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Abstract

While invaluable for many computer vision applications,

decomposing a natural image into intrinsic reflectance and

shading layers represents a challenging, underdetermined

inverse problem. As opposed to strict reliance on conven-

tional optimization or filtering solutions with strong prior

assumptions, deep learning based approaches have also

been proposed to compute intrinsic image decompositions

when granted access to sufficient labeled training data.

The downside is that current data sources are quite lim-

ited, and broadly speaking fall into one of two categories:

either dense fully-labeled images in synthetic/narrow set-

tings, or weakly-labeled data from relatively diverse natu-

ral scenes. In contrast to many previous learning-based ap-

proaches, which are often tailored to the structure of a par-

ticular dataset (and may not work well on others), we adopt

core network structures that universally reflect loose prior

knowledge regarding the intrinsic image formation process

and can be largely shared across datasets. We then apply

flexibly supervised loss layers that are customized for each

source of ground truth labels. The resulting deep archi-

tecture achieves state-of-the-art results on all of the major

intrinsic image benchmarks, and runs considerably faster

than most at test time.

1. Introduction

The decomposing of natural images into multiple intrin-

sic layers can serve a variety of high-level vision tasks such

as 3D object compositing, surface re-texturing, and relight-

ing [3]. In this regard, the core intrinsic image model we

consider here is predicated on an ideal diffuse environment,

in which an input image I is the pixel-wise product of an

albedo or reflectance image R and a shading image S, i.e.,

I ≈ R⊙ S. (1)

The albedo layer indicates how object surface materials re-

flect light, while shading accounts for illumination effects

∗This work was done when Qingnan Fan was an intern at MSR.

due to geometry, shadows, and interreflections. While ob-

viously useful, estimating such a decomposition is a fun-

damentally ill-posed problem as there exist infinitely many

feasible solutions to (1). Fortunately though, prior informa-

tion, often instantiated via specially tailored image smooth-

ing filters or energy terms, allows us to constrain the space

of feasible solutions [1, 2, 3, 7, 17, 20]. For example,

the albedo image will usually be approximately piecewise

constant, with a finite number of levels reflecting a dis-

crete set of materials and boundaries common to natural

scenes. In contrast, the shading image is often assumed to

be greyscale, and is more likely to contain smooth grada-

tions quantified by small directional derivatives except at

locations with cast shadows or abrupt changes in scene ge-

ometry [13].

On the other hand, given access to ground truth intrinsic

image decompositions, deep convolutional neural networks

(CNN), at least in principle, provide a data-driven candidate

for solving this ill-posed inverse problem with fewer po-

tentially heuristic or hand-crafted assumptions. However,

ground truth data that sufficiently covers the rich variety

inherent to natural scenes, and includes dense intrinsic la-

bels across entire images, is extremely difficult to acquire.

Consequently, existing databases are each limited in var-

ious different ways, and thus far, state-of-the-art deep net-

work models built using them likewise display a high degree

of dataset-dependent architectural variance, i.e., to achieve

the best results, significantly different network architectures

have been applied that compensate for each nuanced data

source.

For instance, the MIT intrinsic dataset [11] is limited to

images of single, specialized objects, which lacks diversity

and scene-level realism for training a network that gener-

alizes to broader scenarios. On the other hand, the MPI-

Sintel benchmark is rendered on an open source animation

movie [4]. Their rendered images often lack realism, and

traditional deep networks trained on these data may per-

form poorly on more natural examples [19]. Finally then,

to overcome the above downsides, the Intrinsic Images in

the Wild (IIW) dataset was created from real-world photos
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[2]. Although dense ground truth decompositions are not

available, pairwise reflectance comparisons have been la-

beled via Amazon Mechanical Turk for a sparse collection

of points in each image.

