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Abstract

We present a unifying framework to solve several com-

puter vision problems with event cameras: motion, depth

and optical flow estimation. The main idea of our frame-

work is to find the point trajectories on the image plane

that are best aligned with the event data by maximizing

an objective function: the contrast of an image of warped

events. Our method implicitly handles data association be-

tween the events, and therefore, does not rely on additional

appearance information about the scene. In addition to ac-

curately recovering the motion parameters of the problem,

our framework produces motion-corrected edge-like images

with high dynamic range that can be used for further scene

analysis. The proposed method is not only simple, but more

importantly, it is, to the best of our knowledge, the first

method that can be successfully applied to such a diverse

set of important vision tasks with event cameras.

1. Introduction

Unlike traditional cameras, which produce intensity im-

ages at a fixed rate, event cameras, such as the Dynamic Vi-

sion Sensor (DVS) [1], have independent pixels that report

only intensity changes (called “events”) asynchronously, at

the time they occur. Each event consists of the spatio-

temporal coordinates of the brightness change (with mi-

crosecond resolution) and its sign1. Event cameras have

several advantages over traditional cameras: a latency in the

order of microseconds, a very high dynamic range (140 dB

compared to 60 dB of traditional cameras), and very low

power consumption (10 mW vs 1.5 W of traditional cam-

eras). Moreover, since all pixels capture light indepen-

dently, such sensors do not suffer from motion blur. In sum-

mary, event cameras represent a paradigm shift since visual

information is: (i) sampled based on the dynamics of the

scene, not based on an external clock2, and (ii) encoded us-

1An animation of the principle of operation of event cameras can be

found in the video of [2] https://youtu.be/LauQ6LWTkxM?t=25
2If nothing moves in the scene, no events are generated. Conversely, the

number of events (samples) increases with the amount of scene motion.
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Figure 1: (a) Events (dots) caused by a moving edge pat-

tern and point trajectories in a space-time region of the im-

age plane, colored according to event polarity (blue: pos-

itive event, i.e., brightness increase; red: negative event,

i.e., brightness decrease). (b) Visualization of the events

along the direction of the point trajectories highlighted in

(a); corresponding events line up, revealing the edge pat-

tern that caused them. Our approach works by maximiz-

ing the contrast of an image of warped events similar to

(b). A video demonstrating our framework is available at:

https://youtu.be/KFMZFhi-9Aw

ing an asynchronous and sparse stream of events, which is

fundamentally different from a sequence of images. Such a

paradigm shift calls for new methods to process visual in-

formation and unlock the capabilities of these novel sensors.

Algorithms for event cameras can be classified accord-

ing to different criteria. Depending on the way in which

events are processed, two broad categories can be dis-

tinguished: 1) methods that operate on an event-by-event

basis, where the state of the system (the estimated un-

knowns) can change upon the arrival of a single event

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; and 2) methods

that operate on groups of events. This category can be fur-

ther subdivided into two: 2a) methods that discard temporal

information of the events and accumulate them into frames

to re-utilize traditional, image-based computer vision algo-

rithms [16, 17, 18], and 2b) methods that exploit the tempo-

ral information of the events during the estimation process,

and therefore cannot re-utilize traditional computer vision

algorithms (sample applications of these methods include

variational optical flow estimation [19], event-based multi-
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view stereo [20, 21], rotational motion estimation [22], fea-

ture tracking [23], pose estimation [24] and visual-inertial

odometry [25, 26, 27]).

Event-by-event–based methods rely on the availability of

additional appearance data, in the form of grayscale images

or a photometric map of the scene, which may be built from

past events or provided by additional sensors. Then, each

incoming event is compared against such appearance data

and the resulting mismatch is used to update the system

unknowns. In contrast, methods that operate on groups of

events do not rely on prior appearance data. Instead, they

aggregate the information contained in the events to esti-

mate the unknowns of the problem. Since each event car-

ries little information and is subject to noise, several events

must be processed together to yield a sufficient signal-to-

noise ratio for the problem considered.

Both categories present methods with advantages and

disadvantages and current research focuses on exploring the

possibilities that each category has to offer. Filters, such as

the Extended Kalman filter, are the dominant framework of

the event-by-event–based type of methods. In contrast, for

the groups-of-events–based category, only ad-hoc solutions

for every problem have been proposed. We present the first

unifying framework for processing groups of events while

exploiting their temporal information (i.e., category 2b).

