examples are shown in Fig. 8.

Ablative Analysis. We study the effect of different

choices in our model in Table 9. In these experiments,

we focus on the task of relationship prediction for sit. We

use ground-truth segmentation. Here, OC stands for object

class, OR represents object’s ResNet feature, and GR indi-

cates ResNet feature extracted from the full image.

We first evaluate the performance by removing informa-

tion from the input to the model. We can see that our GGNN

still successfully makes a prediction without the global im-

age feature while the performance of Unaries significantly

decreases in this case. Unaries rely on this information

more heavily, since it is its only source of context. As ex-

pected, removing the class information of the object’s in-

stance (w/o OC) harms the performance most significantly.

Not using the object feature (OR) as input does not seri-

ously decrease the performance with GR, but largely harms

the performance of Unaries.

The number of propagation steps T is an important

hyper-parameter for GGNN. Table 9 shows the performance

of our model with different T . We found that the perfor-

mance saturates around T = 3, so we fix it as the hyper-

parameter for all graph structured networks.

Combination with Inferred Segmentation. We now

tackle the most challenging task, i.e., going from raw im-

ages to the full visual explanation. Since the instance

segmentation in ADE dataset is quite challenging due to

the limited number of images and more than 100 different

classes, we use the instance segmentation model [23] which

is trained on MS-COCO. Since instance segmentation mod-

els only consider discrete objects, we trained an additional

semantic segmentation network [31] on ADE20K to seg-

ment 25 additional “stuff” classes such as floor and road.

To combine both results, we overlay instance segmentation

results over the predicted semantic segmentation map.

We show the performance in Table 5. Note that the in-

stance segmentation model that we use is trained to predict

60 out of 150 ADE classes. To calculate the accuracies, we

only focus on these objects. Given the difficulty of the task,

the model achieves a reasonable performance. However, it

also opens exciting challenges going forward in performing

such a complex reasoning task.
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Method
Sit Run Grasp

Bleu-4 METEOR ROUGE CIDEr Bleu-4 METEOR ROUGE CIDEr Bleu-4 METEOR ROUGE CIDEr

Unaries 0.127 0.144 0.332 0.214 0.149 0.174 0.376 0.350 0.679 0.5 0.773 1.838

Chain RNN 0.133 0.142 0.365 0.228 0.110 0.141 0.358 0.30 0.702 0.485 0.746 1.890

FC GGNN 0.150 0.150 0.358 0.231 0.141 0.164 0.362 0.309 0.738 0.528 0.814 2.046

Spatial GGNN 0.160 0.155 0.376 0.220 0.176 0.181 0.394 0.409 0.735 0.532 0.816 2.069

Table 6. Explanation Generation. In this experiment we use ground-truth instance segmentation in all models.

Method
Sit Run Grasp

Bleu-4 METEOR ROUGE CIDEr Bleu-4 METEOR ROUGE CIDEr Bleu-4 METEOR ROUGE CIDEr

Unaries 0.130 0.158 0.375 0.235 0.167 0.197 0.427 0.389 0.492 0.307 0.528 0.772

Chain RNN 0.118 0.150 0.355 0.183 0.163 0.156 0.392 0.340 0.574 0.342 0.581 1.023

FC GGNN 0.132 0.147 0.385 0.224 0.170 0.198 0.418 0.390 0.633 0.392 0.627 1.381

Spatial GGNN 0.134 0.151 0.380 0.24 0.175 0.173 0.414 0.392 0.70 0.427 0.695 1.504

Table 7. Consequence Generation. In this experiment we use ground-truth instance segmentation in all models.

