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Abstract

Evaluation metrics for image captioning face two chal-

lenges. Firstly, commonly used metrics such as CIDEr, ME-

TEOR, ROUGE and BLEU often do not correlate well with

human judgments. Secondly, each metric has well known

blind spots to pathological caption constructions, and rule-

based metrics lack provisions to repair such blind spots

once identified. For example, the newly proposed SPICE

correlates well with human judgments, but fails to capture

the syntactic structure of a sentence. To address these two

challenges, we propose a novel learning based discrimina-

tive evaluation metric that is directly trained to distinguish

between human and machine-generated captions. In addi-

tion, we further propose a data augmentation scheme to ex-

plicitly incorporate pathological transformations as nega-

tive examples during training. The proposed metric is eval-

uated with three kinds of robustness tests and its correlation

with human judgments. Extensive experiments show that

the proposed data augmentation scheme not only makes our

metric more robust toward several pathological transforma-

tions, but also improves its correlation with human judg-

ments. Our metric outperforms other metrics on both cap-

tion level human correlation in Flickr 8k and system level

human correlation in COCO. The proposed approach could

be served as a learning based evaluation metric that is com-

plementary to existing rule-based metrics.

1. Introduction

Learning to automatically generate captions to summa-

rize the content of an image is considered as a crucial task in

Computer Vision. The evaluation of image captioning mod-

els is generally performed using metrics such as BLEU [27],

METEOR [20], ROUGE [23] or CIDEr [31], all of which

mainly measure the word overlap between generated and

reference captions. The recently proposed SPICE [3] mea-

sures the similarity of scene graphs constructed from the

candidate and reference sentence, and shows better correla-

tion with human judgments.

These commonly used evaluation metrics face two chal-

lenges. Firstly, many metrics fail to correlate well with hu-
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Figure 1. An overview of our proposed captioning evaluation met-

ric. From a set of images and corresponding human written and

machine generated captions, we train a model to discriminate be-

tween human and generated captions. The model comprises three

major components: a CNN to compute image representations, an

RNN with LSTM cells to encode the caption, and a binary classi-

fier as the critique. After training, the learned critique can be used

as a metric to evaluate the quality of candidate captions with re-

spect to the context (i.e., the image and reference human captions).

man judgments. Metrics based on measuring word overlap

between candidate and reference captions find it difficult

to capture semantic meaning of a sentence, therefore often

lead to bad correlation with human judgments. Secondly,

each evaluation metric has its well-known blind spot, and

rule-based metrics are often inflexible to be responsive to

new pathological cases. For example, SPICE is sensitive to

the semantic meaning of a caption but tends to ignore its

syntactic quality. Liu et al. [25] shows that SPICE prefers

to give high score to long sentences with repeating clauses.

It’s not easy to let SPICE take such pathological cases into

account. Since it’s difficult to completely avoid such blind

spots, a good evaluation metric for image captioning should
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be flexible enough to adapt to pathological cases once iden-

tified, while correlating well with human judgments.

To address the aforementioned two challenges, we pro-

pose a metric that directly discriminates between human

and machine generated captions while being able to flexi-

bly adapt to pathological cases of our interests. Since real

human judgment is impractical to obtain at scale, our pro-

posed learning based metric is trained to perform like a hu-

man critique, as illustrated in Fig. 1. We use a state-of-

the-art CNN architecture to capture high-level image rep-

resentations, and a RNN with LSTM cells to encode cap-

tions. To design the learned critique, we follow insights

from the COCO Captioning Challenge in 2015 [1, 7], in

which a large-scale human judgment experiment was per-

formed. In particular, our critique is a binary classifier that

makes a Turing Test type judgment in which it differentiates

between human-written and machine-generated captions.

In order to capture targeted pathological cases, we pro-

pose to incorporate these pathological sentences as negative

training examples. To systematically create such pathologi-

cal sentences, we define several transformations to generate

unnatural sentences that might get high scores in an eval-

uation metric. Our proposed data augmentation (Sec. 3.3)

scheme uses these transformations to generate large number

of negative examples, which guide our metric to explore a

variety of possible sentence constructions that are rare to be

found in real world data. Further, we propose a systematic

approach to measure the robustness of an evaluation metric

to a given pathological transformation (Sec. 3.4). Extensive

experiments (Sec. 4) verify the effectiveness and robustness

of our proposed evaluation metric and demonstrate better

correlation with human judgments on COCO and Flickr 8k,

compared with commonly-used image captioning metrics.