Contribution. This paper presents the first unifying

framework that allows to tackle several important estima-

tion problems for event cameras in computer vision. In a

nutshell, our framework seeks for the point trajectories on

the image plane that best fit the event data, and, by doing

so, is able to recover the parameters that describe the rela-

tive motion between the camera and the scene. The method

operates on groups of events, exploiting both their spatio-

temporal and polarity information to produce accurate re-

sults. In contrast to event-by-event–based approaches, our

method does not rely on additional appearance information

and it can be used both for estimation problems with very

short characteristic time (optical flow) as well as for prob-

lems with longer estimation time (monocular depth esti-

mation). Moreover, our framework implicitly handles data

association between events, which is a central problem of

event-based vision. Additionally, the framework produces

motion-corrected event images, which approximate the im-

age gradients that caused the events. These images can

serve as input to more complex processing algorithms such

as visual-inertial data fusion, object recognition, etc.

The rest of the paper is organized as follows. Section 2

illustrates the main idea behind our framework on a simple

example: optical flow estimation. Then, we generalize it

and apply it to other problems, such as depth estimation

(Section 3.1), rotational motion estimation (Section 3.2) and

motion estimation in planar scenes (Section 3.3). Section 4

concludes the paper.
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Figure 2: Events are warped according to point trajectories

described by motion parameters θ , resulting in an image of

warped events H(x;θ). The contrast of H measures how

well events agree with the candidate point trajectories.

2. Contrast Maximization Framework

Since event cameras report only pixel-wise brightness

changes, it implies that, assuming constant illumination,

there must exist (i) relative motion between the camera

and the objects in the scene and (ii) sufficient texture (i.e.,

brightness gradients) for events to be generated. Hence,

event cameras respond to the apparent motion of edges. In

the absence of additional information about the appearance

of the scene that caused the events, the problem of extract-

ing information from the events becomes that of establish-

ing correspondences between them, also known as data as-

sociation, i.e., establishing which events were triggered by

the same scene edge. Since moving edges describe point

trajectories on the image plane, we expect corresponding

events to be triggered along these trajectories. Fig. 1 il-

lustrates this idea with a simple example where the point

trajectories are nearly straight lines. We propose to find the

point trajectories that best fit the event data, as in Fig. 1b.

Let us describe our framework using a simple yet important

example (optical flow estimation) and then let us generalize

it to other estimation problems.

2.1. Example: Optical Flow Estimation

Assume that we are given a set of events E
.
= {ek}

Ne

k=1 in

a spatio-temporal neighborhood of a pixel, as in Fig. 1a,

and the goal is to estimate the optical flow (i.e., motion

vector) at that pixel based on the information contained in

the events. Recall that each event ek
.
= (xk,yk, tk, pk) con-

sists of the space-time coordinates of a predefined bright-

ness change together with its polarity pk ∈ {−1,+1} (i.e.,

the sign of the brightness change).

As is standard, optical flow is measured over a small time

interval (ideally infinitesimal), and the trajectories followed

by points on the image plane are locally straight, approxi-

mated by translations: x(t) = x(0)+ vt, where x
.
= (x,y)⊤

and v is the velocity of the point (i.e., the optical flow).

Hence, we expect corresponding events (triggered by the

same edge) to lie on such trajectories (Fig. 1b).

Our framework, summarized in Fig. 2, consists of count-

ing the events or summing their polarities along the straight

trajectories given by a candidate optic flow and computing

the variance ( f ) of the resulting sums (H), which measures

how well the events agree with the candidate trajectories.
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(a) f (θ) as a function of the optical flow θ ≡ v. For

illustration, we show in (b) the associated images of

warped events H for three candidate velocities.

θ 0 (wrong)

θ 1 (better)

θ 2 (optimal)

(b) Warped events

H(x;θ), for θ i, i =
0,1,2 in (a).

Figure 3: Optical Flow (patch-based) estimation. The cor-

rect optical flow can be found as the one that maximizes the

contrast (Fig. 3a) of the images of warped events (Fig. 3b).

