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Figure 1. Our method produces high quality reconstructions of images from information along a small number of contours: a source

(512×512) image in (a) is reconstructed in (c) from gradient information stored at the set of colored contours in (b)2, which are less than

5% of the pixels. The model synthesizes hair texture, facial lines and shading even in regions where no input information is provided.

Our model allows for semantically intuitive editing in the contour domain. Top-right: a caricature-like result (e) is created by moving and

scaling some contours in (d). Bottom-right: hairs are synthesized by pasting a set of hair contours copied from a reference image. Edited

contours are marked in green while the original contours in red.

Abstract

We study the problem of reconstructing an image from

information stored at contour locations. We show that high-

quality reconstructions with high fidelity to the source im-

age can be obtained from sparse input, e.g., comprising less

than 6% of image pixels. This is a significant improvement

over existing contour-based reconstruction methods that re-

quire much denser input to capture subtle texture informa-

tion and to ensure image quality. Our model, based on gen-

erative adversarial networks, synthesizes texture and details

in regions where no input information is provided. The se-

mantic knowledge encoded into our model and the spar-

sity of the input allows to use contours as an intuitive inter-

face for semantically-aware image manipulation: local ed-

its in contour domain translate to long-range and coherent

changes in pixel space. We can perform complex structural

changes such as changing facial expression by simple edits

of contours. Our experiments demonstrate that humans as

well as a face recognition system mostly cannot distinguish

between our reconstructions and the source images.

1. Introduction

Contours are a concise and perceptually meaningful rep-

resentation of the image, as they encode “things” and not

“stuff” [1]. This makes them appealing for image recon-

struction and manipulation. As contours capture shape and

object’s boundaries, it is desirable to be able to maneu-

ver them (e.g. translating, scaling, copying and pasting)

and have the related pixels adapt accordingly, such that

the edited images preserve the original image structure and

texture details; just as artists use simple sketches to guide

drawing sophisticated paintings. Therefore, faithfully re-

constructing images from sparse contours, an open question

that dates back to the seminal work of David Marr [24], is

of great interest as it is the foundation for editing and pro-

cessing.

A binary contour map is often insufficient to preserve fi-

delity for reconstruction (e.g. [18], Fig. 2(c)). Therefore,

local image information such as gradients or color have

1First two principal components of the features is mapped to RGB [4].
2Project page: https://contour2im.github.io/
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been combined with contour locations and has been stud-

ied extensively in the literature on diffusion-based methods

[12, 13].

However, such diffusion based methods are not applica-

ble for image editing because of their inability to synthesize

texture and missing content. High-quality reconstruction

often requires dense contours, which precisely forfeits the

original purpose of conciseness and ease of manipulation

(see Fig. 2(d-e)). When the contours are sparse, the recon-

struction loses important image details such as texture (see

Fig. 2(a-b)).

In this paper, we propose a new method, based on deep

generative models, to resolve the conflict between high fi-

delity and high sparsity. Instead of forcing contours to

model textures, details and fine structures, our model learns

to hallucinate it appropriately, just from a sparse contour

representation, even in large regions where no input infor-

mation is provided (see Fig. 1(a-c)). Specifically, we as-

sume that the correlation between contours and textures is

well encapsulated in a class of images, such as faces, dogs

and birds. For instance, knowing that a contour map is of a

person’s face, our model can fill in the details of hairs and

facial expressions based on the statistical correlation trained

on a set of facial images. To this end, we develop a cascade

of two networks, splitting the overall task into two more

tractable problems. The first network reconstructs the over-

all image structures and colors, while the second network

recovers texture and fine details.

Extensive experiments show that with our model, high

fidelity image reconstruction can be obtained from infor-

mation stored at a small fraction of contour pixels, as small

as ∼5% for a 512 × 512 image (see Fig. 1(a-c)). Work-

ing with such highly sparse contours, allows us to explore

their use for image editing. Our results demonstrate that

our models encode semantic information about the training

data. Hence, local edits in the contour domain are translated

into coherent changes in the pixel space (e.g., dragging the

eyebrows of a person up leads to changes in the facial lines

that connect the eyebrow to the nose, see Fig. 1(d-e)). We

show various image editing examples such as creating cari-

catures, changing facial expression or generating hair or fur

texture.