Our key contributions can be summarized as follows:

• We propose a novel learned based captioning evalu-

ation metric that directly captures human judgments

while being flexible to targeted pathological cases.

• We demonstrate key factors for how to successfully

train a good captioning evaluation metric.

• We conduct comprehensive studies that demonstrates

the effectiveness of the proposed metric, in particular

its correlation to human judgment and robustness to-

ward pathological transformations.

2. Related Work

Captioning evaluation. Despite recent interests, image

captioning is notoriously difficult to evaluate due to the in-

herent ambiguity. Human evaluation scores are reliable but

costly to obtain. Thus, current image captioning models are

usually evaluated with automatic metrics instead of human

judgments. Commonly used evaluation metrics BLEU [27],

METEOR [20], ROUGE [23] and CIDEr [31] are mostly

based on n-gram overlap and tend to be insensitive to se-

mantic information. Anderson et al. recently proposed the

SPICE [3] that is based on scene graph similarity. Al-

though SPICE obtains significantly higher correlation with

human judgments, it encounters difficulties with repetitive

sentences, as pointed out in [25]. It is worth noting that all

above mentioned metrics rely solely on similarity between

candidate and reference captions, without taking the image

into consideration. Our proposed metric, on the other hand,

takes image feature as input. While all the previous metrics

are rule-based, our proposed metric learns to score candi-

date captions by training to distinguish positive and neg-

ative examples. Moreover, our proposed training scheme

could flexibly take new pathological cases into account, yet

traditional metrics find it hard to adapt.

Adversarial training and evaluation. Generative Ad-

versarial Networks (GANs) [12] have been recently applied

to generate image captions [8, 22, 6, 30]. Although GANs

could provide discriminators to tell apart human and ma-

chine generated captions, they differ from our works as our

discriminator focuses on evaluation instead of generation.

All existing adversarial evaluation approaches define the

generator performance to be inversely proportional to the

classification performance of the discriminator, motivated

by the intuition that a good generator should produce out-

puts that are hard for the discriminator to distinguish from

real data. The specific configurations differ among the ap-

proaches. Im et al. [16] propose to train a pair of GANs and

interchange their opponents during testing. Iowe et al. [26]

attempt to train a single discriminator on a large corpus of

dialogue responses generated by different dialogue systems.

Other approaches [17, 4, 21] train one discriminator sep-

arately for each model. Different from implicitly gener-

ated negative examples by a generator in these work, we

incorporate explicitly defined pathological transformations

to generate negative examples. Moreover, none of the above

literature has verified the effectiveness of their metrics by

the correlation with human judgments.

3. Discriminative Evaluation

A caption is considered of high quality if it is judged well

by humans. In particular, the quality of a generated caption

is measured by how successful it can fool a critique into

believing it is written by human.

3.1. Evaluation Metric

The proposed evaluation metric follows the general setup

of a Turing Test. First, we train an automatic critique to dis-

tinguish generated captions from human-written ones. We

then score candidate captions by how successful they are in

fooling the critique.

Formally, given a critique parametrized by Θ, a reference

image i, and a generated caption ĉ, the score is defined as

the probability for the caption of being human-written, as
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Figure 2. The model architecture of the proposed learned critique with Compact Bilinear Pooling. We use a deep residual network and

an LSTM to encode the reference image and human caption into context vector. The identical LSTM is applied to get the encoding of a

candidate caption. The context feature and the feature extracted from the candidate caption are combined by compact bilinear pooling. The

classifier is supervised to perform a Turing Test by recognizing whether a candidate caption is human written or machine generated.

assigned by the critique:

scoreΘ(ĉ, i) = P (ĉ is human written | i,Θ) (1)

The score is conditioned on the reference image, because

the task of the evaluation is not simply to decide whether a

given sentence is written by a human or machine generated,

but also to evaluate whether it accurately captures the image

content and focuses on the important aspects of the image.

