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3D scans of indoor environments suffer from sensor occlusions, leaving 3D reconstructions with highly incomplete 3D

geometry (left). We propose a novel data-driven approach based on fully-convolutional neural networks that transforms

incomplete signed distance functions (SDFs) into complete meshes at unprecedented spatial extents (middle). In addition

to scene completion, our approach infers semantic class labels even for previously missing geometry (right). Our approach

outperforms existing approaches both in terms of completion and semantic labeling accuracy by a significant margin.

Abstract

We introduce ScanComplete, a novel data-driven ap-

proach for taking an incomplete 3D scan of a scene as input

and predicting a complete 3D model along with per-voxel

semantic labels. The key contribution of our method is its

ability to handle large scenes with varying spatial extent,

managing the cubic growth in data size as scene size in-

creases. To this end, we devise a fully-convolutional gen-

erative 3D CNN model whose filter kernels are invariant to

the overall scene size. The model can be trained on scene

subvolumes but deployed on arbitrarily large scenes at test

time. In addition, we propose a coarse-to-fine inference

strategy in order to produce high-resolution output while

also leveraging large input context sizes. In an extensive

series of experiments, we carefully evaluate different model

design choices, considering both deterministic and proba-

bilistic models for completion and semantic inference. Our

results show that we outperform other methods not only in

the size of the environments handled and processing effi-

ciency, but also with regard to completion quality and se-

mantic segmentation performance by a significant margin.

1. Introduction

With the wide availability of commodity RGB-D sen-

sors such as Microsoft Kinect, Intel RealSense, and Google

Tango, 3D reconstruction of indoor spaces has gained mo-

mentum [21, 10, 23, 41, 5]. 3D reconstructions can help cre-

ate content for graphics applications, and virtual and aug-

mented reality applications rely on obtaining high-quality

3D models from the surrounding environments. Although

significant progress has been made in tracking accuracy and

efficient data structures for scanning large spaces, the result-

ing reconstructed 3D model quality remains unsatisfactory.

One fundamental limitation in quality is that, in general,

one can only obtain partial and incomplete reconstructions

of a given scene, as scans suffer from occlusions and the

physical limitations of range sensors. In practice, even with

careful scanning by human experts, it is virtually impos-

sible to scan a room without holes in the reconstruction.

Holes are both aesthetically unpleasing and can lead to se-

vere problems in downstream processing, such as 3D print-

ing or scene editing, as it is unclear whether certain areas of

the scan represent free space or occupied space. Traditional

approaches, such as Laplacian hole filling [35, 20, 43] or

Poisson Surface reconstruction [12, 13] can fill small holes.

However, completing high-level scene geometry, such as
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missing walls or chair legs, is much more challenging.

One promising direction towards solving this problem

is to use machine learning for completion. Very recently,

deep learning approaches for 3D completion and other gen-

erative tasks involving a single object or depth frame have

shown promising results [28, 38, 9, 8, 6]. However, gen-

erative modeling and structured output prediction in 3D

remains challenging. When represented with volumetric

grids, data size grows cubically as the size of the space in-

creases, which severely limits resolution. Indoor scenes are

particularly challenging, as they are not only large but can

also be irregularly shaped with varying spatial extents.

In this paper, we propose a novel approach, ScanCom-

plete, that operates on large 3D environments without re-

strictions on spatial extent. We leverage fully-convolutional

neural networks that can be trained on smaller subvolumes

but applied to arbitrarily-sized scene environments at test

time. This ability allows efficient processing of 3D scans of

very large indoor scenes: we show examples with bounds of

up to 1480×1230×64 voxels (≈ 70×60×3m). We specif-

ically focus on the tasks of scene completion and semantic

inference: for a given partial input scan, we infer missing

geometry and predict semantic labels on a per-voxel basis.

To obtain high-quality output, the model must use a suffi-

ciently high resolution to predict fine-scale detail. However,

it must also consider a sufficiently large context to recognize

large structures and maintain global consistency. To recon-

cile these competing concerns, we propose a coarse-to-fine

strategy in which the model predicts a multi-resolution hi-

erarchy of outputs. The first hierarchy level predicts scene

geometry and semantics at low resolution but large spatial

context. Following levels use a smaller spatial context but

higher resolution, and take the output of the previous hier-

archy level as input in order to leverage global context.