More specifically, to sum the events, we warp them to a ref-

erence time tref using the proposed trajectories. Following

the local-flow–constancy hypothesis [28], we assume that

the flow is constant in the space-time neighborhood spanned

by the events, and warp the events, ek 7→ e′k, according to

x′k
.
= W(xk, tk;θ) = xk− (tk− tref)θ , (1)

with θ = v the candidate velocity. Then, we build an image

patch of warped events:

H(x;θ)
.
=

Ne

∑
k=1

bk δ (x−x′k), (2)

where each pixel x sums the values bk of the warped events

x′k that fall within it (indicated by the Dirac delta δ ). If

bk = pk, the polarities of the events along the trajectories

are summed; whereas, if bk = 1, the number of events along

the trajectories are computed. In the rest of the paper, we

use bk = 1 and show comparisons with bk = pk in the sup-

plementary material. Finally, we compute the variance of

H, which is a function of θ ,

f (θ) = σ2
(
H(x;θ)

) .
=

1

Np
∑
i, j

(hi j−µH)
2, (3)

where Np is the number of pixels of H = (hi j) and µH
.
=

1
Np

∑i, j hi j is the mean of H.

Fig. 3a shows the variance (3) as a heat map, for a

given set of events E . Observe that it is smooth and has

a clear peak. The images of warped events correspond-

ing to three different motion vectors θ i in Fig. 3a are dis-

played in Fig. 3b (represented in pseudo-color, from blue

(few events) to red (many events)). As can be seen, the

warped events are best aligned in the image H that exhibits

highest variance, i.e., highest contrast (and sharpness), at-

tained at θ ∗ = argmaxθ f (θ) ≈ (−40,0)⊤ pixel/s. Hence,

our strategy for optical flow estimation consists of seeking

the parameter θ that maximizes (3).

As anticipated in Section 1, our method produces

motion-corrected image patches H, which approximate the

gradients of the brightness pattern that caused the events

(also illustrated in Fig. 1b). More specifically, H represents

the brightness increment along the candidate trajectories.

For optimal trajectories, this increment is proportional to

∇I · v, the dot product of the brightness gradient and the

motion vector (due to the optical flow constraint). These

motion-corrected image patches can be useful for feature

tracking, such as [27, 29].

Our framework implicitly defines data association be-

tween the events. Replacing the delta in (2) with a smooth

approximation, δ (x) ≈ δε(x), such as a Gaussian, δε(x−
µ)

.
= N (x; µ,ε2

Id) (we use ε = 1 pixel), we see that ev-

ery warped event e′k influences every other event e′n, and

the amount of influence is given by δε(x
′
n− x′k), which, in

the case of a Gaussian, is related to the Euclidean distance

‖x′n−x′k‖. Hence, our method has a built-in soft data asso-

ciation between all events, implicitly given by a function of

the distance between them: the further away warped events

are, the less likely they are corresponding events.

2.2. General Description of the Framework

The example in the previous section contains all the in-

gredients of our event-processing framework. Let us now

describe it in a more generic manner, to apply to other esti-

mation problems (in Section 3).

We propose to find the point trajectories on the image

plane that best fit the event data. More specifically, assume

we are given a set of events, E
.
= {ek}

Ne

k=1, typically con-

tinuous in time, as in Fig. 1, acquired while the camera

and/or the scene undergo some motion for which we have

a geometric model of how points move on the image plane.

Such a geometric model depends on the particular estima-

tion problem addressed (optical flow, depth estimation, mo-

tion estimation). The goal is to estimate the parameters of

the model based on the information contained in the events.

We assume that estimation is possible, in that the model

parameters (unknowns) are shared among multiple events

(fewer parameters than events) and are observable. To solve

the problem, we build candidate point trajectories x(t) ac-

cording to the motion and scene models, and measure the

goodness of fit between these trajectories and the event data

E using an objective function (3) (see Fig. 2). Then, we use

an optimization algorithm to seek for the point trajectories

(i.e., the parameters θ of the motion and scene models) that

maximize the objective function. As shown in Fig. 3b, good
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trajectories are those that align corresponding events, and so

the objective function that we propose measures how well

events are aligned along the candidate trajectories. There

are two by-products of our framework: (i) the estimated

point trajectories implicitly establish correspondences be-

tween events (i.e., data association), (ii) the trajectories can

be used to correct for the motion of the edges.