More generally, the reference image represents the con-

text in which the generated caption is evaluated. To provide

further information about the relevance and salience of the

image content, a reference caption can additionally be sup-

plied to the context. Let C(i) denotes the context of image

i, then reference caption c could be included as part of con-

text, i.e., c ∈ C(i). The score with context becomes

scoreΘ(ĉ, i) = P (ĉ is human written | C(i),Θ) (2)

3.2. Model Architecture

The proposed model can be generally described in two

parts. In the first part, the context information including the

image and reference caption are encoded as feature vectors.

These two feature vectors are then concatenated as a single

context vector. In the second part, the candidate caption

is encoded into a vector, in the same way as the reference

caption. We then fed it into a binary classifier, together with

the context vector. Fig. 2 gives an overview of the model.

To encode the image i as a feature vector i, we use

a ResNet [13] pre-trained on ImageNet [9] with fixed

weights. The reference caption c as well as the candidate

caption ĉ are encoded as feature vectors c and ĉ using an

LSTM-based [14] sentence encoder. To form the input of

the LSTM, each word is represented as a d-dimensional

word embedding vector x ∈ R
d which is initialized from

GloVe [28]. The LSTMs used to encode the two captions

share the same weights. The weights of the initial word em-

bedding as well as of the LSTM are updated during training.

Once the encoded feature vectors are computed, they are

combined into a single vector. In our experiments, we use

two different ways to combine these features; both methods

provide comparable results. The first method simply con-

catenates the vectors followed by a MLP:

v = ReLU(W · concat([i, c, ĉ]) + b) (3)

where ReLU(x) = max(x, 0). For the second method, we

first concatenate the context information as concat([i, c])
and subsequently combine it with the candidate caption us-

ing Compact Bilinear Pooling (CBP) [11], which has been

demonstrated in [10] to be very effective in combining het-

erogeneous information of image and text. CBP uses Count

Sketch [5, 29] to approximate the outer product between

two vectors in a lower dimensional space. This results in a

feature vector v that captures 2nd order feature interactions

compactly as represented by:

v = Φ
(

concat([i, c])
)

⊗ Φ
(

ĉ
)

(4)

where Φ(·) represents Count Sketch and ⊗ is the circu-

lar convolution. In practice, circular convolution is usually

calculated in frequency domain via Fast Fourier Transform

(FFT) and its inverse (FFT−1).

The feature combination is followed by a 2-way softmax

classifier representing the class probabilities of being hu-

man written or machine generated. Finally, the classifier is

trained using the cross-entropy loss function H(·, ·):

L =
1

N

N
∑

n=1

H(pn, qn) (5)

where N is the number of training examples, p is the output

of the softmax classifier and q is a one-hot vector indicating
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Figure 3. Example ground truth captions before and after transfor-

mations. Robustness of our learned metrics is evaluated on human

captions from similar images (TRC ) as well as with random (TRW )

and permuted (TWP ) words.

the ground truth of whether a candidate caption is indeed

human written or machine generated.

By assigning a loss function that directly captures hu-

man judgment, the learned metric is capable of measuring

the objective of the image captioning task. During infer-

ence, the probability from the softmax classifier of being

the human written class is used to score candidate captions.

3.3. Data sampling and augmentation

We would like to use data augmentation to incorporate

pathological cases as negative examples during training. We

define several transformations of the training data to gener-

ate a large amount of pathological sentences. Formally, a

transformation T takes an image-caption dataset and gener-

ates a new one:

T ({(c, i) ∈ D}; γ) = {(c′1, i
′
1), . . . , (c

′
n, i

′
n)} (6)

where i, i′i are images, c, c′i are captions, D is a list of

caption-image tuples representing the original dataset, and

γ is a hyper-parameter that controls the strength of the trans-

formation. Specifically, we define following three transfor-

mations to generate pathological image-captions pairs:

Random Captions(RC). To ensure our metric pays at-

tention to the image content, we randomly sample human

written captions from other images in the training set:

TRC(D; γ) = {(c′, i)|(c, i), (c′, i′) ∈ D, i′ ∈ Nγ(i)} (7)

where Nγ(i) represents the set of images that are top γ per-

cent nearest neighbors to image i.