In our evaluations, we show scene completion and se-

mantic labeling at unprecedented spatial extents. In addi-

tion, we demonstrate that it is possible to train our model on

synthetic data and transfer it to completion of real RGB-D

scans taken from commodity scanning devices. Our results

outperform existing completion methods and obtain signif-

icantly higher accuracy for semantic voxel labeling.

In summary, our contributions are

• 3D fully-convolutional completion networks for pro-

cessing 3D scenes with arbitrary spatial extents.

• A coarse-to-fine completion strategy which captures

both local detail and global structure.

• Scene completion and semantic labeling, both of out-

performing existing methods by significant margins.

2. Related Work

3D Shape and Scene Completion Completing 3D shapes

has a long history in geometry processing and is often ap-

plied as a post-process to raw, captured 3D data. Traditional

methods typically focus on filling small holes by fitting lo-

cal surface primitives such planes or quadrics, or by using a

continuous energy minimization [35, 20, 43]. Many surface

reconstruction methods that take point cloud inputs can be

seen as such an approach, as they aim to fit a surface and

treat the observations as data points in the optimization pro-

cess; e.g., Poisson Surface Reconstruction [12, 13].

Other shape completion methods have been developed,

including approaches that leverage symmetries in meshes

or point clouds [39, 18, 25, 33, 36] or part-based structural

priors derived from a database [37]. One can also ‘com-

plete’ shapes by replacing scanned geometry with aligned

CAD models retrieved from a database [19, 31, 14, 16, 32].

Such approaches assume exact database matches for objects

in the 3D scans, though this assumption can be relaxed by

allowing modification of the retrieved models, e.g., by non-

rigid registration such that they better fit the scan [24, 30].

To generalize to entirely new shapes, data-driven struc-

tured prediction methods show promising results. One of

the first such methods is Voxlets [7], which uses a random

decision forest to predict unknown voxel neighborhoods.

Deep Learning in 3D With the recent popularity of deep

learning methods, several approaches for shape generation

and completion have been proposed. 3D ShapeNets [2]

learns a 3D convolutional deep belief network from a shape

database. This network can generate and complete shapes,

and also repair broken meshes [22].

Several other works have followed, using 3D convolu-

tional neural networks (CNNs) for object classification [17,

26] or completion [6, 8]. To more efficiently represent

and process 3D volumes, hierarchical 3D CNNs have been

proposed [29, 40]. The same hierarchical strategy can be

also used for generative approaches which output higher-

resolution 3D models [28, 38, 9, 8]. One can also increase

the spatial extent of a 3D CNN with dilated convolutions

[42]. This approach has recently been used for predicting

missing voxels and semantic inference [34]. However, these

methods operate on a fixed-sized volume whose extent is

determined at training time. Hence, they focus on process-

ing either a single object or a single depth frame. In our

work, we address this limitation with our new approach,

which is invariant to differing spatial extent between train

and test, thus allowing processing of large scenes at test

time while maintaining a high voxel resolution.

3. Method Overview

Our ScanComplete method takes as input a partial 3D

scan, represented by a truncated signed distance field

(TSDF) stored in a volumetric grid. The TSDF is gener-

ated from depth frames following the volumetric fusion ap-

proach of Curless and Levoy [3], which has been widely

adopted by modern RGB-D scanning methods [21, 10, 23,
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Figure 1. Overview of our method: we propose a hierarchical coarse-to-fine approach, where each level takes a partial 3D scan as input,

and predicts a completed scan as well as per-voxel semantic labels at the respective level’s voxel resolution using our autoregressive 3D

CNN architecture (see Fig. 3). The next hierarchy level takes as input the output of the previous levels (both completion and semantics),

and is then able to refine the results. This process allows leveraging a large spatial context while operating on a high local voxel resolution.

In the final result, we see both global completion, as well as local surface detail and high-resolution semantic labels.

11, 5]. We feed this partial TSDF into our new volumetric

neural network, which outputs a truncated, unsigned dis-

tance field (TDF). At train time, we provide the network

with a target TDF, which is generated from a complete

ground-truth mesh. The network is trained to output a TDF

which is as similar as possible to this target complete TDF.