Method

Exception (mAcc) Explanation (CIDEr) Consequence (CIDEr)

Avg. Avg. (E) Sit Sit (E) Run Run (E) Grasp Grasp (E) Avg. Sit Run Grasp Avg. Sit Run Grasp

independent 0.693 0.408 0.745 0.461 0.730 0.452 0.604 0.31 0.899 0.220 0.409 2.070 0.712 0.240 0.392 1.504

MT 0.676 0.389 0.714 0.425 0.697 0.433 0.616 0.311 0.604 0.234 0.401 1.177 0.397 0.252 0.343 0.596

MA, MT 0.683 0.400 0.724 0.447 0.702 0.431 0.622 0.321 0.614 0.241 0.358 1.243 0.406 0.22 0.31 0.687

Table 8. Multi-Task Results. In this experiment we use ground-truth instance segmentation in all models.

Explanation:	There	is	a	person	 in	the	

chair.

Consequence:	The	person	will	get	mad	

at	you	.

Sit

Explanation:	The	floor	is	for	walking.

Consequence:	You	will	be	in	the	way.

Sit

Explanation:	You	should	 not	run	here	

because	it	is	a	living	room

Consequence:	You	would	run	into	the	

furniture.

Run

Explanation:	It	is	improper	to	grasp	

something	in	someone’s	 home	without	

permission	

Consequence:	The	person	will	get	mad	at	

you	.

Grasp

Explanation:	It	is	weird	to	sit	on	the	floor.

Consequence:	If	you	sit	here	you	will	be	in	

the	way.

Sit

Explanation:	There	are	people.

Consequence:	You	will	hit	them

Run

Explanation:	It	is	dangerous	to	run	

on	a	road	.

Consequence:	You	could	run	into	a	

person	and	hurt	yourself.

Run

Explanation:	It	is	a	road.

Consequence:	You	will	get	hit	by	a	

car.

Run

Objects	with	Positive	or				

Negative	Relationships

Figure 8. Explanation and Consequence Generation. Ground-truth segmentation is used in this experiment.

Method mAcc mAcc-E

Unaries w/o OC, GR 0.565 0.276

Unaries w/o OR, GR 0.664 0.328

Unaries w/o OC 0.598 0.306

Unaries w/o OR 0.719 0.415

Unaries 0.730 0.428

Spatial GGNN, T=3 w/o OC, GR 0.618 0.326

Spatial GGNN, T=3 w/o OR, GR 0.719 0.396

Spatial GGNN, T=3 w/o OC 0.622 0.341

Spatial GGNN, T=3 w/o OR 0.720 0.424

Spatial GGNN, T=3 0.745 0.461

Spatial GGNN, T=1 0.723 0.428

Spatial GGNN, T=2 0.723 0.433

Spatial GGNN, T=4 0.738 0.431

Table 9. Ablative Analysis on Sit Action Relation Prediction.

Multi-Task Learning. We now train a joint model, pre-

dicting relationships, generating explanations and conse-

quences in a unified GGNN. We consider two different set-

tings. The first one is single action multi-task learning (SA-

MT): sharing GGNN parameters across relationships, ex-

planation, and consequence for each action, but not across

actions. The second one is multi-action multi-task learning

(MA-MT): sharing GGNN parameters across three differ-

ent tasks among all the actions. The performance is shown

in Table 8. We can see that both SA-MT and MA-MT reach

performance comparable to independent models, even sur-

passing independent models in some tasks. This show that it

is practical to share the parameters of a single GGNN across

various tasks, thus saving on inference time.

6. Conclusion
In this paper, we tackled the problem of action-object af-

fordance reasoning from images. In particular, our goal was

to infer which objects in the scene a chosen action can be

applied to, by taking into account scene-dependent physical

and implied social constraints. We collected a new dataset

building on top of ADE20k [32] which features affordance

annotation for every object, including scene-dependent ex-

ception types with detailed explanations, as well as most

probable consequences that would occur if the action would

be taken to an object. We proposed a model that performs

such visual reasoning automatically from raw images, by

exploiting neural networks defined on graphs. We provided

extensive evaluation of our approach through various com-

parisons, pointing to challenges going forward.
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