To summarize then, there presently exists a trade-off be-

tween realistic yet weakly supervised image sources (e.g.,

IIW with sparse, pairwise comparison labels) and synthetic

or highly-controlled sources blessed with dense ground

truth labels (e.g., MIT and MPI-Sintel). In general, pre-

vious learning-based solutions have invoked network de-

signs and training pipelines specifically tailored for a par-

ticular data source. But if our ultimate goal is a model that

can eventually transfer to practical environments, then it

behooves us to consider data-set-independent architectures.

Or stated conversely, if a different nuanced model structure

is required to obtain state-of-the-art results on each differ-

ent intrinsic image benchmark (all of which have signifi-

cant shortcomings as mentioned above), then how confident

can we be that any one such structure will effectively trans-

late to broader application scenarios with more diverse in-

put sources? For this reason we consider a quasi-universal

architecture in the sense that, small differences in parame-

terizations to account for dataset size/type notwithstanding,

the high-level pipeline itself is identical whether training is

performed using samples formed from dense maps (MPI,

MIT-Sintel) or pair-wise comparisons (IIW).

To accomplish this we allow flexible supervision layers

to serve as an intermediary between diverse training data

sources and an otherwise fixed network architecture. The

latter is chosen to reflect basic universal assumptions de-

scribing intrinsic image decompositions independent of any

one data particular set. For example, we assume that the

albedo component is a priori likely to be piecewise constant

or flattened, reflecting broad areas of identical reflectance

and abrupt changes to new material surfaces. Such a prior

should be broadly effective regardless of available supervi-

sion. We incorporate this knowledge via three network sub-

structures: (i) a direct intrinsic network to predict a coarse

first estimate of the albedo and/or shading image, (ii) an in-

dependent guidance network to predict the significant edges

that largely originate from the albedo layer, and (iii) a 1D

recursive domain filter that uses the output of the guidance

network to steer the final albedo estimate towards a piece-

wise constant or flattened image. The entire process is dif-

ferentiable and amenable to end-to-end training.

Our overall contributions can be summarized as follows:

• We provide the first demonstration of a single basic

deep architecture capable of achieving state-of-the-art

results when applied to each of the major intrinsic

benchmarks, despite the radically different nature of

the underlying data types. Unlike previous approaches,

we accomplish this by modifying the training objec-

tive via flexible supervision layers without the need to

significantly modify the overarching network structure

itself, which is based on loose prior assumptions natu-

rally satisfied by real images.

• On the most challenging IIW data, we provide the

first trainable end-to-end system that can both produce

state-of-the-art results on supervised pairwise com-

parison metrics computed from sparse points, while

simultaneously generating a plausible, piecewise-flat

dense map to characterize all other unsupervised im-

age locations.

• We achieve significant improvements over both unseen

indoor and outdoor real images via joint training of

multiple data sources. We demonstrate that the well-

known limitations of the existing dataset can be over-

come by incorporating other types of training samples.

• We accomplish each of the above via a system re-

quiring a minimal computational footprint at test time,

with execution speeds comparable or considerably

faster than existing alternatives.

2. Related Work

A variety of deep learning based approaches have been

applied to the IIW dataset. For example, [15] learns a lo-

cal linear classifier using deep features and contextual clues

present in two local image patches. Alternatively, in [21]

a multi-stream network architecture is learned whose input

source comes not only from the local surrounding patch of

compared points, but also from the global image. More-

over, to estimate a globally consistent albedo layer, a sec-

ond, relative reflectance classification step is incorporated

via optimization of a hinge loss. Similarly, [22] also learns a

deep network to classify the pairwise points from both local

and global contextual information. Afterwards, they yield

a piecewise constant albedo image by segmenting the input

image into constant superpixels and optimizing a quadratic

objective function.

Note that each of the above examples treat the intrinsic

decomposition as a classification problem, and ultimately

require feeding every pair of patches to the trained deep

network to predict the relative reflectance of a new image,

which is very computationally-intensive. In contrast, [16]

attempts to first predict a dense reflectance layer via a con-

volutional neural network by supervising the sparse pair-

wise points of IIW using a similar hinge loss. Given that

such a predicted image will not generally meet the piece-

wise constancy requirement of albedo layers, they execute

a second post-processing step using [3] to flatten the dense

map through a guided filter or joint bilateral filter.

