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Abstract

The goal of this paper is to analyze the geometric prop-

erties of deep neural network image classifiers in the input

space. We specifically study the topology of classification

regions created by deep networks, as well as their associated

decision boundary. Through a systematic empirical study, we

show that state-of-the-art deep nets learn connected classifi-

cation regions, and that the decision boundary in the vicinity

of datapoints is flat along most directions. We further draw

an essential connection between two seemingly unrelated

properties of deep networks: their sensitivity to additive per-

turbations of the inputs, and the curvature of their decision

boundary. The directions where the decision boundary is

curved in fact characterize the directions to which the classi-

fier is the most vulnerable. We finally leverage a fundamental

asymmetry in the curvature of the decision boundary of deep

nets, and propose a method to discriminate between orig-

inal images, and images perturbed with small adversarial

examples. We show the effectiveness of this purely geometric

approach for detecting small adversarial perturbations in

images, and for recovering the labels of perturbed images.

1. Introduction

While the geometry of classification regions and decision
functions induced by traditional classifiers (such as linear
and kernel SVM) is fairly well understood, these fundamen-
tal geometric properties are to a large extent unknown for
state-of-the-art deep neural networks. Yet, to understand
the recent success of deep neural networks and potentially
address their weaknesses (such as their instability to pertur-
bations [1]), an understanding of these geometric properties
remains primordial. While many fundamental properties of
deep networks have recently been studied, such as their opti-

mization landscape in [2, 3], their generalization in [4, 5],
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and their expressivity in [6, 7], the geometric properties of
the decision boundary and classification regions of deep net-
works have comparatively received little attention. The goal
of this paper is to analyze these properties, and leverage them
to improve the robustness of such classifiers to perturbations.

In this paper, we specifically view classification regions
as topological spaces and decision boundaries as hypersur-
faces, and we examine their geometric properties. We first
study the classification regions induced by state-of-the-art
deep networks, and provide empirical evidence suggesting
that these classification regions are connected; that is, there
exists a continuous path that remains in the region between
any two points of the same label. Up to our knowledge,
this represents the first instance where the connectivity of
classification regions is empirically shown. Then, to study
the complexity of the functions learned by the deep network,
we analyze the curvature of their decision boundary. We
empirically show that

• The decision boundary in the vicinity of natural images
is flat in most directions, with only a very few directions
that are significantly curved.

• We reveal the existence of a fundamental asymmetry
in the decision boundary of deep networks, whereby
the decision boundary (near natural images x) is biased
towards negative curvatures.1

• Directions with significantly curved decision bound-
aries are shared between different datapoints.

• We demonstrate the existence of a relation between the
sensitivity of a classifier to perturbations of the inputs,
and these shared directions: a deep net is vulnerable to
perturbations along these directions, and is insensitive
to perturbations along the remaining directions.

We finally leverage the fundamental asymmetry of deep
networks revealed in our analysis, and propose an algorithm

1Throughout the paper, the sign of the curvature is chosen according to
the normal vector, and the data point x, as illustrated in Fig. 8 (top).
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to detect natural images from imperceptibly similar images
with very small adversarial perturbations [1], as well as
estimate the correct label of these perturbed samples. We
show that our purely geometric characterization of (small)
adversarial examples, which does not involve any re-training,
is very effective to recognize perturbed samples.

Related works. In [8], the authors employ tools from
Riemannian geometry to study the expressivity of random
deep neural networks. In particular, the largest principal cur-
vatures are shown to increase exponentially with the depth;
the decision boundaries hence become more complex with
depth. We provide in this paper a complementary analysis of
the decision boundary, where the curvature of the decision
boundary along all directions are analyzed (and not only in
the direction of largest curvature). The authors of [9] show
that the number of linear regions (in the input space) of deep
networks grows exponentially with the number of layers. In
[2, 3, 10, 11], the geometry of the optimization function in
the weight space is studied; in particular, generalization of
deep networks is shown to be intimately related to geometric
properties of the optimization landscape (e.g., width of a
minima). Closer to our work, in [12], the authors study the
optimization landscape of deep neural networks, where the
connectedness of solutions with low error is shown in the
weight space. An algorithm is provided to assess the nature
of this connection in the weight space; empirical evidence
supports the existence of “easy” paths between trained mod-
els. We follow here a similar goal to that of [12], but are
interested instead in the connectivity of deep networks in the
input space (and not weight space). Finally, we note that
graph-based techniques have been proposed in [13, 14] to
analyze the classification regions of shallow neural networks;
we rather focus here on the new generation of deep neural
networks, which have shown remarkable performance.