2. Related Work

We briefly survey relevant image editing and reconstruc-

tion literature. Elder [12, 13] explored the completeness

of contour representations, and their use in image editing

tasks using diffusion based methods. Diffusion curves are

vector-based primitives that have been suggested for cre-

ating smooth, shaded images [27]. Similar representations

have been explored for compression of piece-wise smooth

images such as depth maps or cartoon images [22].

In contrast to the above mentioned methods, a number

of exemplar-based approaches for image editing have been

proposed. Prominent among these are patch-based methods

(a) Contours (8% nonzero) (b) Diffusion (sparse) 

(d) Contours (18% nonzero) 

(c) Pix2Pix

(f) Ours (sparse)(e) Diffusion (dense) 

Figure 2. Reconstruction from sparse contours (marked in red in

(a)) obtained by: (b) homogeneous diffusion where the input com-

prises of RGB values sampled at both sides of each edge pixel;

(c) Pix2pix [18] that takes a binary edge map as input; and (f)

our result using gradient information stored at red locations in (a).

The source image is shown in Fig. 3. (d-e) Dense contours and the

corresponding reconstruction obtained by homogeneous diffusion.

Our approach gives significantly superior reconstruction compared

to (b-c) and (e) which is supplied with much denser input.

[5, 34] and seam carving [3]. These techniques copy patch

information to create high-quality edited images. However,

they are oblivious to the semantic content of the image, of-

ten failing to produce large, coherent changes. Edits often

require human intervention in the form of geometric con-

straints.

Deep neural network based image synthesis approaches

provide an alternative approach for image editing tasks

[16, 14, 11, 29, 40]. Many of these works rely on autoen-

coder architectures and pixel losses, which have difficulty

reconstructing textures. Superior results are possible with

the use of generative adversarial networks (GANs) [15].

Unconditional GANs synthesize images from a stochas-

tic latent variable. However, fine user control over the

synthesized image is problematic. Several methods (e.g.,

[42, 7]) attempt to address this by performing image edit-

ing through the low-dimensional learned latent space of the

generator network in a GAN. The idea is to optimize the

latent representation of an image to satisfy user constrains

(e.g., shape or color), while not deviating much from the la-

tent representation of the original image. This approach re-

quires solving a complicated optimization problem by back-

propagation which is slow. User constraints are taken into

account implicitly and so control over the generated image

is limited. Finally, although various methods are being de-

veloped to stabilize GAN training [23, 2], synthesizing nat-

ural scenes from stochastic inputs is an open problem.

To combat this, methods have been proposed to condi-

tion the GAN on other kinds of inputs [26, 21, 17, 29, 25,

18, 38, 32, 39, 38]. Isola et al. [18] synthesize images from

input label maps or edge maps. They consider only binary

edges, which leads to low fidelity to the original image. Fur-
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thermore, they did not consider the task of image editing

but rather focused on image translation from one domain to

another. Sangkloy et al. [32] took a step towards more con-

trollable synthesis by learning to generate images from in-

put hand-drawn sketches and additional input sparse color

strokes. However, their input sketch is much denser than

what we consider in this paper, and hence not suitable for

complex geometric manipulation. Due to the density of the

input, their network does not need to synthesize texture in

large regions as in our case. Furthermore, their edits consist

of color changes, leaving contours fixed, unlike our edits

that modify the contour structure.

3. Overview

We represent an image by a sparse set of contours (com-

puted using an off-the-shelf edge detector [10]), and an N -

dimensional feature for each of the contour pixels. In this

paper, we have experimented with three types of features:

gradients, color and learned features (described further in

Sec. 4). We reconstruct the source image from this input

representation using a cascade of two networks, as shown

in Fig. 3.

The sparse contour representation is first fed into a net-

work driven by an L1 pixel loss that reconstructs the overall

structure and colors of the output image (Fig. 3(a)). For

example, when training on the VGG face dataset [28], this

network recovers face shape, skin tone, hair color and over-

all shading. We abuse notation slightly and call this network

LFN (“Low Frequency Network”), although the reconstruc-

tion does contain some high frequency information, given

by the input contours.