Word Permutation(WP). To make sure that our metric

pays attention to sentence structure, we randomly permute

at least 2 words in the reference caption:

TWP (D; γ) = {(c′, i)|(c, i) ∈ D, c′ ∈ Pγ(c) \ {c}} (8)

where Pγ(c) represents all sentences generated by permut-

ing γ percent of words in caption c.
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Figure 4. Relative word frequency (in log scale) in the captions

generated by “NeuralTalk” [18], “Show and Tell” [32], “Show, At-

tend and Tell” [33], and human captions. Machine generated cap-

tions have drastically different word frequency distributions from

human written captions, as human captions tend to contain much

more infrequent words. As a result, a discriminator could simply

detect the rare words and achieve low classification loss.

Random Word (RW). To explore rare words we replace

from 2 to all words of the reference caption with random

words from the vocabulary:

TRW (D; γ) = {(c′, i)|(c, i) ∈ D, c′ ∈ Wγ(c) \ {c}} (9)

where Wγ(c) represents all sentences generated by ran-

domly replacing γ percent words from caption c.

Note that all the γ’s are specifically defined to be a per-

centage. γ% = 0 denotes the original caption without trans-

formation, while γ% = 1 provides the strongest possible

transformations. Fig. 3 shows example captions before and

after these transformations.

The need for data augmentation can be further illustrated

by observing the word frequencies. Fig. 4 shows the relative

word frequency in the captions generated by three popular

captioning models as well as the frequency in human cap-

tions. Apparently, a discriminator can easily tell human and

generated captions apart by simply looking at what words

are used. In fact, a simple critique only trained on human

written and machine-generated captions tends to believe

that a sequence of random words is written by a human,

simply because it contains many rare words. To address this

problem, our augmented data also includes captions gener-

ated using Monte Carlo Sampling, which contains a much

higher variety of words.

3.4. Performance Evaluation

A learned critique should be capable of correctly distin-

guishing human written captions from machine generated

ones. Therefore, the objective of the critique is to assign
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scores close to 0 to generated captions and scores close to

1 to human captions. In light of this, we define the perfor-

mance of a critique as how close it gets to the ideal objec-

tives, which is either the score assigned to a human caption

or one minus the score assigned to a generated caption:

s(Θ, (ĉ, i)) =

{

1− scoreΘ(ĉ, i), if ĉ is generated

scoreΘ(ĉ, i), otherwise

where Θ represents the critique, ĉ is the candidate caption,

and i is the image ĉ summarizes. The performance of a

model is then defined as the averaged performance on all

the image-caption pairs in a test or validation set:

s(Θ,D) =
1

|D|

∑

(ĉ,i)∈D

s(Θ, (ĉ, i)) (10)

where D is the set of all image-caption pairs in a held-out

validation or test set.

Given a pathological transformation T and γ, we could

compute the average score of a metric Θ on the transformed

validation set T (D, γ), i.e. s(Θ, T (D, γ)). We define the

robustness score with respect to transformation T as the

Area-Under-Curve (AUC) of s(Θ, T (D, γ)) by varying all

possible γ:

R(Θ, T ) =

∫

s(Θ, T (D, γ))dγ (11)

We expect a robust evaluation metric to give low scores

to the image-caption pairs generated by the pathological

transformations. To compare metrics with different scales,

we normalize the scores given by each metric such that the

ground truth human caption receives a score of 1. Detailed

experiments are presented in Sec. 4.2 and Sec. 4.3.

3.5. Using the Learned Metrics

To use the learned metrics in practice, one needs to first

fix both the model architecture of the discriminator and all

the hyper-parameters of the training process. When evalu-

ating a captioning model, we need the generated captions

of the model for a set of images (i.e., validation or test

set of a image captioning dataset). We then split the re-

sults into two folds. The discriminative metric is trained

with image-caption pairs in first fold as training data, to-

gether with ground truth captions written by human. Then

we use the trained metric to score the image-caption pairs

on the other fold. Similarly, we score all the image-caption

pairs in the first fold using a metric trained from the second

fold. Once we get all the image-caption pairs scored in the

dataset, the average score will be used as the evaluation of

the captioning model. One could reduce the variance of the

evaluation score by training the metric multiple times and

use the averaged evaluation score across all the runs.

