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Abstract

Image sentiment influences visual perception. Emotion-

eliciting stimuli such as happy faces and poisonous snakes

are generally prioritized in human attention. However, little

research has evaluated the interrelationships of image senti-

ment and visual saliency. In this paper, we present the first s-

tudy to focus on the relation between emotional properties of

an image and visual attention. We first create the EMOtional

attention dataset (EMOd). It is a diverse set of emotion-

eliciting images, and each image has (1) eye-tracking data

collected from 16 subjects, (2) intensive image context labels

including object contour, object sentiment, object semantic

category, and high-level perceptual attributes such as image

aesthetics and elicited emotions. We perform extensive anal-

yses on EMOd to identify how image sentiment relates to hu-

man attention. We discover an emotion prioritization effect:

for our images, emotion-eliciting content attracts human at-

tention strongly, but such advantage diminishes dramatically

after initial fixation. Aiming to model the human emotion pri-

oritization computationally, we design a deep neural network

for saliency prediction, which includes a novel subnetwork

that learns the spatial and semantic context of the image

scene. The proposed network outperforms the state-of-the-

art on three benchmark datasets, by effectively capturing the

relative importance of human attention within an image. The

code, models, and dataset are available online at https:

//nus-sesame.top/emotionalattention/.

1. Introduction

People have a remarkable ability to attend selectively to

some regions in a scene [50, 9]. Attention selectively fol-

lows low-level image properties (e.g., intensity, color) and

semantic-level information [26, 15]. Such properties have

been incorporated in computational models that predict visu-

al saliency with impressive performance [34, 2, 70]. These

models have been used in applications such as automated
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Figure 1: Example images from EMOtional attention dataset

(EMOd), along with emotions that observers indicated as

strongly elicited by the images and colormaps visualizing

human attention.

image annotation and video surveillance [24, 14].

Substantial research also finds that the emotional rele-

vance of a stimulus influences human attention [17, 13, 67,

39]. For example, people preferentially attend to emotional

stimuli (i.e., an object or scene that elicits an emotional re-

sponse in the observer), such as cute babies or erotic scenes

[25, 54]. Although many neuroimaging and behavioral stud-

ies have investigated how emotional stimuli affect attention

[52, 17, 29], few computer vision studies have—due in part

to the lack of an eye-tracking dataset that includes emotional

stimuli. Advances have been made regarding semantics and

attention [57, 27, 70], but much remains unknown about how

image sentiment relates with visual saliency.

In this paper, we present the EMOtional attention dataset

(EMOd)—a human-annotated dataset focusing on image

sentiment and human attention (see Fig. 1). We perform

statistical analyses on EMOd to investigate how emotional
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Type Category Description Object No. Image No.

Directly relate to

humans

Face (emotional) Faces with obvious emotional expressions. 899 422

Face (neutral) Faces without obvious emotional expressions. 890 443

Gazed Objects gazed upon by a human or animal. 111 92

Touched Objects touched by a human or animal. 322 244

Relate to other

(nonvisual) human

senses

Sound Objects producing sound (e.g., people talking) 995 667

Smell Objects with a scent (e.g., a flower, a cup of coffee). 386 309

Taste Food, drink, etc. 104 54

Touch Notably tactile objects (e.g., a sharp knife). 664 570

To attract attention

or to interact with

humans

Text Digits, letters, words, and sentences. 360 169

Wachability Objects made to be viewed (e.g., pictures, traffic signs). 186 78

Operability Natural or man-made objects held or used with hands. 689 445

Imply motion Motion Moving objects, includes gesturing humans/animals. 955 672

Table 1: Descriptions of semantic attributes of objects labeled in EMOd dataset. The fourth and fifth columns indicate the

number of objects in each category, and the number of images containing the specific category of objects, respectively.

content relates to human visual attention. Analyses indicate

that emotional content attracts human visual attention strong-

ly and briefly—which we refer to as emotion prioritization

effect. Building on the emotion prioritization effect, we pro-

pose a deep neural network (DNN) that learns the relative

importance of the salient regions within an image. That

is, it accounts for contextual saliency—saliency regarding

both spatial and semantic context of the scene. Our main

contributions follow.