2. Definitions and notations

Let f : R
d → R

L denote a L class classifier. Given
a datapoint x0 ∈ R

d, the estimated label is obtained by
k̂(x0) = argmaxk fk(x0), where fk(x) is the kth compo-
nent of f(x) that corresponds to the kth class. The clas-
sifier f partitions the space R

d into classification regions

R1, . . . ,RL of constant label. That is, for any x ∈ Ri,
k̂(x) = i. For a neighboring class j, the pairwise decision
boundary of the classifier (between these two classes i and
j) is defined as the set B = { z : F (z) = 0}, where
F (z) = fi(z)− fj(z) (we omit dependence on i,j for sim-
plicity). The decision boundary defines a hypersurface (of
dimension d− 1) in R

d. Note that for any point on the de-
cision boundary z ∈ B, the gradient ∇F (z) is orthogonal
to the tangent space Tz(B) of B at z (see Fig. 5 (a) for an
illustration).

In this paper, we are interested in studying the decision
boundary of a deep neural network in the vicinity of natural

images. To do so, for a given point x, we define the mapping
r(x), given by r(x) = argmin

r∈Rd ‖r‖2 subject to k̂(x +

r) 6= k̂(x), which corresponds to the smallest perturbation
required to misclassify image x. Note that r(x) corresponds
geometrically to the vector of minimal norm required to
reach the decision boundary of the classifier, and is often
dubbed an adversarial perturbation [1]. It should further
be noted that, due to simple optimality conditions, r(x) is
orthogonal to the decision boundary at x+ r(x).

In the remainder of this paper, our goal is to analyze
the geometric properties of classification regions {Ri} and
decision boundaries B of deep networks. In particular, we
study the connectedness of classification regions in Sec. 3,
and the curvature of decision boundaries in Sec. 4, and draw
a connection with the robustness of classifiers. We then
use the developed geometric insights, and propose a method
in Sec. 5 to detect artificially perturbed data points, and
improve the robustness of classifiers.

3. Topology of classification regions

Do deep networks create shattered and disconnected clas-
sification regions, or on the contrary, one large connected
region per label (see Fig. 1a)? While deep neural networks
have an exponential number of linear regions (with respect
to the number of layers) in the input space [9], it remains
unclear whether deep nets create one connected region per
class, or shatters a classification region around a large num-
ber of small connected sets. In the following, we treat the
regions Ri as topological spaces, and study their path con-
nectness. We formally cast the problem of connectivity of
classification regions as follows: given any two data points
x1,x2 ∈ Ri, does a continuous curve γ : [0, 1] → Ri exist,
such that γ(0) = x1, γ(1) = x2? The problem is complex
to address theoretically; we therefore propose a heuristic
method to study this question. To assess the connectivity
of regions, we propose a path finding algorithm between
two points belonging to the same classification region. That
is, given two points x1,x2 ∈ R

d, our proposed approach
attempts to construct a piecewise linear path P that remains
in the classification region. The path P is represented as a fi-
nite set of anchor points (p0 = x1,p1, . . . ,pn,pn+1 = x2),
where a convex path is taken between two consecutive points.
To find the path (i.e., the anchor points), the algorithm first
attempts to take a convex path between x1 and x2; when the
path is not entirely included in the classification region, the
path is modified by projecting the midpoint p = (x1+x2)/2
onto the target classification region. The same procedure is
applied recursively on the two segments of the path (x1,p)
and (x2,p) till the whole path is entirely in the region. The
algorithm is summarized in Algorithm 1. In practice, the
validity of a path P is checked empirically through a fine
sampling of the convex combinations of the consecutive
anchor points. Specifically, we set in practice the distance
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(a)

Puma

Random noise

Adversarial example

(b)

Figure 1: (a) Disconnected versus connected yet complex classification regions. (b) All four images are classified as puma.
There exists a path between two images classified with the same label.

between sampled points to four orders of magnitude smaller
than the distance between the original two images.