Our network uses a fully-convolutional architecture with

three-dimensional filter banks. Its key property is its invari-

ance to input spatial extent, which is particularly critical for

completing large 3D scenes whose sizes can vary signif-

icantly. That is, we can train the network using random

spatial crops sampled from training scenes, and then test on

different spatial extents at test time.

The memory requirements of a volumetric grid grow cu-

bically with spatial extent, which limits manageable resolu-

tions. Small voxel sizes capture local detail but lack spatial

context; large voxel sizes provide large spatial context but

lack local detail. To get the best of both worlds while main-

taining high resolution, we use a coarse-to-fine hierarchical

strategy. Our network first predicts the output at a low res-

olution in order to leverage more global information from

the input. Subsequent hierarchy levels operate at a higher

resolution and smaller context size. They condition on the

previous level’s output in addition to the current-level in-

complete TSDF. We use three hierarchy levels, with a large

context of several meters (∼ 6m3) at the coarsest level, up

to a fine-scale voxel resolution of ∼ 5cm3; see Fig. 1.

Our network uses an autoregressive architecture based

on that of Reed et al. [27]. We divide the volumetric space

of a given hierarchy level into a set of eight voxel groups,

such that voxels from the same group do not neighbor each

other; see Fig. 2. The network predicts all voxels in group

one, followed by all voxels in group two, and so on. The

prediction for each group is conditioned on the predictions

for the groups that precede it. Thus, we use eight separate

networks, one for each voxel group; see Fig. 2.

We also explore multiple options for the training loss

function which penalizes differences between the network

output and the ground truth target TDF. As one option, we

use a deterministic ℓ1-distance, which forces the network

to focus on a single mode. This setup is ideal when partial

scans contain enough context to allow for a single explana-

tion of the missing geometry. As another option, we use a

probabilistic model formulated as a classification problem,

i.e., TDF values are discretized into bins and their probabil-

ities are weighted based on the magnitude of the TDF value.

This setup may be better suited for very sparse inputs, as the

predictions can be multi-modal.

In addition to predicting complete geometry, the model

jointly predicts semantic labels on a per-voxel basis. The se-

mantic label prediction also leverages the fully-convolution

autoregressive architecture as well as the coarse-to-fine pre-

diction strategy to obtain an accurate semantic segmentation

of the scene. In our results, we demonstrate how completion

greatly helps semantic inference.

4. Data Generation

To train our ScanComplete CNN architecture, we pre-

pare training pairs of partial TSDF scans and their complete

TDF counterparts. We generate training examples from

SUNCG [34], using 5359 train scenes and 155 test scenes

from the train-test split from prior work [34]. As our net-

work requires only depth input, we virtually scan depth data

by generating scanning trajectories mimicking real-world

scanning paths. To do this, we extract trajectory statistics

from the ScanNet dataset [4] and compute the mean and

variance of camera heights above the ground as well as the
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Figure 3. Our ScanComplete network architecture for a single hierarchy level. We take as input a TSDF partial scan, and autoregressively

predict both the completed geometry and semantic segmentation. Our network trains for all eight voxel groups in parallel, as we use ground

truth for previous voxel groups at train time. In addition to input from the current hierarchy level, the network takes the predictions (TDF

and semantics) from the previous level (i.e., next coarser resolution as input), if available; cf. Fig. 1.

Figure 2. Our model divides volumetric space into eight inter-

leaved voxel groups, such that voxels from the same group do not

neighbor each other. It then predicts the contents of these voxel

groups autoregressively, predicting voxel group i conditioned on

the predictions for groups 1 . . . i − 1. This approach is based on

prior work in autoregressive image modeling [27].

camera angle between the look and world-up vectors. For

each room in a SUNCG scene, we then sample from this

distribution to select a camera height and angle.

Within each 1.5m3 region in a room, we select one cam-

era to add to the training scanning trajectory. We choose the

camera c whose resulting depth image D(c) is most similar

to depth images from ScanNet. To quantify this similarity,

we first compute the histogram of depth of values H(D(c))
for all cameras in ScanNet, and then compute the average

histogram, H̄ . We then compute the Earth Mover’s Dis-

tance between histograms for all cameras in ScanNet and

H̄ , i.e., EMD(H(D(c)), H̄) for all cameras c in ScanNet.