Several existing deep network pipelines have also been

built using the MPI-Sintel and MIT datasets with dense

ground truth labels. First, [19] learns a two-scale convo-

lutional network to directly predict both albedo and shading
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Figure 1. The proposed framework. Our end-to-end trainable intrinsic image estimation framework, which produces a flattened albedo

image and a realistic shading image. Blue boxes indicate shared network structures, while orange boxes represent flexible loss layers that

vary based on available supervision, either weak pairwise comparisons, e.g., IIW (top), or full dense ground truth intrinsic images, e.g.,

MPI-Sintel and MIT (bottom). The black dashed rectangles indicate the locations from which final network outputs are drawn. Note that

for the IIW data (top), only an albedo image is directly estimated; the shading is then computed via (1).

images. However, the specific architecture, which closely

resembles that from [8] developed for predicting depth and

surface normals, involves intermediate feature maps at 1/32

scale such that significant detail information may be com-

promised. A second more recent method from [18] trains an

encoder-decoder CNN to learn albedo, shading and specular

images with millions of object-level synthetic intrinsic im-

ages via rendering ShapeNet [5] 1; however, this approach

does not apply to scene-level images as we consider herein.

3. Shared Network Structures

Our proposed framework is composed of three central

functional components that are largely shared across dif-

ferent dataset types: (i) a direct intrinsic image estimation

network (Direct Intrinsic Net), (ii) a sparse guidance map

prediction (Guidance Network), and (iii) a reflectance im-

age flattening module (Domain Filter). Figure 1 displays

their arrangement, while details are contained below.

3.1. Direct Intrinsic Network

Given an input image, an initial coarse estimate R′ of

the dense intrinsic image decomposition is produced via a

26-layer fully convolutional neural network. The front 3

convolution layers extract a number of feature maps and

1Note also that we requested this data during the preparation of our

work; however, we were informed by the authors of [18] that it was not

available for distribution.

downscale the resolution to half the input image. The inter-

mediate feature descriptors so-obtained are then fed through

the middle 20 dilated convolutional layers, which are reor-

ganized into 10 residual blocks to accelerate network con-

vergence. The output from residual blocks are finally re-

constructed to the required intrinsic images by the last 3

convolutional layers. Except for the final convolution, all

the other layers share the kernel size (3×3) and the chan-

nels for the feature maps (32), and all are followed by batch

normalization (BN) and ReLU layers.

While this basic structure is inherited for all experiments,

minor customizations must be introduced to accommodate

the diversity of training data formats, labeling, and size.

In particular, for IIW data where labeling is restricted to

sparse pairwise comparisons of relative reflectance, we only

require that the Direct Intrinsic Network produce a scalar

albedo intensity r for every image pixel. Note however

that if we adopt the common assumption that the scene

lighting is achromatic as is commonly done for IIW data

[2, 3, 16, 21, 22], then r can be expanded to the full albedo

R′ and shading S layers across all 3 color channels using

the differentiable transform

R′
i =

ri
1
3

∑

c(I
c
i )

· Ii, Si =
1
3

∑

c(I
c
i )

ri
· [1, 1, 1], (2)

where i denotes the pixel location and c is the RGB color in-

dex. Hence a simple reconstruction layer can easily produce
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a full intrinsic decomposition as required by later modules,

even if for present purposes here we only output a scalar

greyscale reflectance map.

In contrast, for datasets like MIT and MPI-Sintel where

dense albedo and shading labels are provided and achro-

matic lighting assumptions do not strictly hold (e.g., the

shading image can be colorful per the generative process),

it is more suitable for the Direct Intrinsic Network to sep-

arately output full albedo and shading layers. Therefore,

the basic network structure described above is split into two

branches from within the intermediate residual blocks, one

for albedo and another for shading. Furthermore, to achieve

a better performance using these dense datasets, we expand

the depth to 42 convolution layers, and channels for the fea-

ture maps to 64.