Algorithm 1 Finding a path between two data points.
1: function FINDPATH(x1,x2)
2: // input: Datapoints x1,x2 ∈ R

d.
3: // output: Path P represented by anchor points.
4: xm ← (x1 + x2)/2
5: if k̂(xm) 6= k̂(x1) then

6: r ← argmin
r
‖r‖2 s.t. k̂(xm + r) = k̂(x1)

7: xm ← xm + r

8: end if

9: P ← (x1,xm,x2)
10: // Check the validity of the path by sampling in the convex

combinations of consecutive anchor points
11: if P is a valid path then

12: return P
13: end if

14: P1 ←FINDPATH(x1,xm)
15: P2 ←FINDPATH(xm,x2)
16: P ← concat(P1,P2)
17: return P
18: end function

The proposed approach is used to assess the connectivity
of the CaffeNet architecture2 [15] on the ImageNet classifi-
cation. To do so, we examine the existence of paths between

1. Two randomly sampled points from the validation set
with the same estimated label,

2. A randomly sampled point from the validation set, and
an adversarially perturbed image [1]. That is, we con-
sider x1 to be an image from the validation set, and

2We tested other architectures (GoogLeNet, VGG-19, ResNet-152), and
the results were similar to CaffeNet. We therefore report only results on
CaffeNet in this section.

x2 = x̃2 + r, where x̃2 corresponds to an image clas-
sified differently than x1. x2 is however classified
similarly as x1, due to the targeted perturbation r.

3. A randomly sampled point from the validation set, and
a perturbed random point. This is similar to scenario
2, but x̃2 is set to be a random image (i.e., an image
sampled uniformly at random from the sphere ρSd−1,
where ρ denotes the typical norm of images).

Note that in all scenarios, we check the connectivity between
two images that have the same estimated label by the classi-
fier (but not necessarily the same true label). In particular, in
scenario 2 and 3, x2 does not even visually correspond to an
image of the same class as x1 (but has the same estimated
label as x1 by the classifier). With this setting, the geometric
properties of the classification regions are analyzed indepen-
dently of the visual properties of the images. These scenarios
are illustrated in Fig. 1b. For each scenario, 1,000 pairs of
points are considered, and the approach described above is
used to find the connecting path. Our results can be stated as
follows:

1. In all three scenarios, evidence hints that a continuous

path included in the region always exists between
points sampled from the same classification region.3

2. Moreover, the continuous path connecting the points is
approximately a straight path.

3While not providing a formal certificate that the continuous path is en-
tirely included in the classification region (as boundary regions can meander
between neighbouring points in the continuum), we believe the sampling
procedure used to verify the connectedness of a region is conservative,
especially in the presence of regularizers that bound the curvature of the
decision boundary (e.g., weight decay).
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Figure 2: Classification regions (shown with different colors), and illustration of different paths between images x1, x2. Left:

Example where the convex path between two datapoints is not entirely included in the classification region (note that the
linear path traverses 4 other regions, each depicted with a different color). The image is the cross-section spanned by r(x1)
(adversarial perturbation of x1) and x1 − x2. Images x1 and x2 are natural images from the ILSVRC 12 validation set, and
the CaffeNet deep network is used. Right: Illustration of the classification regions along a nonconvex path; observe that the
path entirely remains in the same classification region. The illustration is obtained by stitching cross-sections spanned by
r(x1) (vertical axis) and pi − pi+1 (two consecutive anchor points in the path P) (horizontal axis). It is shown broken to
emphasize that the horizontal axes are different. Angles between stitched cross-sections are purely illustrative. On top of each
anchor point (as well as x1,x2), image on the path is visualized.
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Figure 3: Empirical probability (y axis) that a convex com-
bination of k samples (x axis) from the same classification
region stays in the region, for networks trained on ImageNet.
Samples are randomly chosen from the validation set.

The first result suggests that the classification regions
created by deep neural networks are connected in R

d: deep
nets create single large regions containing all points of the
same label. This goes against common belief, whereby
classification regions are thought to be disconnected, and to
concentrate around data points. To further understand the
paths found by Algorithm 1, we show in Fig. 2 (right) an
illustrative example of a path connecting two data points x1

and x2 from the validation set (i.e., scenario 1).4 While this
nonstraight path connecting x1 and x2 is entirely included
in the classification region, observe that the convex path
illustrated in Fig. 2 (left) is not a valid path. In practice,

4Illustrations for the other scenarios can be found in the supplementary
material.

the paths found by Algorithm 1 have, in average, 10 anchor
points for the three scenarios.