4. Experiments

4.1. Experiment setup

Data. We use the COCO dataset [24] to evaluate the

performance of our proposed metric. To test the capability

(Sec. 4.2) and robustness (Sec. 4.3) of the proposed models,

we use the data split from [18], which re-splits the original

COCO dataset into a training set with 113,287 images, a

validation and a test set, each contains 5,000 images. Each

image is annotated by roughly 5 human annotators. We use

the validation set for parameter tuning. For the system level

human correlation study (Sec. 4.5), we use 12 submission

entries from the 2015 COCO Captioning Challenge on the

COCO validation set 1.

The caption level human correlation study (Sec. 4.4) uses

human annotations in Flickr 8k dataset [15]. Flickr 8k col-

lects two sets of human annotations, each on a different set

of image caption pairs. Among these image-caption pairs,

candidate captions are sampled from human captions in the

dataset. In the first set of human annotation (Expert Anno-

tation), human experts are asked to rate the image-caption

pairs with scores ranging from 1: The selected caption is

unrelated to the image to 4: The selected caption describes

the image without any errors. The second set of annotation

(Crowd Flower Annotation) is collected by asking human

raters to decide whether a caption describes the correspond-

ing image or not.

Image Captioning Models. We use publicly available

implementations of “NeuralTalk” (NT) [18], “Show and

Tell” (ST) [32], “Show, Attend and Tell” (SAT) [33] as im-

age captioning models to train and evaluate our metric.

Implementation Details. Our image features are ex-

tracted from a Deep Residual Network with 152 layers

(ResNet-152) [13] pre-trained on ImageNet. We follow the

preprocessing from [32, 33, 18] to prepare vocabulary on

COCO dataset. We fix the step size of the LSTM to be 15,

padding shorter sentences with a special token while cutting

longer ones to 15 words. All words are represented as 300-

dimensional vectors initialized from GloVe [28]. We use a

batch size of 100 and sample an equal number of positive

and negative examples in each batch. Linear projection is

used to reduce the dimension of image feature to match that

of caption features. For Compact Bilinear Pooling, we use

the feature dimension of 8192 as suggested in [11]. We use

1 LSTM layer with a hidden dimension of 512 in all exper-

iments unless otherwise stated. All the model are trained

using Adam [19] optimizer for 30 epochs with an initial

learning rate of 10−3. We decay the learning rate by a fac-

tor of 0.9 after every epoch. Our code (in Tensorflow [2]) is

available at: https://github.com/richardaecn/

cvpr18-caption-eval.

1Among 15 participating teams, 3 didn’t provide submissions on vali-

dation set. Thus, we use submission entries from the remaining 12 teams.
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Figure 5. Top: Average score of human captions from the vali-

dation set. Bottom: Average score of generated captions. Color

of the bar indicates what context information is used for the cri-

tique. The horizontal axis represents three different strategies for

the combination of the features from candidate caption with the

context as well as the used classifier (Concat + Linear: concate-

nation and linear classifier; Bilinear + Linear: compact bilinear

pooling and linear classifier; Concat + MLP: concatenation and

MLP with one hidden layer of size 512).

4.2. Capability

To measure the capability of our metric to differentiate

between human and generated captions, we train variants of

models using generated captions from ST, SAT and NT, to-

gether with human captions from the training set. Fig. 5(a)

and Fig. 5(b) show the average score on the validation set

for human and generated captions respectively. The results

show that all models give much higher scores to human cap-

tions than machine generated captions, indicating that they

are able to differentiate human-written captions from the

machine-generated ones.

With respect to the choice of context, we observe that

including image features into the context clearly improves

performance. Also, adding a reference caption does not lead

to a significant improvement over only using image fea-

tures. This indicates that the image itself provides enough

contextual information for the critique to successfully dis-

criminate between human and machine generated captions.

The reason that none of the commonly used metrics in-

cludes images as context is likely due to the difficulties

of capturing image-text similarity. Our metric circumvents

this issue by implicitly learning the image-text relationship

directly from the data.