3.2. Guidance Network

The images generated by the Direct Intrinsic Network

described above already demonstrate excellent numerical

performance. But we nonetheless still observe that the di-

rect estimation of intrinsic images using parameterized con-

volutions does not always preserve the flattening effects ex-

hibited by natural reflectance images. To tackle this issue,

previous approaches have applied post-processing via either

a separate optimization step [21, 22] or various filtering op-

erations [16], all of which rely on strong priors and/or addi-

tional inputs to generate realistic piecewise constant effects

at a high computational cost. Instead, to obviate the need

for any expensive post-processing, we leverage a cheap do-

main filter guided by a learned edge map that highlights key

sparse structure indigenous to albedo images.

Given a guidance image G with salient structural infor-

mation pertaining to R (more on how G is chosen in Sec-

tion 4), we compute a scalar edge map via

Ei(G) =
∑

j∈N2(i)

|
∑

c

(Gc
i −Gc

j)|, (3)

where E(G) represents the extracted sparse structure of the

guided image and N2(i) indicates the surrounding points

within a 2-pixel distance from point i. The output edge map

is greyscale and its intensity demonstrates how salient the

color transition is at each point.

Our Guidance Network learns a mapping from I to

E(G) via a similar network structure as the Direct Intrin-

sic Network from above. It consists of 18 convolutional

layers with 64 feature maps (except for the last one), and

we also adopt dilated convolution for the middle residual

blocks. Note that the Guidance Network is unchanged for

all datasets. Additionally, we have observed that the com-

puted edge map of the guidance image is usually a simpli-

fied version of the one computed from the original input im-

age I (i.e., since the guidance image should contain fewer

spurious details). Therefore, we feed both the original input

image and its associated input edge map E(I) computed

via (3) into the Guidance Network to predict the required

salient edge guidance map, which we denote E′.

3.3. Domain Filter

To generate a realistically flattened albedo image, we

adopt a guided, edge-preserving domain filter that requires

two inputs: the reflectance image R′ as produced by our

Direct Intrinsic Network, and a scalar guidance map E′ as

computed by our Guidance Network. The Domain Filter ad-

mits an efficient implementation via separable 1D recursive

filtering layers applied across rows and columns in an im-

age, which means performing a horizontal pass along each

image row, and a vertical pass along each image column

iteratively. For an input 1D signal X , the filtered output

signal Y can be defined on the transformed domain of guid-

ance map E′ using

Yi = (1− gi)Xi + giYi−1, (4)

where g is a function of E′ obtained via the method from

[10]. In this context, gi determines the amount of diffusion

by controlling the relative contribution of the raw input sig-

nal Xi to the filtered signal value at the previous position

Yi−1 (the 2D case is similar, where X and Y correspond

with the reflectance image before and after filtering). The

cumulative effect is that if the learned guidance map is large

at point i, which means there is a strong color transition

there, the filtered reflectance at point i− 1 will not be prop-

agated to the point i. Otherwise, point i will be flattened

or averaged with the value at point i − 1. Note that similar

recursive 1D filtering has been effectively applied to image

smoothing [10, 14] and semantic segmentation [6], which

are highly-related computer vision applications.

4. Flexibly Supervised Loss Layers

This section discusses the flexibly supervised loss layers

(see Figure 1) that can be customized to the distinct forms of

available ground truth labels. We differentiate two primary

categories of loss layers, one for handling pairwise compar-

ison data of albedo intensities, the other for handling dense

maps of full albedo and shading decompositions.