The second network takes as input the reconstruction

produced by the LFN as well as the original sparse input,

and outputs a much more textured and detailed reconstruc-

tion of the original image, using an adversarial loss; we

call this HFN (“High Frequency Network”). Since we work

with sparse contours (∼ 6% or less of total image pixels),

significant textured regions are not represented in the input.

The HFN learns to synthesize plausible texture and struc-

ture in these regions. For example, in the case of faces, the

hair texture and fine facial lines are synthesized by the HFN,

even though very few contours are detected in these regions.

4. Sparse Contour Representation

Given a contour map, an important consideration is

what information to encode at each contour position. Color

and gradients are common choices among diffusion-based

methods (e.g., [27, 22]), and gradients have been a use-

ful representation for image editing [30]. We therefore

consider these two options, as well as a learned feature

representation trained end-to-end with our reconstruction

network. We define the feature f(p) at each detected

contour point p as follows:

Generator
U-Net

Encoder-Decoder
U-Net

Reconstruction
(Low Frequency)

Concat

Final Reconstruction

N-Channel Feature 
Map

(a) Low Frequency Reconstruction

(b) High Frequency Reconstruction

Dilated-Patch Discriminator

Real/Fake?

Original Image

(c) Dilated-Patch Discriminator

Concat

Concat

Figure 3. Our model reconstructs an image from a sparse N-

channel feature map (typically N=3 or N=6) using a cascade of

two “U-Nets” [31]: (a) a Low-Frequency Network (LFN), trained

with an L1 pixel loss, that recovers the overall structure and col-

ors of the image; (b) High-Frequency Network (HFN) that is con-

ditioned on the LFN output and the input feature map, produces

a textured and detailed reconstruction; the HFN is trained with

a combination of pixel loss and adversarial loss. (c) Our condi-

tional discriminator, which incorporates dilated convolutions and

aggregation across image patches to better capture high frequen-

cies. “Concat” refers to concatenating channels of the same spatial

resolution along the depth axis.

1. Color: The orientation of the contour map is computed

and R,G,B values sampled at both sides of the contour for

each edge pixel. That is, f(p) = {Icd, I
c
b}c∈{R,G,B}, where

Icd and Icb are values on either side of a contour for channel

c. This results in a 6-value code per contour location.

2. Gradients: At each contour point, spatial image deriva-

tives are computed for each of the color channels: f(p) =
{Gc

x, G
c
y}c∈{R,G,B}, where Gc

x, G
c
y are the x and y deriva-

tives of the image channel c. This also results in a 6-value

code per contour pixel.

3. Learned Features: An N channel feature map is learned

end-to-end while training the reconstruction network (we

found N = 3 to be a good balance between quality and

complexity). We use a multi-scale representation to encode

information from a larger neighbourhood around each edge

pixel. We use a simple network that consists of a convo-

lutional layer followed by a branch of dilated convolution

filters with different sampling rates, employing an architec-

ture similar to átrous spatial pyramid that presented in [8].

See Supplementary Materials (SM) for more details.

Of the three choices above, we found that multi-scale
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(b) Contours (overlay)(a) Source (c) Reconstruction (d) Modified Contours (e) Reconstruction 

7% nonzero px

5.5% nonzero px

5.5% nonzero px

6.5% nonzero px

6% nonzero px

Figure 4. Reconstruction from sparse contours and editing in the contour domain: (a-b) The source images and their input contour maps

(colored over the source), respectively. (c) Our final reconstructions using gradient information stored at colored (red and green) contours

in (b); our model synthesizes plausible textures and recover fine details in regions with missing data. (d) Edited contours (the green

contours in (b) are modified while red contours remain the same). (e) Our reconstructions from edited contours (d); our model translates

the modified contours into coherent and semantically meaningful edits of the source images.

learned features result in improved quality of reconstruc-

tion (see Fig. 5). However, for the application of image

editing, we found gradient features to have the best trade-

off between reconstruction accuracy of the original image

and quality of image edits. Although gradient features are

the most challenging to invert (the network needs to recover

the absolute color values), they provide greater flexibility

and robustness to image manipulation. For example, the

use of gradients allows blending two sets of contours taken

from different images, as shown in Fig. 1. This aligns with

the literature on image editing in the gradient domain, e.g.

[30, 6].