We take the mean µEMD and variance σ2

EMD of these dis-

tance values. This gives us a Gaussian distribution over

distances to the average depth histogram that we expect to

see in real scanning trajectories. For each candidate cam-

era c, we compute its probability under this distribution,

i.e., N (EMD(H(D(c)), H̄), µEMD, σEMD). We take a lin-

ear combination of this term with the percentage of pixels

in D(c) which cover scene objects (i.e., not floor, ceiling,

or wall), reflecting the assumption that people tend to fo-

cus scans on interesting objects rather than pointing a depth

sensor directly at the ground or a wall. The highest-scoring

camera c∗ under this combined objective is added to the

training scanning trajectory. This way, we encourage a real-

istic scanning trajectory, which we use for rendering virtual

views from the SUNCG scenes.

For rendered views, we store per-pixel depth in meters.

We then volumetrically fuse [3] the data into a dense regular

grid, where each voxel stores a truncated signed distance

value. We set the truncation to 3× the voxel size, and we

store TSDF values in voxel-distance metrics. We repeat this

process independently for three hierarchy levels, with voxel

sizes of 4.7cm3, 9.4cm3, and 18.8cm3.

We generate target TDFs for training using complete

meshes from SUNCG. To do this, we employ the level set

generation toolkit by Batty [1]. For each voxel, we store

a truncated distance value (no sign; truncation of 3× voxel

size), as well as a semantic label of the closest object to

the voxel center. As with TSDFs, TDF values are stored in

voxel-distance metrics, and we repeat this ground truth data

generation for each of the three hierarchy levels.

For training, we uniformly sample subvolumes at 3m in-

tervals out of each of the train scenes. We keep all sub-

volumes containing any non-structural object voxels (e.g.,

tables, chairs), and randomly discard subvolumes that con-

tain only structural voxels (i.e., wall/ceiling/floor) with 90%

probability. This results in a total of 225, 414 training sub-

volumes. We use voxel grid resolutions of [32 × 16 × 32],
[32× 32× 32], and [32× 64× 32] for each level, resulting

in spatial extents of [6m × 3m × 6m], [3m3], [1.5m × 3m ×

1.5m], respectively. For testing, we test on entire scenes.

Both the input partial TSDF and complete target TDF are

stored as uniform grids spanning the full extent of the scene,

which varies across the test set. Our fully-convolutional ar-

chitecture allows training and testing on different sizes and

supports varying training spatial extents.

Note that the sign of the input TSDF encodes known and

unknown space according to camera visibility, i.e., voxels

with a negative value lie behind an observed surface and

are thus unknown. In contrast, we use an unsigned distance

field (TDF) for the ground truth target volume, since all vox-
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els are known in the ground truth. One could argue that the

target distance field should use a sign to represent space in-

side objects. However, this is infeasible in practice, since

the synthetic 3D models from which the ground truth dis-

tance fields are generated are rarely watertight. The use of

implicit functions (TSDF and TDF) rather than a discrete

occupancy grid allows for better gradients in the training

process; this is demonstrated by a variety of experiments on

different types of grid representations in prior work [6].

5. ScanComplete Network Architecture

Our ScanComplete network architecture for a single hi-

erarchy level is shown in Fig. 3. It is a fully-convolutional

architecture operating directly in 3D, which makes it invari-

ant to different training and testing input data sizes.

At each hierarchy level, the network takes the input par-

tial scan as input (encoded as an TSDF in a volumetric grid)

as well as the previous low-resolution TDF prediction (if

not the base level) and any previous voxel group TDF pre-

dictions. Each of the input volumes is processed with a se-

ries of 3D convolutions with 1×1×1 convolution shortcuts.

They are then all concatenated feature-wise and further pro-

cessed with 3D convolutions with shortcuts. At the end, the

network splits into two paths, one outputting the geomet-

ric completion, and the other outputting semantic segmen-

tation, which are measured with an ℓ1 loss and voxel-wise

softmax cross entropy, respectively. An overview of the ar-

chitectures between hierarchy levels is shown in Fig. 1.

5.1. Training

To train our networks, we use the training data generated

from the SUNCG dataset as described in Sec. 4.