1. We provide a novel image dataset (EMOd) featuring

image sentiment and visual attention, which is the first

to include eye-tracking data as well as extensive an-

notations about image context—emotions, objects, se-

mantics, and scenes—enabling research on these topics

together with attention.

2. We evaluate how image sentiment relates to human

attention. We observe the emotion prioritization effect—

for our images, emotional content not only attracts hu-

man visual attention strongly, but also briefly.

3. We propose a novel DNN model with a subnetwork that

is able to encode relative importance of regions/objects

within an image. The proposed model outperforms

state-of-the-art methods on three benchmark datasets.

2. Related work

Predicting human attention: Substantial research has

been done on saliency prediction—using computational mod-

els to predict human attention [30, 4]. Early saliency predic-

tion models use pixel-level image attributes, such as contrast,

color, orientation, and intensity [34, 41, 23]. An earlier ad-

vocate for context-aware saliency is [27], which also focuses

on low-level image features. Large gain in saliency predic-

tion has resulted from the recent resurgence of deep neural

networks [60, 66, 68, 32, 42, 69, 18, 49], such as SALICON

[33], DeepGaze [44], and DeepFix [42]. These DNNs en-

deavor to learn image contexts and achieve considerable

performance. However, being trained on the datasets and

learning weights as a whole, they enable few insights about

how contextual information of multiple objects within an

image relate to human attention. Our work takes into con-

sideration contextual information with a new model design

that effectively addresses the emotion prioritization effect in

attention allocation within an image.

Attention and emotion: Psychologist have found that

human attention generally prioritizes emotional content over

non-emotional content [17, 67, 7]. For example, smiling

faces, babies, and erotic scenes attract human attention more

than emotionally neutral stimuli [22, 70].

Saliency researchers seek to incorporate increasingly

higher-level perceptual properties of images [61, 73, 70, 12],

and their models have encoded high-level concepts such as

faces [59], interacting objects [56], and text [35]. Saliency

researchers have not yet attempted to systematically measure

or model the relation between emotion and attention. One

major reason could be the lack of a proper dataset with both

emotional content and eye-tracking data.

Eye-tracking datasets: Two related datasets that we use

as benchmarks (see Sec. 5.2) are NUSEF [57] and CAT2000

[5]. NUSEF is 751 emotion-eliciting images that depict

mostly faces, nudes, and human actions. CAT2000’s training

set contains 2000 images of diverse scenes, such as affective

images and cartoons. However, these two datasets have lim-

ited emotional content and no object labels. Emotion labels

are absent in other commonly used eye-tracking datasets (for

an overview see [10]). In this paper, we present the first

eye-tracking dataset to include images of diverse emotional

scenarios, together with extensive image annotations.

Precise measurement of human attention requires cus-

tomized eye-tracking equipment, making crowdsourcing d-

ifficult. Alternative methods for large-scale attention data

collection include using webcams and mouse movements

[51, 36, 71, 40, 38], but their validity has not been estab-

lished for emotional images. Seeking maximal validity for

our dataset, we use the gold-standard: measuring with eye-
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Figure 2: (a) Emotional objects garner more attention than neutral objects. In all figures in this paper, error bars represent

standard error. (b, c) Images illustrate how objects in strong emotions (outlined in blue), such as the crying face and broken

card, are more salient than neutral/less emotional stimuli (outlined in gray).

tracking equipment in controlled laboratory conditions [21].

3. Construction of EMOd dataset

We constructed EMOd, a new dataset of 1019 emotion-

eliciting images, with eye-tracking data and annotations at

object and image levels. It is designed for research on visual

saliency and image sentiment.

3.1. Image collection

EMOd images were from two sources: (1) 321 emotion-

evoking photos selected from the International Affective

Picture System (IAPS) [45], and (2) 698 photos collected

by the authors using the ontology and attributes in [6, 48]

as search terms in an online image search engine (Google

Image Search) 1. We collected the photos to make the dataset

more diverse regarding how observers’ emotions are evoked,

such as the emotion-eliciting objects, activities, and gists.

3.2. Psychophysics study I: eye tracking

Sixteen subjects aged 21 to 35 years old (27.0±4.7) freely

observed all EMOd images on a 22-inch LCD monitor. The

screen resolution was 1920 × 1080. The visual angle of the

stimuli was about 38.94◦ × 29.20◦. Subject eye movements

were recorded at 1000Hz using an Eyelink 1000 eye tracker.