2.2.1. Steps of the Method. Our method consists of three

main steps:

1. Warp the events into an image H, according to the point

trajectories defined by the above-mentioned geometric

model and candidate parameters θ .

2. Compute a score f based on the image of warped events.

3. Optimize the score or objective function with respect to

the parameters of the model.

In step 1, events are geometrically transformed taking

into account their space-time coordinates and other known

quantities of the point-trajectory model, ek 7→ e′k(ek;θ),

resulting in a set of warped events E ′
.
= {e′k}

Ne

k=1. The

warp, such as W in (1), transports each event along the

point trajectory that passes through it, until a reference

time is reached (e.g., the time of the first event): ek
.
=

(xk,yk, tk, pk) 7→ (x′k,y
′
k, tref, pk)

.
= e′k.

In step 2, an image or histogram of warped events H(E ′)
is created (using their polarities pk or their count), and an

objective function (a measure of dispersion) is computed,

f (H(E ′)). We use as dispersion metric the variance of H,

which is known as contrast in image processing terminol-

ogy, and we seek to maximize it. The objective function

represents the statistics of the warped events E ′ according

to the candidate model parameters θ , hence it measures the

goodness of fit of θ to the event data E .

In step 3, an optimization algorithm, such as gradient

ascent or Newton’s method, is applied to obtain the best

model parameters, i.e., the point trajectories on the image

plane that best explain the event data. The framework is

flexible, not relying on any specific optimizer.

2.2.2. Contrast Maximization. By maximizing the vari-

ance of the image of warped events H(E ′(θ)) we favor the

point trajectories that accumulate (i.e., align) the warped

events on the image plane. The accumulation of warped

events in some regions and the dispersion of events in other

regions (since the total number of events N is constant)

produces an image H with a larger range, and, therefore

a higher contrast, which is clearly noticeable if H is dis-

played in grayscale, and hence the name contrast maximiza-

tion framework. In essence, the goal of the optimization

framework is to “pull apart” the statistics (e.g., polarity) of

the regions with and without events, in a similar way to the

segmentation approach in [30].
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Figure 4: Depth Estimation. Left: trajectories of a 3D point

(the eye of the bird) relative to the camera. The point closer

to the camera has larger apparent motion, and therefore

typically describes longer trajectories on the image plane.

Right: Trajectories of an image point (the image center, in

black), for different depth values with respect to a reference

view while the camera undergoes a 6-DOF motion. Each

depth value produces a different point trajectory; yielding a

1D family of curves. This is an example of a 2 s segment

from a sequence of the Event Camera Dataset [31].

Contrast is related to image sharpness, and therefore, an

observed effect is that the images of warped events with

higher contrast are also sharper (see Fig. 3b), which is con-

sistent with the better alignment of the warped events. The

image of warped events associated to the optimal parame-

ters is a motion-corrected edge-like image, where the “blur”

(trace of events) due to the moving edges has been removed

(cf. Fig. 3b top and bottom). Such edge-like image repre-

sents the brightness-increment patterns causing the events.

2.2.3. Computational Complexity. The core of our

method is the computation of the image of warped

events (2), whose computational complexity is linear on the

number of events to be warped. The computation of the

contrast (3) is typically negligible compared to the effort

required by the warp. The overall cost of the method also

depends on the choice of algorithm used to maximize the

contrast, which is application-dependent.

3. Sample Applications

Our framework is flexible and generic. In this section,

we use it to solve various important problems in vision.

3.1. Depth Estimation

Consider the scenario of an event camera moving in a

static scene and the goal is to infer depth. That is, consider

the problem of event-based multi-view stereo (EMVS) [21,

32] (3D reconstruction) from a set of events E = {ek}
Ne

k=1.

By assumption of the problem, the pose of the event camera

P(t) is known for every time t, where P denotes the pro-

jection matrix of the camera. We assume that the intrinsic
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Figure 5: Depth Estimation. Alignment of warped events

x′k(θ), for different depth values θ ≡ Z, measured with re-

spect to the reference view (RV). In (b), the patch of warped

events (2) is represented in pseudo-color, from few events

aligned (blue) to many events (red). At the correct depth,

the patch has the highest variance (i.e., image contrast).

parameters of the camera are also known3 and that lens dis-

tortion has been removed. Following the framework in the

previous section, we first specify the geometry of the prob-

lem, the warp (i.e., point trajectories) and the score function.