At train time, we feed ground truth volumes as the previ-

ous voxel group inputs to the network. For the previous

hierarchy level input, however, we feed in volumes pre-

dicted by the previous hierarchy level network. Initially,

we trained on ground-truth volumes here, but found that

this tended to produce highly over-smoothed final output

volumes. We hypothesize that the network learned to rely

heavily on sharp details in the ground truth volumes that are

sometimes not present in the predicted volumes, as the net-

work predictions cannot perfectly recover such details and

tend to introduce some smoothing. By using previous hier-

archy level predicted volumes as input instead, the network

must learn to use the current-level partial input scan to re-

solve details, relying on the previous level input only for

more global, lower-frequency information (such as how to

fill in large holes in walls and floors). The one downside to

this approach is that the networks for each hierarchy level

can no longer be trained in parallel. They must be trained

sequentially, as the networks for each hierarchy level de-

pend on output predictions from the trained networks at the

previous level. Ideally, we would train all hierarchy levels

in a single, end-to-end procedure. However, current GPU

memory limitations make this intractable.

Since we train our model on synthetic data, we introduce

height jittering for training samples to counter overfitting,

jittering every training sample in height by a (uniform) ran-

dom jitter in the range [0, 0.1875]m. Since our training data

is skewed towards walls and floors, we apply re-weighting

in the semantic loss, using a 1:10 ratio for structural classes

(e.g. wall/floor/ceiling) versus all other object classes.

For our final model, we train all networks on a NVIDIA

GTX 1080, using the Adam optimizer [15] with learning

rate 0.001 (decayed to 0.0001) We train one network for

each of the eight voxel groups at each of the three hierarchy

levels, for a total of 24 trained networks. Note that the eight

networks within each hierarchy level are trained in parallel,

with a total training time for the full hierarchy of ∼ 3 days.

6. Results and Evaluation

Completion Evaluation on SUNCG We first evaluate

different architecture variants for geometric scene comple-

tion in Tab. 1. We test on 155 SUNCG test scenes, varying

the following architectural design choices:

• Hierarchy Levels: our three-level hierarchy (3) vs. a

single 4.7cm-only level (1). For the three-level hier-

archy, we compare training on ground truth volumes

(gt train) vs. predicted volumes (pred. train) from the

previous hierarchy level.

• Probabilistic/Deterministic: a probabilistic model

(prob.) that outputs per-voxel a discrete distribution

over some number of quantized distance value bins

(#quant) vs. a deterministic model that outputs a single

distance value per voxel (det.).

• Autoregressive: our autoregressive model that pre-

dicts eight interleaved voxel groups in sequence (au-

toreg.) vs. a non-autoregressive variant that predicts

all voxels independently (non-autoreg.).

• Input Size: the width and depth of the input context at

train time, using either 16 or 32 voxels

We measure completion quality using ℓ1 distances with re-

spect to the entire target volume (entire), predicted surface

(pred. surf.), target surface (target surf.), and unknown

space (unk. space). Using only a single hierarchy level, an

autoregressive model improves upon a non-autoregressive

model, and reducing the number of quantization bins from

256 to 32 improves completion (further reduction reduces

the discrete distribution’s ability to approximate a contin-

uous distance field). Note that the increase in pred. surf.

error from the hierarchy is tied to the ability to predict more

unknown surface, as seen by the decrease in unk. space

error. Moreover, for our scene completion task, a determin-

istic model performs better than a probabilistic one, as intu-
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Hierarchy Probabilistic/ Autoregressive Input ℓ1-Err ℓ1-Err ℓ1-Err ℓ1-Err

Levels Deterministic Size (entire) (pred. surf.) (target surf.) (unk. space)

1 prob. (#quant=256) non-autoreg. 32 0.248 0.311 0.969 0.324

1 prob. (#quant=256) autoreg. 16 0.226 0.243 0.921 0.290

1 prob. (#quant=256) autoreg. 32 0.218 0.269 0.860 0.283

1 prob. (#quant=32) autoreg. 32 0.208 0.252 0.839 0.271

1 prob. (#quant=16) autoreg. 32 0.212 0.325 0.818 0.272

1 prob. (#quant=8) autoreg. 32 0.226 0.408 0.832 0.284

1 det. non-autoreg. 32 0.248 0.532 0.717 0.330

1 det. autoreg. 16 0.217 0.349 0.808 0.282

1 det. autoreg. 32 0.204 0.284 0.780 0.266

3 (gt train) prob. (#quant=32) autoreg. 32 0.336 0.840 0.902 0.359

3 (pred. train) prob. (#quant=32) autoreg. 32 0.202 0.405 0.673 0.251

3 (gt train) det. autoreg. 32 0.303 0.730 0.791 0.318

3 (pred. train) det. autoreg. 32 0.182 0.419 0.534 0.225

Table 1. Quantitative scene completion results for different variants of our completion-only model evaluated on synthetic SUNCG ground