4.1. Pairwise Comparison Data

We begin with the pairwise relative reflectance judge-

ments as found in the IIW dataset. As no dense ground

truth labels are available, [2] introduced the weighted hu-

man disagreement rate (WHDR) as the error metric. For

the k-th pair of connected points denoted {k1,k2}, a human

judgement Jk ∈ {1, 2, E} is issued that indicates if point

k1 is either darker than (Jk = 1), lighter than (Jk = 2),

or equal to (Jk = E) the reflectance of point k2. Given

the pixel-wise mean of a predicted albedo image over RGB
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channels R, a classification of reflectance pairs can then be

calculated as

Ĵδ(Rk1
, Rk2

) =











1 if Rk2
/Rk1

> 1 + δ,

2 if Rk1
/Rk2

> 1 + δ,

E otherwise.

(5)

where δ quantifies a significant threshold for the relative

difference between two surface reflectances. The WHDR

measures the percent of human judgements Jk that an algo-

rithm estimate Ĵδ(Rk1
, Rk2

) disagrees with, weighted by a

separate confidence score wk of each judgement. This met-

ric is naturally converted to a form of modified hinge loss

that can be conceptually evaluated at every possible pair of

points across a dense, trainable albedo image estimate. But

for those pairs of points for which no human label is avail-

able, we can implicitly assume that wk = 0 (i.e., zero con-

fidence). The albedo image output from the Domain Filter

can then be supervised as

Ldf =
∑

k∈ε

wk · µ(Jk, Rk1
, Rk2

, δ, ξ), (6)

where ε indicates the set of all the connected points within

the image. The function µ(Jk, Rk1
, Rk2

, δ, ξ) behaves like

a standard, SVM hinge loss term with respect to the ratio

Rk1
/Rk2

when Jk ∈ {1, 2}, or an analogous ǫ-insensitive

regression loss when Jk = E (see the supplementary file for

the exact form of µ). The additional hyper-parameter ξ can

be viewed as controlling the margin between neighboring

classes as described in [16]. Similar hinge loss functions

have also been incorporated into previous intrinsic image

decomposition work [16, 21]. For present purposes here,

this loss is appealing, since the input image just needs a

single forward pass through the network, and the predicted

reflectance output can then be used to compute the error

metric summed over all the connected points, which cannot

be achieved by widely used softmax loss.

Beyond this supervision at the output of our pipeline, we

also provide intermediate supervision both to the greyscale

albedo intensity r produced by the Direct Intrinsic Network

(which per our modeling assumptions captures all degrees

of freedom in the initial albedo estimate R′ as computed via

(2)), and the salient edge map E′ produced by the Guidance

Network. Regarding the former, the relevant supervision

layer is given by

Ldi =
∑

k∈ε

wk · µ(Jk, rk1
, rk2

, δ, ξ). (7)

In contrast, supervision on the predicted guidance map is a

simple mean squared error ,

Lg = ||E′ − E(G∗)||22 (8)

where G∗ denotes a ground truth guidance image. For IIW

we have no access to the true albedo images, making a dense

optimal selection for G∗ infeasible. However, if we assume

that the significant edges from the raw image I predom-

inately originate from the implicit albedo component, then

we may treat salient edges extracted from I as a rough proxy

for salient edges extracted from the unknown optimal R∗.

To this end, we compute G∗ = f(I), such that E(G∗) =
E(f(I)) ≈ E(R∗) as the ground truth guidance image,

where f is the flattening image filter from [3], which pro-

duces piecewise, salient edge-aware effects. The inclusion

of this loss term, as well as the subsequent guided Domain

Filter, helps to stabilize the network performance when ex-

trapolating to unsupervised image locations underlying the

predicted dense map, and leads to more visually realistic,

flattened reflectance images. The overall loss then becomes

the weighted combination of energy functions given by

L = Ldi + λ1Lg + λ2Ldf , (9)

where λ1 = 0.35 and λ2 = 0.1 for all experiments.