Color features are more restrictive since they impose

constraints on the absolute colors of the reconstruction.

Learned features encode multi-scale information, hence the

representation of one pixel can be highly correlated with
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(a) Source

(d) Single GAN 
Gradient features

(e) Patch disrimininator
 Gradient features

(b) Contours

(f) Our disriminator,
Gradient features

(c) Our disriminator, 
Learned features

Figure 5. Reconstructions under different network configurations.

(a) A source image and (b) the input contour map (marked in red);

5% of pixels are non zero. (c) Reconstruction using our cascaded

model trained with our dilated-patch discriminator and end-to-end

learned features. Second row: reconstructions using gradient fea-

tures with different models. (d) A single (non-cascaded) GAN. (e)

Our cascaded network trained with patch discriminator [18] and

(f) with dilated-patch discriminator. While the learned features are

better for reconstruction, they are too restrictive for image editing

(see discussion in Sec. 4).

the representation of another. Such correlations between

features reduces flexibility to image edits (see Fig. 9(a)).

Designing learned features which have the beneficial prop-

erties of gradients for image editing, while allowing higher-

quality reconstructions, is an interesting area for future re-

search.

5. Model

As mentioned in Sec. 3 and shown in Fig. 3, our model

consists of a cascade of two networks: the first network

(LFN) reconstructs the overall structure and colors of the

output image from the sparse feature map, whereas the sec-

ond one (HFN) recovers fine details and texture given the

blurry (piecewise smooth) output of the LFN and the origi-

nal sparse input. This is driven by the training losses. The

LFN is trained with an L1 pixel loss between the recon-

structed output image and the ground-truth image, which

encourages the overall structure and low-frequencies of the

output to match the input but is insufficient to reconstruct

fine textures and higher frequencies [19].

The HFN is conditioned on the sparse contours and the

output of the LFN, and trained with a combination of L1

pixel loss and an adversarial loss [15]. We use a conditional

discriminator whose task is to distinguish between the real

image, and the fake output of the HFN (the images are from

the same source, i.e. the fake image is reconstructed from

the contours of the real image). The weights of the LFN re-

mains fixed during this training. For both the discriminator

and generator adversarial losses, we use an L2 loss between

the logits of the real and generated samples, following the

approach of Mao et al. [23].

The architecture of the LFN and the generator of HFN is

a convolutional encoder and decoder with skip connections

between layers of the encoder and decoder [31]. The archi-

tecture of our discriminator (Fig. 3(c)) is a combination of a

“patch discriminator” [18] and a branch of dilated convolu-

tion filters that better capture higher frequencies (Fig. 5)(e-

f). See SM for a detailed description.

The network cascade, our patch-dilated discriminator

and U-net based decoder, together give high quality recon-

structions for both 256 × 256 and 512 × 512 size images,

as demonstrated in Fig. 1 and the supplementary materials.

Overall performance is significantly improved over a non-

cascaded single GAN (see Fig. 5), in line with the findings

reported in [9, 41].

6. Experiments

We trained a model for each of the three publicly avail-

able datasets from different domains: VGG Faces [28],

Caltech-UCSD Birds [37] and Stanford Dogs [20]. Dur-

ing training, we randomly varied the input sparsity for each

image (sampled from a Gaussian around 6% non zero pix-

els), which allows us to have a wide range of sparsity at

inference. See SM for full implementation details. We per-

formed the following experiments to measure the quality of

our reconstructions and editing.

Reconstruction: Fig. 1, Fig. 2, Fig. 4(a-c), Fig. 6 and

Fig. 8 show sampled reconstruction results obtained by our

models when supplied with input gradient features at each

contour location (Sec. 4). As can be seen, our models pro-

duce high quality reconstructions w.r.t. the source images

from very sparse inputs (4%-7% non zero pixels), and re-

cover long range information and details that were not pre-

sented by the input. For faces, for example, our model

synthesizes hair texture and recover fine details in the eyes,

teeth and facial lines. In Fig. 8, the texture of the foreground

object (fur of a dog, feathers of a bird) is synthesized as well

as the texture of the background such as ripples of water,

grass, or wood and tree texture.