truth data. We measure the ℓ1 error against the ground truth distance field (in voxel space, up to truncation distance of 3 voxels). Using an

autoregressive model with a three-level hierarchy and large input context size gives the best performance.

Method ℓ1-Err ℓ1-Err ℓ1-Err ℓ1-Err

(entire) (pred. surf.) (target surf.) (unk. space)

Poisson Surface Reconstruction [12, 13] 0.531 1.178 1.695 0.512

SSCNet [34] 0.536 1.106 0.931 0.527

3D-EPN (unet) [6] 0.245 0.467 0.650 0.302

Ours (completion + semantics) 0.202 0.462 0.569 0.248

Ours (completion only) 0.182 0.419 0.534 0.225

Table 2. Quantitative scene completion results for different methods on synthetic SUNCG data. We measure the ℓ1 error against the ground

truth distance field in voxel space, up to truncation distance of 3 voxels (i.e., 1 voxel corresponds to 4.7cm3). Our method outperforms

others in reconstruction error.

itively we aim to capture a single output mode—the physi-

cal reality behind the captured 3D scan. An autoregressive,

deterministic, full hierarchy with the largest spatial context

provides the highest accuracy.

We also compare our method to alternative scene com-

pletion methods in Tab. 2. As a baseline, we compare to

Poisson Surface Reconstruction [12, 13]. We also compare

to 3D-EPN, which was designed for completing single ob-

jects, as opposed to scenes [6]. Additionally, we compare to

SSCNet, which completes the subvolume of a scene viewed

by a single depth frame [34]. For this last comparison, in

order to complete the entire scene, we fuse the predictions

from all cameras of a test scene into one volume, then eval-

uate ℓ1 errors over this entire volume. Our method achieves

lower reconstruction error than all the other methods. Note

that while jointly predicting semantics along with comple-

tion does not improve on completion, Tab. 3 shows that it

significantly improves semantic segmentation performance.

We show a qualitative comparison of our completion

against state-of-the-art methods in Fig. 4. For these re-

sults, we use the best performing architecture according to

Tab. 1. We can run our method on arbitrarily large scenes

as test input, thus predicting missing geometry in large ar-

eas even when input scans are highly partial, and producing

more complete results as well as more accurate local de-

tail. Note that our method is O(1) at test time in terms of

forward passes; we run more efficiently than previous meth-

ods which operate on fixed-size subvolumes and must itera-

tively make predictions on subvolumes of a scene, typically

O(wd) for a w × h× d scene.

Completion Results on ScanNet (real data) We also

show qualitative completion results on real-world scans in

Fig. 6. We run our model on scans from the publicly-

available RGB-D ScanNet dataset [4], which has data cap-

tured with an Occiptal Structure Sensor, similar to a Mi-

crosoft Kinect or Intel PrimeSense sensor. Again, we use

the best performing network according to Tab. 1. We see

that our model, trained only on synthetic data, learns to gen-

eralize and transfer to real data.

Semantic Inference on SUNCG In Tab. 3, we evaluate

and compare our semantic segmentation on the SUNCG

dataset. All methods were trained on the train set of scenes

used by SSCNet [34] and evaluated on the test set. We use

the SUNCG 11-label set. Our semantic inference benefits

significantly from the joint completion and semantic task,

significantly outperforming current state of the art.