4.2. Densely Labeled Data

When dense ground truth intrinsic images R∗ and S∗ are

available as in MIT and MPI-Sintel datasets, we directly

utilize the mean squared error as the supervision layer for

all outputs. For the output of the Domain Filter that flattens

the albedo component, we therefore adopt the loss

Ldf = ||R−R∗||22. (10)

In contrast, because we have access to the full ground truth

for both albedo and shading layers, and given that Equation

1 is only an approximation (meaning both of these compo-

nents can actually contribute non-trivial information2), for

the output of the Direct Intrinsic Network we supervise both

R′ and S. Additionally, to help preserve the details of in-

trinsic images, the image gradients in the x and y directions

are also supervised, producing the aggregate intermediate

loss

Ldi = λ2(||R
′ −R∗||22 + ||S − S∗||22)

+ λ1(||∇xR
′ −∇xR

∗||22 + ||∇yR
′ −∇yR

∗||22

+ ||∇xS −∇xS
∗||22 + ||∇yS −∇yS

∗||22). (11)

Finally, the loss for the Guidance Network is exactly the

same as in (8), only now we define G∗ = R∗ for the guid-

ance filter ground truth. We then jointly train the whole

network using

L = Ldi + λ1Lg + λ2Ldf , (12)

with λ1 = 0.35 and λ2 = 0.2.

2This is especially true given that MPI-Sintel data contains some de-

fective pixels and the MIT data has a mask.
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Input Bi et al. [3] Nestmeyer et al. [16] Ours Bi et al. [3] Nestmeyer et al. [16] Ours

Figure 2. Qualitative comparison on the IIW benchmark. The second through forth columns represent albedo components, and the fifth

through seventh columns are the corresponding shading layers.

Methods WHDR (mean)

Baseline (const shading) 51.37

Baseline (const reflectance) 36.54

Shen et al. 2011 [17] 36.90

Retinex (color) [11] 26.89

Retinex (gray) [11] 26.84

Garces et al. 2012 [9] 25.46

Zhao et al. 2012 [20] 23.20

L1 flattening [3] 20.94

Bell et al. 2014 [2] 20.64

Zhou et al. 2015 [21] 19.95

Nestmeyer et al. 2017 (CNN) [16] 19.49

Zoran et al. 2015* [22] 17.85

Nestmeyer et al. 2017 [16] 17.69

Bi et al. 2015 [3] 17.67

Ours w/o D-Filter 15.40

Ours w/o joint training 14.52

Ours 14.45

Table 1. Quantitative results on the IIW benchmark. All the results

are evaluated on the test split of [15], except for the one marked

with * which is evaluated on their own test split and is not directly

comparable with other methods.

5. Experimental Results

5.1. Sparse Pairwise Supervision via IIW Data

Datasets: The Intrinsic Images in the Wild (IIW) bench-

mark [2] contains 5,230 real images of mostly indoor

scenes, combined with a total of 872,161 human judge-

ments regarding the relative reflectance between pairs of

points sparsely selected throughout the images. Consistent

with many prior works [15, 21, 16], we split the IIW dataset

by placing the first of every five consecutive images sorted

by the image ID into the test set while the others are used for

training. For quantifying the quality of reconstructed albedo

images, we employ the WHDR from [2] and as described in

Section 4.

Comparison: Table 1 presents the numerical results,

where our full pipeline achieves the best performance (mean

WHDR 14.45), which is significantly better than the second

Retinex (color)

Retinex (gray)

Garces et al. 2012

Zhao et al. 2012

L1 flattening

Bell et al. 2014

Zhou et al. 2015

Zoran et al. 2015*

Bi et al. 2015

Nestmeyer et al. 2017

Ours

Nestmeyer et al. 2017 

(CNN)
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Figure 3. WHDR against runtime plot. The WHDRs are consistent

with Table 1, while the running times of the previous methods are

collected from [16]. Our algorithm achieves the best performance

on WHDR and takes less than 100ms for evaluation.

best one [3] (mean WHDR 17.67). To further deconstruct

the effectiveness of our developed framework, we also in-

clude an ablation study in the bottom of Table 1. Here we

observe that the domain filter and learned guidance map do

significantly improve the performance. Moreover, we find

that our algorithm also benefits from joint training the en-

tire pipeline. In terms of computational complexity, Figure

3 displays runtime comparisons plotted against the WHDR

performance metric across a wide array of competing meth-

ods. Note that even while obtaining the highest accuracy

score, our system is still faster than most others.