Editing: Fig. 1 and Fig. 4(d-e) show a number of editing

results, where the the manipulated contours are marked in

green. In Fig. 1 (top row), a caricature of a person is created

by moving and scaling sets of contours (with gradient infor-

mation being transferred as edges are moved around): the

woman’s eyebrows and nose are moved up and the shape of

her jaw is changed. The reconstruction gracefully accom-

modates these modifications, e.g., by adjusting the facial

lines that connect to the nose. The bottom row shows an

example of generating plausible hair texture by blending in

the contour domain: a set of “hair contours” (and their un-

derlying features) is copied from a reference image onto the

target image. Our model inpaints the region that was origi-

nally bald. This effect of hair synthesis is also shown second

row in Fig. 4 where contours at the forehead boundary were

dragged down.

The second example in Fig. 4 shows the creation of a

smile by moving and scaling contours. Note the fine facial
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(f) Ours (final recon.)(b) Contours (overlay)(a) Source (e) Ours (low freq. recon.)(c) Homogeneous diffusion (d) Pix2pix [Isola et. al]

Figure 6. The source image (a) is reconstructed from different representations kept at the same pixels marked in red (b), using the following

methods: (c) Diffusion [13] based solution that propagates RGB values sampled at both sides of each contour pixel. (d) Pix2pix [18] which

uses only binary contours as input. (e) Our LFN output using gradient features stored at each contour pixel and (f) our final HFN output.

lines that are generated to accommodate the new expres-

sion. Additional edits here include moving the hairline to

the center of the head, and inpainting the ear region by eras-

ing their set of contours.

In the third example, we erased the contours that cor-

respond to the white marking on the dog’s forehead (third

row). The reconstruction (using a model trained on dogs)

depicts seamless color transition and convincing fur-like

texture. In the following example, we moved the position

of the eyes to give the dog puppy-like proportions.

In the bird example (last row of Fig. 4), we made the tree

trunk thinner by shifting up the contours that corresponds to

its lower boundary. In addition, we relocated the bird in the

scene by pasting its contours in the new location, avoiding

the need to accurately segment it from the background. The

network is robust to missing edges and can reliably inpaint

the holes that are generated in the original location of the

bird.

These editing examples demonstrate the necessity of

working with sparse contours: (i) Achieving these editing

effects with denser representation (e.g., Fig. 2(d)) would

have been significantly more challenging and tedious. (ii)

The use of sparse contours during training has encouraged

the network to learn semantic interpretations of a scene, giv-

ing it the ability to synthesize plausible texture and struc-

Dataset %Turkers Labeled Real

1 second 5 seconds

VGG 256x256 [28] 49.3 44.7

VGG 512x512 [28] 47.2 43.5

Stanford Dogs 256x256 [20] 48.1 46.1

CUB Birds 256x256 [37] 49.9 45.8

Table 1. AMT “real vs fake” test on different datasets. We report

the fraction of generated images (our final reconstructions) that

were considered real by the workers, when the real-fake pairs were

presented for 1 second or 5 seconds.

ture.

Model Components and Input Features We evaluate

the performance of our method using different types of in-

put features as described in Sec. 4. Specifically, we com-

puted the average SSIM [36] between the source images

and the reconstructions, on 100 randomly sampled images

from the VGG, CUB and Dogs datasets. Table 2 shows

the computed scores using either gradient features, color

(RGB) or learned features. The learned features, which

capture multi-scale information, consistently give the best

results, followed by color and then gradients. Note that, in

the case of gradients the network needs to recover the un-

known absolute color values, which is clearly an ill-posed

problem. Therefore, in this case the reconstructions may

result in slight color shifts w.r.t. the source images. How-

ever, as discussed in Sec. 4, we found that gradient features

provide greater flexibility and robustness to image manipu-

lation. This is exemplified in Fig. 9(a) where the same con-

tour edits, using learned features results in poorer quality

than using gradient features (Fig. 4 first row); this is due to

the spatial correlation between the learned features, which

breaks when contours are been manipulated.

Table 2 also shows the SSIM scores for a single GAN

(using gradient features) vs. our cascaded network. The

consistent improvement in the SSIM scores for our model is

clear and aligns with other works [41, 9] that demonstrated

the benefits of a coarse-to-fine approach. A qualitative ex-

ample of reconstruction using different network configura-

tions in shown in Fig. 5.