It is worth noting that achieving high model performance

in terms of discrimination between human and generated

captions does not necessarily imply that the learned metric

is good. In fact, we observe that a critique trained with-

out data augmentation can achieve even higher discrimina-

tion performance. Such critique, however, also gives high

scores to human written captions from other images, indi-

cating that the classification problem is essentially reduced

to putting captions into categories of human and non-human

written without considering the context image. If trained

with the proposed data sampling and augmentation tech-

nique, the critique learns to pay attention to image context.

4.3. Robustness

To evaluate whether the proposed metric can capture

pathological image-caption pairs, we conduct robustness

studies as described in Sec. 3.4 on the three pathological

transformations defined in Sec. 3.3. The robustness com-

parisons are illustrated in Fig. 6. In the first row we com-

pare different variants of the proposed metric. The results

illustrate that, although achieving high discrimination per-

formance, a metric learned without data sampling or aug-

mentation also gives high scores to human captions from

other images (TRC), with random words (TRW ), or word

permutations (TWP ). This indicates that the model tends

to focus on an overall human vs. non-human classification

without considering contextual information in the image or

the syntactic structure of the candidate sentence.

Further, even with data augmentation, a linear model

with concatenated context and candidate caption features

gives high scores to human captions from other images, pos-

sibly because there is no sufficient interaction between the

context and candidate caption features. Non-linear inter-

actions such as Compact Bilinear Pooling or a non-linear

classifier with hidden layers solve this limitation. The non-

linear model in Fig. 6 refers to a model with concatenated

context and candidate features followed by a nonlinear clas-

sifier. Compact bilinear pooling (not shown in the figure for

clarity of visualization) achieves similar results.

In the second row of Fig. 6 we compare our metric with

other commonly used image captioning metrics. The pro-

posed metric outperforms all others with respect to random

(TRW ) as well as permuted (TWP ) words and is reasonably

robust to human captions from similar images (TRC). Fur-

ther, we observe that the recently proposed metrics CIDEr

and SPICE perform well for human captions from similar

images, but fall behind with respect to sentence structure.

This could be caused by their increased focus on informa-

tive and scene specific words.
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Figure 6. Normalized evaluation score for transformations TRC (human caption from other images), TWP (random permutation of words),

and TRW (words replaced by random words) with different amount of transformation (γ%). When γ% = 0%, the original dataset is kept

unchanged; when γ% = 100%, maximum amount of transformation is applied to the dataset. The first row shows results of our metrics

using either linear or non-linear model trained with or without data augmentation. The second row compares our non-linear model trained

with data augmentation to other metrics. The score after each metric shows the robustness score defined in Sec. 3.4, i.e., the Area Under

Curve (AUC). The lower the score the more robust the metric is.

4.4. Caption Level Human Correlation

We use both the Expert Annotations and the Crowd

Flower Annotations from Flickr 8k dataset [15] to compute

caption level correlation with human judgments. We follow

the procedure in SPICE paper [3] to compute the Kendall’s

τ rank correlation in the Expert Annotations. The τ correla-

tion for the Crowd Flower Annotation is computed between

scores generated by the evaluation metric and percentage of

raters who think that the caption describes the image with

possibly minor mistakes. During training, all negative sam-

ples are generated by transformation TRC , i.e., human cap-

tion from random image.

The results in Table 1 show that our metrics achieve

the best caption level correlation in both Expert Annota-

tions and Crowd Flower Annotations. Note that the Crowd

Flower Annotations use a binary rating setup, while the set-

up from the Expert Annotations makes a finer-grained rat-

ings. Despite the fact that our model is trained on a simpler

binary objective, it still correlates well with human judg-

ments from the Expert Annotations. Note that we do not

use any human annotations during the training, since all of

our negative examples could be generated automatically.

4.5. System Level Human Correlation

We compare our metric with others on the Pearson’s

ρ correlation between all common metrics and human

judgments collected in the 2015 COCO Captioning Chal-

lenge [1]. In particular, we use two human judgment M1:

Percentage of captions that are evaluated as better or equal

to human caption and M2: Percentage of captions that pass

the Turing Test. We don’t use M3: correctness, M4: detail-

ness and M5: salience, as they are not used to rank image

captioning models, but are intended for an ablation study to

understand which aspects make captions good.