Each image was presented for 3 seconds, followed by a drift

correction that required subjects to fixate in the screen center

and press the space bar to continue.

3.3. Psychophysics study II: image annotation

Three paid undergraduate students labeled the following

properties of the dominant objects in each image: (1) object

contour, (2) object name, (3) sentiment category, selecting

from negative, neutral, or positive, and (4) semantic category.

We used four types of semantic categories [70]: (i) objects

directly relating to humans, (ii) objects relating to nonvisual

senses of humans, (iii) objects designed to attract attention

or for interaction with humans, and (iv) objects with implied

1Due to copyright restrictions of the IAPS dataset, all the images shown

in this paper are from the author’s own collection.

motion. See Table 1 for categories within each type and how

many objects and images were coded with each category.

Each object could be coded to have one or more categories.

For sentiment and semantic labeling, we used only those

agreed upon by all three students; objects without unanimous

agreement were labeled as “neutral” for sentiment and “other”

for semantic category. In total, EMOd has 4302 segmented

objects with fine contours, sentiment labels, and semantics

labels. The number of positive, neutral, and negative objects

are 839, 2429, and 1034, respectively.

We also used online crowd sourcing (Amazon Mechanical

Turk (AMT) [8] and campus intranet) to collect perceptions

of 33 high-level perceptual attributes such as image aesthet-

ics and elicited emotions (see Fig. 1). For more details on

EMOd construction, see the supplementary material.

4. How do sentiments affect human attention?

In this section, we report two findings regarding how emo-

tional properties of images influence human attention. We

first explain our analytical methods, then report observations

with supporting analyses.

4.1. Definitions and methods

For each image, we compute a fixation map by placing

at each fixation location a Gaussian distribution with sigma

equal one degree of visual angle and then normalizing the

map to maximum 1 (a common method in saliency research

[46]). Fig. 1 visualizes fixation maps by overlaying col-

ormaps on original images. We define the attention score of

an object as the maximum fixation-map value that is inside

the object’s contour. Attention scores thus range between 0

and 1 [22].

The inferential statistical analyses we use—such as uni-

variate analyses of variance (ANOVA), post-hoc Tukey tests,

and simple effects analysis—are standard in behavioral and

other sciences (for an introduction, see [3]).

4.2. Results

Observation 1 (Emotion prioritization effect): Emo-

tional objects attract human attention more than neutral
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Figure 4: (a) Emotion prioritization is stronger for human-related objects: those being touched, gazed upon, or with motion or

sound. (b-c) Examples of gazed-upon objects and their respective attention scores. The emotional gazed-upon object (b) has a

higher attention score than the neutral gazed-upon object (c).

Figure 3: (a) Human observers fixated first on emotional

objects more than neutral objects, but the attention prioritiza-

tion quickly diminishes. (b) Viewers fixated on the emotional

objects (i.e., food (1) and crocodile’s mouth (2)) before the

neutral human body (3).

objects. Furthermore, emotional objects attract attention not

only strongly, but also briefly—a positive or negative senti-

ment category strongly increases an object’s chance of being

attended to at first fixation, but the advantage diminishes

quickly during subsequent fixations.

Observation 1 is based on the following analyses. A

two-way ANOVA has attention scores of each object as the

dependent variable, and sentiment and semantic categories as

the independent variables. Attention scores are influenced by

both sentiment category (F (2, 4263) = 21.75, p < .0012)

and semantic category (F (12, 4263) = 4.31, p < .001).

The larger F score of sentiment over semantics (21.75 v.s.

4.31) suggests sentiment impacts attention more than seman-

tics. Post hoc Tukey tests indicate that neutral objects have

lower attention scores than negative and positive objects

(ps3 < .001), and attention scores for negative and positive

objects do not significantly differ, p = .260 (see Fig. 2).

We also evaluate how the first six fixations are distributed

across positive, neutral, and negative objects. We randomly

pick an equal number (373) of negative, neutral, and pos-

itive objects. We select only from images containing 3 to

6 objects to minimize any effect of image complexity on

2We report the results of ANOVAs as, ”F (dfcondition, dferror) = F

value, p = p value”. If a p value is smaller than the conventional significance

level threshold of .05, we reject the null hypothesis of no difference among

the means.
3Throughout the paper, ps represents the plural form of p.

fixation order. Objects categorized as positive or negative

have more fixations than do neutral objects at first fixation,

but subsequent fixations show little difference (see Fig. 3).