Comparison with Baselines Fig. 2 and Fig. 6 show qual-

itative comparisons to two baselines: (i) homogeneous

diffusion–a classical low-level approach for image recon-

struction from contour representation (see Sec. 2) and (ii)

Pix2pix [18].

For diffusion, we follow Elder [13] and use color (RGB)

values sampled at either side of a contour location. It is
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High Freq. Net (ours)

Low Freq. Net (ours)

Diffusion based recon.

(a) Average FaceNet Embedding Dist.

15% px, dist=0.317% px, dist=0.383% px, dist=0.881% px, dist=1.28

(b) Our final reconstuction as a function of edge sparsity (c) Average Texture loss

High Freq. Net (ours)

Low Freq. Net (ours)

Diffusion based recon.

Figure 7. We used FaceNet [33] to evaluate how close our reconstructions are to the source images in terms of recognition. (a) Average

L2 distances between the FaceNet embedding of the source image and its reconstruction, as a function of input contour sparsity. We plot

the computed distances (lower is better) for: diffusion-based reconstructions (red), our intermediate reconstructions (LFN, blue) and our

final reconstructions (HFN, green). A typical threshold for same/not same classification is ∼ 1.2 [33]. (b) Our final reconstructions using

different sparsity levels (the computed distances shown above each image). (c) Texture loss [14] as a function of sparsity; our HFN has the

lowest loss, regardless of the sparsity level, which demonstrates the importance of adversarial training. For the images in (b), the texture

losses are very similar although the shape changes based on contours.

seen that this results in piecewise smooth reconstructions,

and fails to recover texture or details at missing contours.

This is not surprising since diffusion merely interpolates

the color values, without any semantic knowledge. Even

when supplied with very dense input (Fig. 2(c)), the diffu-

sion result (d) suffers from spikes and blurriness due to the

sensitivity to the location of the constrain and their values.

This can also be seen be from the comparison to our low-

frequency reconstruction (Fig. 6(f)) where the facial high-

lights and shading are recovered significantly better.

For Pix2pix [18] that takes as input binary edge maps,

we trained their network from scratch (using their original

PyTorch implementation) on exactly the same data (images

and contours) that was used to train our models. Pix2pix,

while recovering some texture, fails to recover the scene

properties (e.g. skin tone, hair color, bird color) and re-

sults in poor quality reconstructions (e.g., tree texture in the

background of the the bird image or facial artifacts). This

demonstrates the importance of both location and value in-

formation.

Fig. 9 shows a comparison to Photoshop’s state-of-the-

art editing tools, for similar edits as Fig. 1 and Fig. 4. Since

these tools do not have semantic awareness, their results can

often be less satisfactory.

Dataset GAN
LFN-HFN

Gradients Color Learned

VGG 0.786 0.812 0.859 0.867

CUB 0.697 0.740 0.763 0.783

Dogs 0.722 0.749 0.792 0.810

Table 2. Average SSIM scores between 100 randomly sampled im-

ages from each test set and their reconstructions using different

models. From left to right: reconstructions using a single GAN

with gradients and reconstructions using our LFN-HFN cascade

network trained with gradients, RGB, and learned features. The

input contour maps are identical for all models and have approxi-

mately 6% non-zero pixels.

6.1. Quantitative Evaluation

Our model synthhesizes high frequency content that may

not match exactly the original one. Thus, in the following

experiments, we go beyond using standard image similarity

measures such as PSNR or SSIM that do not necessarily

capture the perceptual quality [19].

Human Evaluation We evaluated our results using hu-

man raters on Amazon Mechanical Turk (AMT), following

closely the protocol in [18]. Workers were presented with

pairs of images corresponding to the source image and our

reconstruction, and asked to label which one was “real”.

Each pair of images was presented for a limited time af-

ter which the rater makes their choice. As practice, the first

10 pairs of images were shown without a time limit. We

evaluated the ranking of 10 rater, each was given 100 image

pairs. Our reconstructions for this test were obtained using

gradient based-features at 6% contour locations. The same

test was repeated for 1 and 5 seconds presentation time. The

results, reported in Table 1, show that for all datasets, our

reconstructed images were hard to distinguish from the real

images (a score of 50% would mean perfect confusion be-

tween real and fake). As expected. for a 5 second presenta-

tion time, it was slightly easier to spot reconstructions.