Since we don’t have access to the COCO test set annota-

tions, where the human judgments are collected on, we per-

form our experiments on the COCO validation set. There

are 15 teams participated in the 2015 COCO captioning

challenge and we use 12 of them that submitted results on

the validation set. We assume the human judgment on the

validation set is sufficiently similar to the judgment on the

test set. We don’t use any additional training data besides

the submission files on the validation set and the data aug-

mentation described in Sec. 3.3. To get evaluation scores on

the whole validation set, we split the set in two halves and,
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Expert Annotations Crowd Flower

BLEU-1 0.191* 0.206

BLEU-2 0.212 0.212

BLEU-3 0.209 0.204

BLEU-4 0.206* 0.202

METEOR 0.308* 0.242

ROUGE-L 0.218* 0.217

CIDEr 0.289* 0.264

SPICE 0.456 0.252

Ours 0.466 0.295

Inter-human 0.736 -

Expert Annotations: experts score image-caption pairs

from 1 to 4; 1 means caption doesn’t describe the image.

Crowd Flower: human raters mark 1 if the candidate

caption describes the image, and mark 0 if not.

Table 1. Caption level Kendall’s τ correlation between Flickr 8K

[15]’s human annotations and evaluation metrics’ scores. Our re-

ported scores with * differ from the ones reported in SPICE [3].

M1 M2

ρ p-value ρ p-value

BLEU-1 0.124 (0.687) 0.135 (0.660)

BLEU-2 0.037 (0.903) 0.048 (0.877)

BLEU-3 0.004 (0.990) 0.016 (0.959)

BLEU-4 -0.019 (0.951) -0.005 (0.987)

METEOR 0.606 (0.028) 0.594 (0.032)

ROUGE-L 0.090 (0.769) 0.096 (0.754)

CIDEr 0.438 (0.134) 0.440 (0.133)

SPICE 0.759 (0.003) 0.750 (0.003)

Ours (no DA) 0.821 (0.000) 0.807 (0.000)

Ours 0.939 (0.000) 0.949 (0.000)

M1: Percentage of captions that are evaluated as better

or equal to human caption.

M2: Percentage of captions that pass the Turing Test.

Table 2. Pearson’s ρ correlation between human judgments and

evaluation metrics. The human correlation of our proposed metric

surpasses all other metrics by large margins. Scores reported in

SPICE [3] were calculated on the COCO test set for all 15 teams,

whereas ours were from 12 teams on the COCO validation set.

for each submission, train our critique on each split and get

scores (probability of being human written) on the other.

The results in Table 2 show that our learned metric sur-

passes all other metrics including the recently proposed

SPICE [3] by large margins, especially trained with data

augmentation. This indicates that aligning the objective

with human judgments and using data augmentation yield

a better evaluation metric. Fig. 7 illustrates our metric com-

pared with human judgment - M1 on COCO validation set.

Our metric aligns well with human judgment, especially for

top performing methods.
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Figure 7. Our metric vs. human judgment on COCO validation

set. Our metric is able to reflect most of the rankings from human

judgment correctly, especially for top performing methods.

5. Conclusion and Future Work

In this paper, we have proposed a novel learning based

evaluation metric for image captioning that is trained to act

like a human critique to distinguish between human-written

and machine-generated captions while also being flexible

to adapt to targeted pathological cases. Further, we have

shown how to use data sampling and augmentation to suc-

cessfully train a metric that behaves robustly against cap-

tions generated from pathological transformations. From

extensive experimental evaluations, we have demonstrated

that the proposed metric is robust and correlates better to

human judgments than previous metrics. In conclusion, the

proposed metric could be an effective complementary to the

existing rule-based metrics, especially when the pathologi-

cal cases are easy to generate but difficult to capture with

traditional hand-crafted metrics.

In this study, we have not taken different personalities

among human annotators into consideration. Different hu-

man personalities could give rise to different types of hu-

man captions. One direction of future work could aim to

capture the heterogeneous nature of human annotated cap-

tions and incorporate such information into captioning eval-

uation. Another direction for future work could be training

a caption generator together with the proposed evaluation

metric (discriminator) in a generative adversarial setting.

Finally, gameability is definitely a concern, not only for our

learning based metric, but also for other rule-based metrics.

Learning to be more robust to adversarial examples is also

a future direction of learning based evaluation metrics.
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