Fig. 5 shows qualitative semantic segmentation results

on SUNCG scenes. Our ability to process the entire scene

at test time, in contrast to previous methods which operate
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Figure 4. Completion results on synthetic SUNCG scenes; left to right: input, Poisson Surface Reconstruction [13], 3D-EPN [6], SSCNet

[34], Ours, ground truth.

bed ceil. chair floor furn. obj. sofa table tv wall wind. avg

(vis) ScanNet [4] 44.8 90.1 32.5 75.2 41.3 25.4 51.3 42.4 9.1 60.5 4.5 43.4

(vis) SSCNet [34] 67.4 95.8 41.6 90.2 42.5 40.7 50.8 58.4 20.2 59.3 49.7 56.1

(vis) Ours [sem-only, no hier] 63.6 92.9 41.2 58.0 27.2 19.6 55.5 49.0 9.0 58.3 5.1 43.6

(is) Ours [sem-only] 82.9 96.1 48.2 67.5 64.5 40.8 80.6 61.7 14.8 69.1 13.7 58.2

(vis) Ours [no hier] 70.3 97.6 58.9 63.0 46.6 34.1 74.5 66.5 40.9 86.5 43.1 62.0

(vis) Ours 80.1 97.8 63.4 94.3 59.8 51.2 77.6 65.4 32.4 84.1 48.3 68.6

(int) SSCNet [34] 65.6 81.2 48.2 76.4 49.5 49.8 61.1 57.4 14.4 74.0 36.6 55.8

(int) Ours [no hier] 68.6 96.9 55.4 71.6 43.5 36.3 75.4 68.2 33.0 88.4 33.1 60.9

(int) Ours 82.3 97.1 60.0 93.2 58.0 51.6 80.6 66.1 26.8 86.9 37.3 67.3

Table 3. Semantic labeling accuracy on SUNCG scenes. We measure per-voxel class accuracies for both the voxels originally visible in

the input partial scan (vis) as well as the voxels in the intersection of our predictions, SSCNet, and ground truth (int). Note that we show

significant improvement over a semantic-only model that does not perform completion (sem-only) as well as the current state-of-the-art.

on fixed subvolumes, along with the autoregressive, joint

completion task, produces more globally consistent and ac-

curate voxel labels.

For semantic inference on real scans, we refer to the ap-

pendix.

7. Conclusion and Future Work

In this paper, we have presented ScanComplete, a novel

data-driven approach that takes an input partial 3D scan and

predicts both completed geometry and semantic voxel la-

bels for the entire scene at once. The key idea is to use

a fully-convolutional network that decouples train and test

resolutions, thus allowing for variably-sized test scenes with

unbounded spatial extents. In addition, we use a coarse-

to-fine prediction strategy combined with a volumetric au-

toregressive network that leverages large spatial contexts

while simultaneously predicting local detail. As a result,

we achieve both unprecedented scene completion results as

well as volumetric semantic segmentation with significantly

higher accuracy than previous state of the art.

Our work is only a starting point for obtaining high-

quality 3D scans from partial inputs, which is a typical

problem for RGB-D reconstructions. One important aspect

for future work is to further improve output resolution. Cur-

rently, our final output resolution of ∼ 5cm3 voxels is still

not enough—ideally, we would use even higher resolutions

in order to resolve fine-scale objects, e.g., cups. In addition,

we believe that end-to-end training across all hierarchy lev-
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Figure 5. Semantic voxel labeling results on SUNCG; from left to right: input, SSCNet [34], ScanNet [4], Ours, and ground truth.

Figure 6. Completion results on real-world scans from ScanNet [4]. Despite being trained only on synthetic data, our model is also able to

complete many missing regions of real-world data.

els would further improve performance with the right joint

optimization strategy. Nonetheless, we believe that we have

set an important baseline for completing entire scenes. We

hope that the community further engages in this exciting

task, and we are convinced that we will see many improve-

ments along these directions.
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[23] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.

Real-time 3d reconstruction at scale using voxel hashing.

ACM Transactions on Graphics (TOG), 2013. 1, 3

[24] M. Pauly, N. J. Mitra, J. Giesen, M. H. Gross, and L. J.

Guibas. Example-based 3d scan completion. In Sym-

posium on Geometry Processing, number EPFL-CONF-

149337, pages 23–32, 2005. 2

[25] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J.

Guibas. Discovering structural regularity in 3d geometry. In

ACM transactions on graphics (TOG), volume 27, page 43.

ACM, 2008. 2

[26] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas.

Volumetric and multi-view cnns for object classification on

3d data. In Proc. Computer Vision and Pattern Recognition

(CVPR), IEEE, 2016. 2

[27] S. E. Reed, A. van den Oord, N. Kalchbrenner, S. Gómez,
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