Face Recognition Evaluation We tested the extent to

which our reconstructed faces capture the identity of a per-

son. We used FaceNet [33], a well-known face recognition

system and measured whether our reconstruction (using dif-

ferent sparsity levels of input) and the source image are clas-

sified as the same person. We followed [33] and computed

the squared L2-distance between the 128-dimensional em-

bedding vectors of the original image and our reconstruc-

tion. Fig. 7(a) shows the average distance over 50 im-

ages randomly sampled from the VGG test set when ap-

plying our network using gradient input features (as this is

the most challenging case for reconstruction) at different
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Figure 8. Reconstruction examples of test images from Stanford

dogs and Caltech-UCSD datasets. Our network learns to synthe-

size the textures of the objects e.g., the fur of a dog, as well as the

natural backgrounds in the scenes such as water and grass.

contour density levels. We report the error for LFN, HFN

and homogenous diffusion. As expected, the performance

of HFN is the highest regardless of the contour’s sparsity,

on average a relative 10% reduction in error over LFN and

nearly 40% over homogenous diffusion. This shows that re-

constructing details is helpful for a face recognition system.

An example of our reconstructions and the input con-

tours are shown in Fig. 7(b), where the resemblance to the

source image gradually increase with density. There is not

much loss of information between 15% and 7% nonzero

pixels because the network recovers missing high frequency

information. Note that even at a sparsity as low as 3% of

pixels, Facenet recognizes the resulting face as being the

same as the original (based on the thresholds given in [33]).

Texture/Style Evaluation: Recent style transfer meth-

ods have demonstrated that texture statistics can be cap-

tured by the Gram matrix of the activations at some lay-

ers in a pretrained recognition network (e.g. [35]). In

[14], a texture-loss between two images is defined as:
∑L

l=0
wl

∑
i,j(G

l
ij − Ĝl

ij)
2, where l denotes the layer, and

Gl
ij is the inner product between feature map i and j at layer

l: Gl
ij =

∑
k F

l
ikF

l
jk. G and Ĝ refer to the Gram matrices

for two different images. We use this loss (with the same

setting as [19]) to evaluate the quality of our synthesized

texture compared to the source image. Fig. 7(c) shows the

computed texture loss for LFN, HFN and diffusion based

reconstructions, as a function of the contour’s sparsity. The

benefit of a GAN loss in synthesizing texture is clearly seen,

as the loss of HFN is consistency the lowest and steady over

(c)Content Aware Move (d) Content Aware Fill

(b)Content Aware Move(a) Learned Features

Figure 9. (a) Editing example using our model with learned fea-

tures. (b-d) Comparison to patch-based Photoshop editing tools:

content aware move and content aware fill. Our results using gra-

dients on these images for shown in Fig. 1(e) and first and third

row in Fig. 4)(e).

(a) Recon. using face model (c) Extreme editing(b) Recon. using dog model

Figure 10. Limitations. (a) A dog image is reconstructed using our

model when trained on faces; (b) shows the reverse. (c) Effect of

an extreme edit whereby the result is not semantically meaningful

due to the contour constraints.

different sparsity levels.

7. Conclusions

We have presented a deep network model that pro-

duces high-quality reconstructions of images, and effective

semantically-aware editing, from sparse contour represen-

tations. Due to the sparsity and the high level information

encoded in our model, the representation has the benefit of

being easy to manipulate for large, coherent edits. This is a

significant improvement over existing work.

Our model is domain specific and if the statistics of the

source image is very different from the training data, the

quality of the reconstruction may deteriorate. For exam-

ple, applying a model trained on the dogs to a face re-

sults in a dog-like appearance (Fig. 10(b)), and vice-versa

(Fig. 10(a)). In both cases, the contours provide a strong

constraint on the reconstruction, but the synthesized texture

is dominated by the training data. In addition, within the

same domain, a distant face (zoomed out) may not be re-

covered as well as a portrait shot (as these are the most

examples in the VGG dataset). Finally, some cases (e.g.,

extreme editing operations) can prevent semantically mean-

ingful reconstructions (Fig. 10(c)).
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