Finally, some representative visual examples are pre-

sented in Figure 2, which illustrate dense extrapolated de-

compositions across entire images. The results from [3]

show some abrupt color transitions along the front and side

of the couch that, at least by visual inspection, presumably

should have the same albedo. Likewise, the reflectance esti-

mate from [16] contains spurious noise in many places, and

is not nearly as flattened as ours.

5.2. Dense Supervision via MPI-Sintel and MIT
Data

Datasets: We follow two recent state-of-the-art deep

learning based methods [12, 19] and evaluate our algo-

rithm on the MPI-Sintel dataset [4] that facilitates scene-

level quantitative comparisons. This dataset consists of 890
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MSE LMSE DSSIM

albedo shading average albedo shading average albedo shading average

image split

Retinex [11] 0.0606 0.0727 0.0667 0.0366 0.0419 0.0393 0.2270 0.2400 0.2335

Barron et al. [1] 0.0420 0.0436 0.0428 0.0298 0.0264 0.0281 0.2100 0.2060 0.2080

Chen et al. [7] 0.0307 0.0277 0.0292 0.0185 0.0190 0.0188 0.1960 0.1650 0.1805

MSCR [19] 0.0100 0.0092 0.0096 0.0083 0.0085 0.0084 0.2014 0.1505 0.1760

Ours 0.0069 0.0059 0.0064 0.0044 0.0042 0.0043 0.1194 0.0822 0.1008

scene split
MSCR [19] 0.0190 0.0213 0.0201 0.0129 0.0141 0.0135 0.2056 0.1596 0.1826

Ours 0.0189 0.0171 0.0180 0.0122 0.0117 0.0119 0.1645 0.1450 0.1547

Table 2. Quantitative comparison on the main MPI-Sintel benchmark. We evaluate our results using both scene and image splits across

three standard error rates of intrinsic images on the main MPI-Sintel dataset.

MSE LMSE DSSIM

albedo shading average albedo shading average albedo shading average

image split
JCNF [12] 0.0070 0.0090 0.0080 0.0060 0.0070 0.0065 0.0920 0.1010 0.0970

Ours 0.0040 0.0052 0.0046 0.0030 0.0040 0.0035 0.1081 0.0815 0.0948

Table 3. Quantitative comparison on the auxilliary MPI-Sintel benchmark. Note that JCNF [12] is only trained and tested on the image

split of MPI-Sintel dataset; hence our exclusion of the scene split here.

images from 18 scenes with 50 frames each (except for

one that contains 40 images). Due to limited images in

this dataset, we randomly crop 10 different patches of size

300×300 from one image to generate 8900 patches. Like

[19], we use two-fold cross validation to obtain all 890 test

results with two trained models. We evaluate our results on

both a scene split, where half the scenes are used for train-

ing and the other half for testing, and an image split, where

all 890 images are randomly separated into two parts.

While investigating the MPI-Sintel dataset online, we

noticed that there are actually two sources for the input and

albedo images. The first one is obtainable by emailing the

authors of [4] directly, while the second one can be partially

downloaded from their official web page (but also requires

emailing to obtain full ground-truth). We refer to them as

main and auxiliary MPI-Sintel dataset separately based on

their popularity among the research community.

Finally, to test performance on real images where scene-

level ground-truth is unavailable, we also use the 220 im-

ages in the MIT intrinsic dataset [11] as in [19]. This data

contains only 20 different objects, each of which has 11

images. To compare with previous methods, we train our

model using 10 objects via the split from [1], and evaluate

the results on images from the remaining objects.

Comparison: As shown in Table 2 and 3, our model

achieves the best result for most columns on the MPI-Sintel

data. Note the other methods [12, 19] also benefit from

training on additional training data. We show a group of

qualitative results trained on the more difficult scene split

in Figure 5. It can be seen that our framework produces

sharper and high-quality results.