By showing for the first time that attention prioritization

diminishes drastically after initial fixation for the EMOd

dataset, our findings reveal a more nuanced understanding of

the claim that human attention prioritizes emotional stimuli

over non-emotional stimuli [17, 67, 7].

Observation 2: The emotion prioritization effect (Obser-

vation 1) is stronger for human-related objects than objects

unrelated to humans. For example, happy faces are priori-

tized over neutral faces more than fascinating architecture is

over common architecture.

This is indicated by a significant interaction of sentiment

category and semantic category, F (24, 4263) = 3.62, p <

.001, which means that emotion prioritization differs across

various combinations of sentiment and semantics. Simple

effects analysis shows that the emotion prioritization occurs

primarily for semantic categories of “touched”, “gazed”,

“motion”, “sound” (see Fig. 4 (a)). Objects being “touched”

and “gazed”, and objects with “sound” by definition relate

to humans. The majority (≥ 75%) of “motion”in EMOd

are coded as being on human bodies or human faces, so

such objects also relate to people. This suggests that the

emotion prioritization effect is stronger on human-related

objects. Fig. 4 (b-c) illustrates this interaction using images

with gazed-upon objects.

In summary, the emotional properties of images, especial-

ly those related to humans, strongly influence visual atten-

tion. Building on these findings, we develop a DNN that is

adaptive of those emotional properties by using contextual

saliency prediction, as described in the next section.

5. Predicting human attention with contextual

information

In this section, we design a DNN guided by our psy-

chophysics findings. Experiments on three benchmark

datasets demonstrate the superior performance of the pro-

posed DNN, especially when emotion-eliciting objects stand

out in a scene.
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Figure 5: The architecture of the proposed DNN (CASNet). A channel weighting subnetwork (inside the dashed orange

rectangle) computes a set of 1024-dimensional feature weights for each image (instead of only one whole image set), to

capture the relative importance of the semantic features of a particular image. The gray dashed arrows illustrate how the

relative saliency of different regions within an image are modified through the subnetwork.

5.1. Proposed DNN architecture

The proposed DNN architecture is shown in Fig. 5. To

address emotion prioritization, we design a channel weight-

ing subnetwork (the orange dashed rectangle) that encodes

contextual information, enabling the network to highlight

emotion-eliciting objects from the surroundings. Intuitively,

by computing a set of 1024-dimensional feature weights for

each image (instead of only one whole image set), the subnet-

work learns the relative importance of the semantic features

of the particular image. Specifically, to compute the weight,

we first apply a 2×2 max pooling on the 1024 channels of

concatenated feature maps to reduce their dimensionality

and spatial variance. We then flatten the output and apply a

fully-connected layer to compute a 1024-dimensional vector.

Each dimension represents the saliency weight of the corre-

sponding input channel. The fully-connected layer allows

the model to learn the relative weights of different objects

or regions in a scene based on both their spatial locations

and semantic features. Finally, the weights are applied to the

input feature by a channel-wise multiplication.

We construct the rest of our network based on a two-

stream VGG-16 network architecture. We feed fine-scale

images of 800×600×3 pixels to its first stream for extract-

ing relatively high-resolution deep features, while feeding

coarser-scale images of 400×300×3 pixels to its second

stream for extracting relatively low-resolution deep features.

The output of the two network streams are rescaled to the

same spatial resolution, and stacked together to form multi-

scale deep features of dimension 25×18×1024. Each chan-

nel corresponds to an activation map representing a certain

visual pattern in the image at different resolutions. We then

perform a convolutional layer after the new subnetwork with

a 1×1 kernel to reduce the 1024-channel 2D images into a

single-channel 2D saliency map of dimension 25×18 pixels.

Finally, we resize the saliency map back to the dimension of

the original image. The two-stream design is based on SAL-

ICON [32], except that we reduce the resolutions of input

images from 1600×1200, 800×600 to 800×600, 400×300,

and increase the batch size from 1 to 8. We made these

changes for better network convergence.