Our second result provides an answer to the next natural
question: how do the paths connecting data points (and stay-
ing inside a classification region) “look like”? Specifically,
we show that two points in a classification region can be
connected by an approximately straight path. To quantify
how the paths of Algorithm 1 deviate from the straight path,
we report the quantity

D(p) =

∑n

i=0 ‖pi − pi+1‖2

‖p0 − pn+1‖2
.

Values of D(p) ≈ 1 indicate that the path p is close to a
straight line. For the three scenarios, we have an average
deviation D(p) = 1 + 10−4, which indicates that the paths
found in Algorithm 1 are slight deviations from the straight
path. With this very small deviation from the straight path,
it is possible to connect arbitrary points in classification re-
gions.5 This observation is intriguingly similar to that of
[12], where it is shown that solutions (in the weight space)
achieving small error can be connected with an approxi-
mately straight path. This suggests that the data space and
weight space have common properties; the specifics of this
duality between these spaces is outside the scope of this
paper and will be subject of future work.

Despite the existence of approximately straight paths
connecting any pairs of points in the classification regions,
it is important to note that classification regions are not

convex bodies. In fact, Fig. 3 illustrates the estimated

5Straight paths might not be entirely inside the classification region; tiny
deviations are crucial to guarantee that complete paths are inside the region.

3765



probability that random convex combinations of k images
x1, . . . ,xk ∈ Ri belong to Ri. Observe that for the differ-
ent tested networks, random convex combinations of two
images (i.e., case where k = 2) belong with probability
≈ 0.8 to the classification region. However, for larger k, this
probability gets much smaller, which implies that classifi-
cation regions are not convex bodies in R

d. These results
suggest that the classification regions of deep networks ex-
trapolate their classification regions in an approximately flat
way between different images (i.e., there exist near-convex
paths between pairs of images of the same class), but that
the classification region is not a convex body. In a simplis-
tic two-dimensional world, a classification region satisfying
these two constraints would look like Fig. 4.

Figure 4: Schematic illustration in 2d of the properties of a
classification region of a deep net. A classification region is
connected by an almost convex path, despite classification
regions being non-convex sets.

In the next section, we explore the complexity of the
boundaries of these classification regions learned by deep
networks, through their curvature property.

4. Curvature of the decision boundaries

We start with basic definitions of curvature. The normal

curvature κ(z,v) along a tangent direction v ∈ Tz(B) is
defined as the curvature of the planar curve resulting from
the cross-section of B along the two-dimensional normal
plane spanning (∇F (z),v) (see Fig. 5a for details). The
curvature along a tangent vector v can be expressed in terms
of the Hessian matrix HF of F [16]:

κ(z,v) =
v
THFv

‖v‖22‖∇F (z)‖2
. (1)

Principal directions correspond to the orthogonal direc-
tions in the tangent space maximizing the curvature κ(z,v).
Specifically, the l-th principal direction vl (and the corre-
sponding principal curvature κl) is obtained by maximiz-
ing κ(z,v) with the constraint vl ⊥ v1 . . .vl−1. Alterna-
tively, the principal curvatures correspond to the nonzero
eigenvalues of the matrix 1

‖∇F (z)‖2

PHFP , where P is
the projection operator on the tangent space; i.e., P =
I −∇F (z)∇F (z)T .

We now analyze the curvature of the decision boundary
of deep neural networks in the vicinity of natural images.
We consider the LeNet and NiN [17] architectures trained

on the CIFAR-10 task, and show the principal curvatures of
the decision boundary, in the vicinity of 1,000 randomly cho-
sen images from the validation set. Specifically, for a given
image x, the perturbed sample z = x+ r(x) corresponds
to the closest point to x on the decision boundary. We then
compute the principal curvatures at point z with Eq. 1. The
average profile of the principal curvatures (over 1, 000 data
points) is illustrated in Fig. 5b. Observe that, for both net-
works, the large majority of principal curvatures are approxi-
mately zero: along these principal directions, the decision
boundary is almost flat. Along the remaining principal di-
rections, the decision boundary has (non-negligible) positive
or negative curvature. Interestingly, the principal curvature
profile is asymmetric towards negatively curved directions.
We have consistently observed this asymmetry in different
settings: different datapoints, different networks (e.g., LeNet
and NiN), and even different datasets (CIFAR-10 and Ima-
geNet, see Section 5 for more details), which suggests that
this property (negatively curved decision boundary) is not
an artifact of the experimental setting. In the next section,
we leverage this characteristic asymmetry of the decision
boundaries of deep neural networks (in the vicinity of natural
images) to detect adversarial examples from clean examples.