In this scenario, the trajectory of an image point obtained

by projection of a 3D point is parametrized by the known

6-DOF motion of the camera and the depth of the 3D point

with respect to a reference view. This yields a 1D fam-

ily of curves in the image plane, parametrized by depth.

Each depth value gives a different curve followed by the

point in the image plane. This is illustrated in Fig. 4. As in

the Space-Sweep approach of [21], we consider a reference

view provided by a virtual camera at some location, for ex-

ample, at a point along the trajectory of the event camera

(see Fig. 5). Let us formulate the problem for a small patch

in the reference view. For simplicity, we assume that all the

points within the patch have the same depth, which is some

candidate value θ = Z. The three main steps of our method

(Section 2.2.1) are as follow:

1. (a) Transfer the events (triggered at the image plane of

the moving event camera) onto the reference view using

the candidate depth parameter, as illustrated in Fig. 5.

An event ek is transferred, using the warp (W), onto the

3An event camera may be intrinsically calibrated using event-based al-

gorithms, such as [2] or, as in the case of the DAVIS [33], using standard

algorithms [34] since the DAVIS comprises both a traditional frame cam-

era and an event sensor (DVS) in the same pixel array.

event e′k = (x′k, tref, pk) with

x′k = W(xk,P(tk),Pv;θ), (4)

where P(t) is the pose of the event camera at time t and

Pv
.
= P(tref) is the pose of the virtual camera. The warp

is the same as in space-sweep multi-view stereo: points

are transferred using the planar homography [35, ch. 13]

induced by a plane parallel to the image plane of the ref-

erence view and at the given depth (see Fig. 5).

(b) Create an image (patch) of warped events (2) by

counting the number of events along the candidate point

trajectories (e.g., Fig. 4).

2. Measure the goodness of fit between the events and the

depth value θ by means of the variance (i.e., contrast) of

the image of warped events (3).

3. Maximize the contrast by varying the depth parameter θ .

Fig. 5 illustrates the above steps. In Fig 5a an event cam-

era with optical center C(t) moves in front of a scene with

an object (gray box). Two events ei = (xi, ti, pi), i = {1,2}
are transferred from the event camera to a reference view

(RV) via the warp (4) using three candidate depth values

(in front of, at the object and behind it, respectively). The

points transferred using depth values in front and behind

the object are not aligned, x1 6= x2, whereas the points

transferred using the correct value are aligned, x1 = x2.

Event alignment is more noticeable in Fig. 5b, with patches

of warped events (2) from a sequence of the Event Cam-

era Dataset [31]. At the correct depth, the warped events

present a better alignment, and therefore higher contrast

(and sharpness) of H (here represented in pseudo-color in-

stead of grayscale), compared to the cases of wrong depth

values (labeled as “close” and “far”).

Fig. 6 shows depth estimation for two patches in a se-

quence from the dataset [31]. The sequence was recorded

with a DAVIS camera [33], which outputs asynchronous

events and grayscale frames (at 24 Hz). The frame in Fig. 6a

is only shown for visualization purposes; our method pro-

cesses solely the events. Fig. 6b shows how the contrast of

the warped events (3) varies with respect to the depth pa-

rameter θ , for each patch in Fig. 6a. The actual warped

events (2) at selected depth values are displayed in Fig. 6c.

Remarkably, the contrast curves (Fig. 6b) have a smooth

variation, with a clear maximum at the correct depth value.

The warped events in (2) show, indeed, a better alignment

(i.e., higher contrast) at the correct depth than at other depth

values. As in Fig. 5b, a pseudo-color scale is used to repre-

sent the pixels of H, from few events aligned (blue) to many

events (red). Additionally, note that, although the contrast

curves are from different patches, the “spread” of the curves

increases with the value of the peak depth, which is consis-

tent with the well-known fact that, in short-baseline stereo,

depth uncertainty grows with depth. Finally, observe that
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only for visualization purposes.
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curve in (b). Top: right patch in (a), with best depth ≈ 1.1 m

(black line in (b)). Bottom: left patch in (a), with best depth

≈ 1.8 m (blue line in (b)).