5.2. Experiment settings

Datasets: We test our model on three eye-tracking

datasets with emotional content. The first is the EMOd,

which includes 1019 emotion-eliciting images. The second

is the NUSEF dataset [57], which includes 751 images that

depict mostly emotion-eliciting objects and human actions.

The third is the training set of CAT2000 [5], which contains

2000 diverse images including emotional, cartoon, social,

and so on.

DNN parameters: We initialize the training to the pre-

trained parameters for VGG-16 on ImageNet. Mean squared

error (MSE) is used as the loss function. The parameters

of the DNN are then learned end-to-end on the training

images with stochastic gradient descent. The learning rate

is 10−5 and the batch size is 8. A momentum of 0.9 and

a weight decay of 0.0005 are used. We train the model for

30 epochs. Each epoch contains 1250 iterations. We pre-

train our network using a mouse contingency based saliency

dataset—SALICON [36]. The entire training procedure

takes about one day on a single NVIDIA TitanX GPU using

Keras with a Tensorflow backend [16, 1].

5.3. Evaluation metrics

We use 9 metrics for comprehensive evaluation. The Area

Under the ROC Curve (AUC) [28] treats the saliency map as

a binary classifier. We use two variants of AUC: AUC-Judd

and AUC-Borji [11], and shuffled-AUC (sAUC) [64] which

alleviates the effects of center bias. Although comprehensive

and commonly used in the community, AUC by nature is

not able to distinguish between cases where models predict

different relative importance values for different regions of

an image [11, 12, 20], as needed in our study. We further use

six similarity metrics to measure the similarity between the
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Figure 6: Qualitative results generated by our saliency model in comparison with state-of-the-art methods. Our model

(CASNet) outperforms other models in both location and order, by taking into consideration contextual information (e.g.,

encoding relative importance of objects in the first four rows and highlighting areas of interest in scene images in the last

three rows). The last column (Diff image) visualizes the difference between predictions from CASNet and N-CASNet: colors

close to orange/red indicate increased saliency after applying the subnetwork for contextual saliency, whereas colors close to

blue/green indicate decreased saliency.

Metric CASNet N-CASNet SALICON SalGAN ML-Net BMS SROD GBVS IttiKoch

AUC-Judd 0.83 0.82 0.82 0.83 0.82 0.77 0.74 0.79 0.73

AUC-Borji 0.80 0.79 0.80 0.80 0.76 0.75 0.73 0.78 0.72

sAUC 0.78 0.77 0.78 0.78 0.74 0.74 0.72 0.75 0.70

NSS 1.75 1.61 1.59 1.74 1.74 1.12 0.98 1.18 0.88

IG 1.58 1.48 1.45 1.13 1.21 1.02 0.88 1.13 0.88

CC 0.66 0.61 0.59 0.66 0.62 0.42 0.37 0.47 0.35

SIM 0.58 0.55 0.53 0.58 0.56 0.45 0.42 0.48 0.43

EMD 2.66 3.04 3.02 2.76 2.84 4.06 4.43 3.42 4.20

KL 5.54 5.61 5.67 5.83 5.78 5.94 6.04 5.86 6.04

Table 2: Results on the EMOd dataset. The best performance in each metric is highlighted in bold. For all metrics larger values

indicate higher performance, except smaller is better for EMD and KL.

saliency map and fixation map, namely Normalized Scanpath

Saliency (NSS) [55], Linear Correlation Coefficient (CC)

[47], histogram intersection (SIM) [62], the Earth Movers

Distance (EMD) [58], the Kullback-Leibler divergence (KL)

[37], and Information Gain (IG) [43, 11]. See [11] for an

introduction of these metrics.

5.4. Results

Statistical results are reported in Tables 2 – 4. Qualitative

results are shown in Figures 6 – 7 .