While the above local analysis shows the existence of few
directions along which the decision boundary is curved, we
now examine whether these directions are shared across dif-
ferent datapoints, and relate these directions with the robust-
ness of deep nets. To estimate the shared common curved
directions, we compute the largest principal directions for a
randomly chosen batch of 100 training samples and merge
these directions into a matrix M . We then estimate the
common curved directions as the m largest singular vectors
of M that we denote by u1, . . . ,um. To assess whether
the decision boundary is curved in such directions, we then
evaluate the curvature of the decision boundary in such di-
rections for points z in the vicinity of unseen samples from
the validation set. That is, for x in the validation set, and

z = x + r(x), we compute ρi(z) =
|uT

i
PHFPui|

E
v∼Sd−1

(|vTPHFPv|)
,

which measures how relatively curved is the decision bound-
ary in direction ui, compared to random directions sampled
from the unit sphere in R

d. When ρi(z) ≫ 1, this indicates
that ui constitutes a direction that significantly curves the
decision boundary at z. Fig. 6a shows the average of ρi(z)
over 1,000 points z on the decision boundary in the vicin-
ity of unseen natural images, for the LeNet architecture on
CIFAR-10. Note that the directions ui (with i sufficiently
small) lead to universally curved directions across unseen

points. That is, the decision boundary is highly curved along
such data-independent directions. Note that, despite using
a relatively small number of samples (i.e., 100 samples) to
compute the shared directions, these generalize well to un-
seen points. We illustrate in Fig. 6b these directions ui,
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Figure 5: (a) Normal section U of the decision boundary, along the plane spanned by the normal vector ∇F (z) and v. (b)

Principal curvatures for NiN and LeNet, computed at a point z on the decision boundary in the vicinity of a natural image.
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Figure 6: (a) Average of ρi(z) as a function of i for different
points z in the vicinity of natural images. (b) Basis of S .

along which decision boundary is universally curved in the
vicinity of natural images; interestingly, the first principal
directions (i.e., directions along which the decision bound-
ary is highly curved) are very localized Gabor-like filters.
Through discriminative training, the deep neural network
has implicitly learned to curve the decision boundary along
such directions, and preserve a flat decision boundary along
the orthogonal subspace.
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Figure 7: Misclassification rate (% of images that change
labels) on the noisy validation set, w.r.t. the noise magnitude
(ℓ2 norm of noise divided by the typical norm of images).

Interestingly, the data-independent directions ui (where

Type of perturbation v LeNet NiN
Random 0.25 0.25
Adversarial 0.64 0.60
x2 − x1 0.10 0.09
∇x 0.22 0.24

Table 1: Norm of projected perturbation on S, normalized
by norm of perturbation: ‖PSv‖2

‖v‖2

, with v the perturbation.
Larger values (i.e., closer to 1) indicate that the perturbation
has a larger component on subspace S .

the decision boundary is highly curved) are also tightly
connected with the sensitivity of the classifier to perturba-
tions. To elucidate this relation, we construct a subspace
S = span(u1, . . . ,u200) containing the first 200 shared
curved directions. Then, we show in Fig. 7 the accuracy of
the CIFAR-10 LeNet model on a noisy validation set, where
the noise either belongs to S, or to S⊥ (i.e., orthogonal of
S). It can be observed that the deep network is much more
robust to noise orthogonal to S, than to noise in S. Hence,
S also represents the subspace of perturbations to which
the classifier is highly vulnerable, while the classifier has
learned to be invariant to perturbations in S⊥. To support
this claim, we report in Table 1, the norm of the projection
of adversarial perturbations (computed using the method in
[18]) on the subspace S, and compare it to that of the pro-
jection of random noise onto S . Note that for both networks
under study, adversarial perturbations project well onto the
subspace S comparatively to random perturbations, which
have a significant component in S⊥. In contrast, the per-
turbations obtained by taking the difference of two random
images belong overwhelmingly to S⊥, which agrees with
the observation drawn in Sec. 3 whereby straight paths are
likely to belong to the classification region. Finally, note
that the gradient of the image ∇x also does not have an
important component in S, as the robustness to such direc-
tions is fundamental to achieve invariance to small geometric
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deformations.6

The importance of the shared directions {ui}, where the
decision boundary is curved, hence goes beyond our curva-
ture analysis, and capture the modes of sensitivity learned
by the deep network.