Figure 6: Depth estimation by contrast maximization. Two patches are analyzed.

the patches of warped events with highest contrast (high-

lighted in green in Fig. 6c), resemble the edgemap (gradient

magnitude) of the grayscale patches in Fig. 6a, showing that

indeed the events are triggered by moving edges and that

our framework recovers, as a by-product, an approximation

to edgemap of the scene patch that caused the events.

The above procedure yields the depth value at the cen-

ter of the patch in the reference view. Repeating the pro-

cedure for every pixel in the reference camera for which

there is sufficient evidence of the presence of an edge pro-

duces a semi-dense depth map. This is shown in Fig. 7,

using a sequence from the dataset [31]. In this experiment,

we computed the contrast (3) on patches of 3× 3 pixels in

the reference view; the patches H were previously weighted

using a Gaussian kernel, H(x)← w(x)H(x), to emphasize

the contribution of the center pixel. A map of the maxi-

mum contrast for every pixel of the reference view is shown

in Fig. 7b. For visualization purposes, contrast is repre-

sented in negative form, from bright (low contrast) to dark

(high contrast). This map is used to select the points in the

reference view with largest contrast, which are the points

for which depth estimation is most reliable. The result is a

semi-dense depth map, which is displayed in Fig. 7a, color

coded, overlaid on a grayscale frame. To select the points,

we used adaptive thresholding [36, p.780] on the contrast

map, and we used a median filter to remove spike noise from

the depth map. As it can be observed, depth is most reliable

at strong brightness edges of the scene. The depth map is

visualized as a color-coded point cloud in Figs. 7c and 7d.

If the images of warped events (2) are interpreted as

depth slices of the disparity space image (DSI) formed by

event back-projection [21], our framework estimates depth

by selecting DSI regions with largest local variance (con-

trast). Moreover, our framework allows to iteratively refine

the depth values (e.g., by gradient ascent on the objective

function (3)) so that they are continuous, i.e., they are not

constrained to be the discrete set of values imposed by a

voxelization of the DSI.

(a) Depth map overlaid on frame. (b) Contrast map.

(c) 3D reconstruction, front view (d) 3D reconstruction, oblique view.

Figure 7: Depth Estimation. 3D reconstruction on the

slider depth sequence of the dataset [31]. One million

events in a timespan of 3.4 s were processed. In (a), (c)

and (d), depth from the reference view is color-coded, from

red (close) to blue (far), in the range of 0.45 m to 2.4 m. In

the supplementary material we show how the reconstruction

changes with the number of events processed.

3.2. Rotational Motion Estimation

Our framework can also be applied to the problem of

rotational motion estimation [9, 22, 37, 38]. Consider the

scenario of an event camera rotating in a static scene and

the goal is to estimate the camera’s ego-motion using the

events. As in Section 3.1, assume that the camera is cali-

brated (known intrinsic parameters and no lens distortion).
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(a) Warped events using θ = 0. Read

arrows indicate the true motion of

the edges causing the events.

(b) Warped events using estimated

angular velocity θ ∗, which produces

motion-corrected, sharp edges.

Figure 8: Rotational Motion Estimation. Images of warped

events, displayed in grayscale to better visualize the motion

blur due to event misalignment and the sharpness due to

event alignment. The direction of the rotation axis is clearly

identifiable on the left-image as the point with least motion

blur and where fewer events are triggered. Dataset [31].

The type of motion and the motion parameters them-

selves enforce constraints on the trajectories that image

points can follow. For example, in a rotational motion with

constant velocity, all point trajectories are parametrized by

3-DOFs: the angular velocity. Our framework aligns events

by maximizing contrast over the set of admissible trajecto-

ries: those compatible with the rotational motion.