Comparison with state-of-the-arts models: We report

results for our model both with the subnetwork for contextual

saliency prediction (i.e., CASNet—Context-Adaptive Salien-

cy Network) and without the subnetwork (i.e., N-CASNet—

Not Context-Adaptive Saliency Network). We compare our

saliency prediction models with 7 others. Three are state-

of-the-art DNN-based models: SALICON4 [32], SalGAN

[53], and ML-Net [18]. Two are non-DNN models with

top performance in the non-DNN model category: Boolean

Map based Saliency (BMS) [72] and Saliency via Sparse

Residual & Outlier Detection (SROD) [63]. Two are classic

bottom-up approaches: Graph-Based Visual Saliency (GB-

VS) [31] and Itti-Koch model (IttiKoch) [34]. These models

are top performers on MIT benchmark [10] in their respec-

tive categories5. To ensure fair comparisons, all DNN-based

4We use the code of OpenSALICON (a publicly available implementa-

tion of SALICON) [65].
5To be fair, we exclude DNN models that use or learn center bias (e.g.,,

SAM-ResNet [19]). We include as many top performing models as possible,

but models/code of some are not publicly available, such as Deep Gaze 2

[44] and DeepFix [42].
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Metric CASNet N-CASNet SALICON SalGAN ML-Net BMS SROD GBVS IttiKoch

AUC-Judd 0.83 0.83 0.82 0.83 0.82 0.77 0.74 0.80 0.71

AUC-Borji 0.77 0.77 0.79 0.78 0.74 0.75 0.74 0.79 0.70

sAUC 0.75 0.74 0.76 0.75 0.71 0.72 0.71 0.74 0.67

NSS 1.75 1.67 1.59 1.72 1.66 1.08 0.95 1.21 0.77

IG 1.35 1.29 1.24 0.51 0.11 0.67 0.62 0.96 0.56

CC 0.67 0.64 0.61 0.66 0.61 0.42 0.37 0.49 0.31

SIM 0.58 0.56 0.54 0.58 0.55 0.44 0.42 0.48 0.40

EMD 2.75 2.93 3.08 2.72 2.91 4.31 4.72 3.68 4.75

KL 5.37 5.41 5.56 5.90 6.20 5.84 5.88 5.64 5.92

Table 3: Results on NUSEF dataset. The best performance in each metric is highlighted in bold.

Metric CASNet N-CASNet SALICON SalGAN ML-Net BMS SROD GBVS IttiKoch

AUC-Judd 0.82 0.81 0.80 0.81 0.79 0.78 0.77 0.80 0.71

AUC-Borji 0.79 0.77 0.78 0.80 0.73 0.77 0.76 0.79 0.70

sAUC 0.76 0.74 0.75 0.77 0.70 0.73 0.72 0.75 0.66

NSS 1.50 1.36 1.35 1.45 1.31 1.15 1.07 1.24 0.76

IG 0.46 0.30 0.27 0.08 0.04 -0.13 -0.11 0.18 -0.25

CC 0.58 0.52 0.52 0.56 0.49 0.44 0.41 0.49 0.30

SIM 0.57 0.53 0.52 0.53 0.51 0.49 0.48 0.50 0.42

EMD 2.42 2.89 2.86 3.21 3.08 3.12 3.31 3.12 3.97

KL 5.82 5.93 6.03 6.08 6.08 6.21 6.06 5.99 6.29

Table 4: Results on CAT2000 dataset. The best performance in each metric is highlighted in bold.

Figure 7: CASNet outperforms N-CASNet for co-occurrence

of face (touched) with non-face object (first two rows), e-

motional face with neutral face (thrid and fourth rows), and

emotional object with neutral object (last two rows). The

last column (Diff image) visualizes the difference between

predictions from CASNet and N-CASNet.

models are trained on the SALICON dataset to achieve their

best possible performance, and all models (including ours)

are directly tested on the three benchmark datasets without

training/fine-tuning on them.

As shown in Tables 2 – 4, our model with the contextual

saliency subnetwork (CASNet) has the best overall perfor-

mance across datasets, without additional center bias mech-

anism. CASNet’s advantage is greatest on EMOd. This is

perhaps because EMOd focuses more than the other datasets

on emotional content, and CASNet is most advantageous

on emotional images. CASNet consistently outperforms on

AUC-Judd, NSS, IG, CC, SIM, and KL. For other metrics,

CASNet is not always the best but it is close to the best.

Performance on predicting contextual saliency: As

suggested in [43, 11], NSS and IG take into account the

relative importance of the salient regions, thus are the best

evaluation measures for contextual saliency. CASNet beat-

s the other methods on these two metrics across all three

datasets, demonstrating its advantage on contextual saliency.