5. Exploiting the asymmetry to detect per-

turbed samples

State-of-the-art image classifiers are highly vulnerable
to imperceptible adversarial perturbations [1, 19]. That is,
adding a well-sought small perturbation to an image causes
state-of-the-art classifiers to misclassify. In this section, we
leverage the asymmetry of the principal curvatures (illus-
trated in Fig. 5b), and propose a method to distinguish
between original images, and images perturbed with small
adversarial perturbations, as well as improve the robustness
of classifiers. For an element z on the decision boundary,
denote by κ(z) = 1

d−1

∑d−1
i=1 κi(z) the average of the prin-

cipal curvatures. For points z sampled in the vicinity of
natural images, the profile of the principal curvature is asym-
metric (see Fig. 5b), leading to a negative average curvature;
i.e., κ(z) < 0. In contrast, if x is now perturbed with an
adversarial example (that is, we observe xpert = x + r(x)
instead of x), the average curvature at the vicinity of xpert is
instead positive, as schematically illustrated in Fig. 8. Ta-
ble 2 supports this observation empirically with adversarial
examples computed with the method in [18]. Note that for
both networks, the asymmetry of the principal curvatures
allows to distinguish very accurately original samples from
perturbed samples using the sign of the curvature.7 Based on
this simple idea, we now derive an algorithm for detecting
adversarial perturbations.

Since the computation of all the principal curva-
tures is intractable for large-scale datasets, we derive a
tractable estimate of the average curvature. Note that
the average curvature κ can be equivalently written as

E
v∼Sd−1

(

v
TG(z)v

)

, where G(z) = ‖∇F (z)‖−1
2 (I −

∇F (z)∇F (z)T )HF (z)(I −∇F (z)∇F (z)T ). In fact, we
have

6In fact, a first order Taylor approximation of a translated image x(·+
τ1, ·+τ2) ≈ x+τ1∇xx+τ2∇yx. To achieve robustness to translations,
a deep neural network hence needs to be locally invariant to perturbations
along the gradient directions.

7This idea might first appear counter-intuitive: if curvature is negative
at the vicinity of data points, then the curvature has to be positive for data
points lying on the other side of the boundary! However, natural data points
are very “sparse” in Rd; hence, two natural images never lie exactly opposite
to each other (from the two sides of the boundary). Instead, different data
points lie at the vicinity of very distinct parts of the decision boundary,
which makes it possible to have negatively curved decision boundary at the
vicinity of all data points. See Fig. 1a (left) for an illustration of such a
decision boundary, with negative curvature at the vicinity of all points.

E
v∼Sd−1

(

v
TG(z)v

)

= E
v∼Sd−1

(

v
T

(

d−1
∑

i=1

κiviv
T
i

)

v

)

=
1

d− 1

d−1
∑

i=1

κi,

where vi denote the principal directions. It therefore follows
that the average curvature κ can be efficiently estimated
using a sample estimate of E

v∼Sd−1

(

v
TG(z)v

)

(and with-

out requiring the full eigen-decomposition of G). To further
make the approach of detecting perturbed samples more prac-
tical, we approximate G(z) (for z on the decision boundary)
with G(x), assuming that x is sufficiently close to the deci-
sion boundary.8 This approximation avoids the computation
of the closest point on the decision boundary z, for each x.

x

xpert

Figure 8: Schematic representation of normal sections in
the vicinity of a natural image (top), and perturbed image
(bottom). The normal vector to the decision boundary is
indicated with an arrow.

LeNet NiN
% κ > 0 for original samples 97% 94%
% κ < 0 for perturbed samples 96% 93%

Table 2: Percentage of points on the boundary with positive
(resp. negative) average curvature, when sampled in the
vicinity of natural images (resp. perturbed images). CIFAR-
10 dataset is used; results are computed on the test set.

We provide the details in Algorithm 2. Note that, in
order to extend this approach to multiclass classification, an
empirical average is taken over the decision boundaries with
respect to all other classes. Moreover, while we have used a
threshold of 0 to detect adversarial examples from original
data in the above explanation, a threshold parameter t is used
in practice (which controls the true positive vs. false positive
tradeoff). Finally, it should be noted that in addition to
detecting whether an image is perturbed, the algorithm also
provides an estimate of the original label when a perturbed
sample is detected (the class leading to the highest positive
curvature is returned).