MSE LMSE

albedo shading average total

Barron et al. [1] 0.0064 0.0098 0.0081 0.0125

Zhou et al. [21] 0.0252 0.0229 0.0240 0.0319

Shi et al.[18] 0.0216 0.0135 0.0175 0.0271

MSCR [19] 0.0207 0.0124 0.0165 0.0239

Ours 0.0134 0.0089 0.0111 0.0203

Table 4. Results on the MIT data. Performance of various methods

on Barron et al.’s test set [1]. LMSE is computed using an error

metric specifically designed for this data [11]. Note also that Bar-

ron et al.’s approach [1] relies on specialized priors and masked

objects particular to this dataset.

Next, Table 4 presents the relative performance on the

MIT intrinsic data. We observe that our approach is also the

best compared with the other deep networks [18, 19, 21]

even though [18, 19] utilize additional training data. Note

that [1] uses a number of specialized priors appropriate for

this simplified object-level data, while end-to-end CNN ap-

proaches like ours and [19] have less advantage here due

to limited training data (110 images). Moreover, [1] is not

competitive on other more complex, scene-level data types

as shown in Table 2. In Figure 4, our predicted images are

also sharper and more accurate than the other deep methods.

5.3. Joint Supervision via Multiple Data Sources

Simultaneously training on multiple datasets is a natu-

ral consideration given the generic, modular nature of our

pipeline. To briefly examine this hypothesis, we jointly

trained our model on both IIW and MPI datasets, with
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Input Shi et al. [18] MSCR [19] Ours Ground Truth Shi et al. [18] MSCR [19] Ours Ground Truth
Albedo Shading

Figure 4. Qualitative comparison on the MIT intrinsic image benchmark. Compared with Shi et al. [18] and MSCR [19] on Barron et al.’s

test split, our algorithm achieves better results.
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Figure 5. Qualitative comparison on the main MPI-Sintel bench-

mark. The visual results are evaluated on the model trained on the

more difficult scene split.

shared parameters for the Direct Intrinsic and Guidance net-

works (note that although there are several compelling ways

to merge objectives, we omitted supervision on the shading

component from MPI data for simplicity here). Moreover,

to balance gradients from the two quite different loss layers,

modified hinge loss for IIW and MSE for MPI, we scale the

former as two times the latter.

Experimentally, we obtained a mean WHDR of 15.80

on IIW, better than all previous methods but not quite as

good as our previous result when trained on IIW only. This

is not surprising since the dense, synthesized MPI data is

unlikely to closely reflect real-world images and IIW pair-

wise comparisons. But crucially, MPI data can still pro-

vide useful regularization/smoothing of real-world image

structures, even though this benefit may occur away from

sparsely-labeled points interior to different surface mate-

rials and hence, contributes no quantitatively measurable

value per the WHDR criterion.

Figure 6 supports this conclusion, where our jointly

trained model is applied to three real-world images, one

from IIW, and two from an independent source. Here we

I
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o
in

t)

IIW Image Real Outdoor Images

Figure 6. Reflectance estimates generated by our deep network

when trained with only IIW data, or jointly trained with IIW and

MPI data. The joint training yields smoother and much more real-

istic results on completely new, real-world outdoor scene images

that are not a part of either dataset. Zoom to see details.

observe that complementary supervision does in fact en-

hance the qualitative performance in new testing environ-

ments and our joint model smooths various artifacts.

6. Conclusion

In this paper, we solve the intrinsic image decomposi-

tion problem using a unified deep architecture that produces

state-of-the-art results, with a minimal computational foot-

print, whether trained on weakly labeled pairwise compari-

son from IIW data or dense ground truth images from MIT

or MPI-Sintel datasets. Our network is end-to-end trainable,

requires no expensive post-processing, and is able to gener-

ate realistically-flattened dense intrinsic images even on the

more challenging IIW dataset. We conjecture that the mod-

ular structure we propose will also seamlessly adapt to new

sources of labeled data.
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