Notably, CASNet consistently outperforms N-CASNet on

all datasets (Table 2 – 4), and its advantage is largest on

NSS and IG. This suggests the effectiveness of learning the

relative weights of salient regions inside an image through

the proposed subnetwork. Fig. 7 illustrates how CASNet

uses contextual information to improve saliency prediction

by learning the relative importance of emotional objects,

which more closely matches human emotion prioritization

than N-CASNet.

5.5. Analysis

To better understand the models, we further explore their

performance on EMOd (as it has intensive object labels).

Emotion prioritization: Do the models exhibit emotion
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prioritization like humans do? To see, we perform the same

analyses as in Sec. 4.2, except calculating an object’s atten-

tion score as the highest value of the normalized (predicted)

saliency map in the object’s contour. We compute the av-

erage predicted saliency scores of negative, neutral, and

positive objects in EMOd by CASNet. The result (Fig. 8)

is similar to Fig. 2. This suggests that the proposed model

has a considerable ability to model human emotion prioriti-

zation. An ANOVA (object saliency scores as the dependent

variable, object emotion types as the independent variable)

for each model further shows that CASNet has the largest F

value (CASNet: 92.17, N-CASNet: 87.95, SalGAN: 81.22,

SALICON: 82.44, ML-Net: 69.99), indicating that CASNet

prioritizes emotional objects more than comparing methods.

Figure 8: Emotional objects are predicted as being more

salient than neutral objects by CASNet, which is consistent

with the emotion prioritization effect of human observers.

CNN visualization: We perform a direct comparison

before and after adding the channel weighting subnetwork

for (a) CASNet with local weights frozen to 1 during training

(“before” version, equivalently N-CASNet), and (b) regular

CASNet (“after” version). We select 6 highly emotional

images for 4 emotions and extract their highest-response

patches (192×192 pixels in size) on their strongest weighted

channel. The responses in “after” version show stronger

emotions, suggesting that the subnetwork directs model’s

attention to more emotional content (Fig. 9).

Figure 9: Examples of highest-response patches from before

(bottom block) and after (top block) channel weighting. Pat-

aches of the same image are ordered in the same sequence.

Relative saliency of co-occurring objects: The capabil-

ity of the proposed channel weighting subnetwork is not

limited to emotion prioritization, but more broadly, it is able

to predict the relative importance of co-occurring objects

in general. To show this, we identify all images with co-

occurring category objects (see Table 1 for the 12 categories).

For each image, we calculate the difference in attention score

for those two objects for human ground truth data. We also

calculate the same difference score as predicted by CASNet

and N-CASNet. By correlating the differences of each model

with the human ground truth across images, we evaluate the

degree to which models predict the relative saliency of the

co-occurring objects. We calculate separate Spearman’s rank

correlations for all types of object co-occurrences (e.g., faces

with gazed-upon objects, gazed-upon objects with touched-

objects). A larger correlation indicates that the model does a

better job at predicting the relative saliency of co-occurring

objects in the ground truth data. A paired t-test shows that

CASNet has a higher correlation with human ground truth

than N-CASNet (.74 v.s. .71, p < .00001) across all types

of object co-occurrences. See Fig. 10 for examples.

Figure 10: The most salient patches predicted by N-CASNet

(yellow sqaure) and CASNet (red square). CASNet correctly

prioritizes the most salient faces within an image (top row),

people/body parts over other objects (middle row), and the

most salient non-human objects.

6. Conclusion

In this paper, we present EMOd—a new emotional at-

tention dataset for research on visual saliency and emotion-

eliciting stimuli. Analyses on EMOd show that eye fixations

correlate with human affective responses to the visual con-

tent of the images. We report the emotion prioritization

effect, the strong and rapid, but brief, attentional bias toward-

s emotional objects. To computationally address the emotion

prioritization effect, we develop a novel DNN (CASNet) that

encodes the relative importance of multiple salient regions

and accounts for contextual importance for human attention.

To our knowledge, this is the first attempt to quantify the

relationships among human affective responses and visual

attention on complex scenes, with a new DNN model that

effectively mimics human attention in this context.
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[22] W. Einhäuser, M. Spain, and P. Perona. Objects predict fixa-

tions better than early saliency. Journal of Vision, 8(14):18–

18, 2008. 2, 3

[23] S. Engmann, B. M. Hart, T. Sieren, S. Onat, P. König, and
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