We now test the proposed approach on different networks
trained on the ImageNet dataset [20], with adversarial ex-
amples computed using the approach in [18]. The latter

8The matrix G is never computed in practice, since only matrix vector
multiplications of G are needed.
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Figure 9: True positives (i.e., detection accuracy on clean

samples) vs. False positives (i.e., detection error on per-

turbed samples) on the ImageNet classification task. Left:

Results reported for GoogLeNet, CaffeNet and VGG-19 ar-
chitectures, with perturbations computed using the approach
in [18]. Right: Results reported for GoogLeNet, where
perturbations are scaled by a constant factor α = 1, 2, 5.

Algorithm 2 Detecting and denoising perturbed samples.
1: input: classifier f , sample x, threshold t.
2: output: boolean perturbed, recovered label label.
3: Set Fi ← fi − fk̂ for i ∈ [L].
4: Draw iid samples v1, . . . ,vT from the uniform distribution on

S
d−1.

5: Compute ρ ←
1

LT

L∑

i=1
i 6=k̂(x)

T∑

j=1

v
T
j GFi

vj , where GFi
de-

notes the Hessian of Fi projected on the tangent space; i.e.,
GFi

(x) = ‖∇F (x)‖−1
2 (I −∇F (x)∇F (x)T )HFi

(x)(I −
∇F (x)∇F (x)T ).

6: if ρ < t then perturbed← false.
7: else perturbed ← false and label ←

argmax
i∈{1,...,L}

i 6=k̂(x)

∑T

j=1 v
T
j GFi

vj .

8: end if

approach is used as it provides small and difficult to detect
adversarial examples, as mentioned in [21, 22]. Fig. 9 (left)
shows the accuracy of the detection of Algorithm 2 on origi-

nal images with respect to the detection error on perturbed

images, for varying values of the threshold t. For the three
networks under test, the approach achieves very accurate
detection of adversarial examples (e.g., more than 95% ac-
curacy on GoogLeNet with an optimal threshold). Note first
that the success of this strategy confirms the asymmetry of the
curvature of the decision boundary on the more complex set-
ting of large-scale networks trained on ImageNet. Moreover,
this simple curvature-based detection strategy outperforms
the detection approach recently proposed in [22]. In addi-
tion, unlike other approaches of detecting perturbed samples
(or improving the robustness), our approach only uses the
characteristic geometry of the decision boundary of deep
neural networks (i.e., the curvature asymmetry), and does
not involve any training/fine-tuning with perturbed samples,

as commonly done.

The proposed approach not only distinguishes original
from perturbed samples, but it also provides an estimate of
the correct label, in the case a perturbed sample is detected.
Algorithm 2 correctly recovers the labels of perturbed sam-
ples with an accuracy of 92%, 88% and 74% respectively
for GoogLeNet, CaffeNet and VGG-19, with t = 0. This
shows that the proposed approach can be effectively used to
denoise the perturbed samples, in addition to their detection.

Finally, Fig. 9 (right) reports a similar graph to that of
Fig. 9 (left) for the GoogLeNet architecture, where the
perturbations are now multiplied by a factor α ≥ 1. Note
that, as α increases, the detection accuracy of our method
decreases, as it heavily relies on local geometric properties
of the classifier (i.e., the curvature). Interestingly enough,
[22, 21] report that the regime where perturbations are very
small (like those produced by [18]) are the hardest to detect;
we therefore foresee that this geometric approach will be
used along with other detection approaches, as it provides
very accurate detection in a distinct regime where traditional
detectors do not work well (i.e., when the perturbations are
very small).

6. Conclusion

We analyzed in this paper the geometry induced by deep
neural network classifiers in the input space. Specifically,
we provided empirical evidence showing that classification
regions are connected. Next, to analyze the complexity of
the functions learned by deep networks, we provided an em-
pirical analysis of the curvature of the decision boundaries.
We showed in particular that, in the vicinity of natural im-
ages, the decision boundaries learned by deep networks are
flat along most (but not all) directions, and that some curved
directions are shared across datapoints. We finally leveraged
a fundamental observation on the asymmetry in the curva-
ture of deep nets, and proposed an algorithm for detecting
adversarially perturbed samples from original samples. This
geometric approach was shown to be very effective, when
the perturbations are sufficiently small, and that recovering
the label was further possible using this algorithm. This
shows that the study of the geometry of state-of-the-art deep
networks is not only key from an analysis perspective, but it
can also lead to classifiers with better properties.
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