Let us specify the steps of the method (Section 2.2.1) for

the problem at hand. Consider all events E over a small

temporal window [0,∆t]; small enough so that the angu-

lar velocity ω can be considered constant within it, and

let tref = 0. In calibrated coordinates, image points trans-

form according to x̄(t) ∝ R(t)x̄(0), where x̄ ∝ (x⊤,1)⊤ are

homogeneous coordinates and R(t) = exp(ω̂t) is the rota-

tion matrix of the (3D) motion [35, p. 204]: exp is the ex-

ponential map of the rotation group SO(3) [39] and ω̂ is

the cross-product matrix associated to ω . In step 1, events

are warped to tref according to the point-trajectory model:

x′k = W(xk, tk;θ), with θ = ω the angular velocity and

W(xk, tk;θ) ∝ R
−1(tk)x̄k = exp(−θ̂ tk)x̄k. (5)

The image of warped events is then given by (2). Ap-

proaches like [22] use the event polarity, which is indeed

beneficial if the motion is monotonic (i.e., does not change

direction abruptly). However, as we show, polarity is not

needed (see Figs. 8 and 9). In steps 2 and 3, the objective

function (3) is maximized using standard optimization al-

gorithms such as non-linear conjugate gradient [40].

Figure 8 shows the result of our method on a group E

of Ne = 30000events acquired while the camera is rotat-

ing approximately around its optical axis. As it can be seen,

our method estimates the motion parameters that remove the

motion blur from the image of warped events, providing the

sharpest image. Fig. 9 reports the accuracy of our method
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(b) Angular velocity error: esti-

mated vs. ground truth for 4 subin-

tervals of 15 s.

Figure 9: Rotational Motion Estimation. Accuracy evalua-

tion. The boxes rotation sequence of the dataset [31]

contains 180 million events and reaches speeds of up to

670 ◦/s. Comparatively, our method produces small errors.

using the same dataset and error metrics as [22]. Both

plots compare the recovered rotational motion of the event

camera against ground truth. Fig. 9a shows the estimated

and ground-truth motion curves, which are almost indistin-

guishable relative to the magnitude of the motion. Fig. 9b

further analyzes the error between them in four subinter-

vals of 15 s with increasing angular velocities (and there-

fore increasing errors). Our method is remarkably accurate,

with RMS errors of approximately 20 ◦/s with respect to

peak excursions of 670 ◦/s, which translates into 3 % error.

Moreover, our approach does not need a (panoramic) map

of the scene to estimate the rotational motion, as opposed to

approaches [9, 38]. It also does not need to estimate optical

flow prior to fitting a 3D motion, as in [41]. In a nutshell,

our approach acts like a visual event-based gyroscope.

3.3. Motion Estimation in Planar Scenes

In this section, we show how our framework can be ap-

plied to the problem of motion estimation under the assump-

tion of a planar scene (i.e., planar homography estimation),

which allows to extract the ego-motion parameters of the

camera (rotation and translation) as well as the parameters

of the plane containing the scene structure.

In this scenario, image points transform according to

x̄(t)∝ H(t)x̄(0), where x̄ ∝ (x⊤,1)⊤ are homogeneous coor-

dinates and H(t) is a 3×3 homography matrix. For simplic-

ity, we use t = 0 as reference time, and so H(0) = Id is the

identity. The point trajectories described by x(t) have the

same number of DOFs as H(t), which, for short time inter-

vals in which we consider H to be constant, is 8-DOF. We

aggregate events along the point trajectories x(t) defined by

candidate homographies H(t), and maximize the contrast of

the resulting image of warped events to recover the homog-

raphy that best explains the event data.
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(a) Input events E .
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(b) Events E ′ maximizing contrast.
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(c) Zoom-in on (a) and (b) for comparison of warped images.

Figure 10: Motion Estimation in Planar Scenes. (a) In-

put events, with each pixel counting the number of events

triggered; (b) Warped events using the planar homography

parameters θ = {ω,v/d,n} that maximize image contrast:

ω = (0.086,0.679,0.439)⊤, v/d = (0.613,−0.1,0.333)⊤,

n = (0.07,0.075,−0.995)⊤.

In case of a homography induced by a plane with ho-

mogeneous coordinates π = (n⊤,d)⊤, we have [35] H(t) ∝

R(t)− 1
d

t(t)n⊤, where P(0) ∝ (Id|0) is the projection ma-

trix of the reference view and P(t) ∝ (R(t)|t(t)) is the pro-

jection matrix of the event camera at time t. For t ∈ [0,∆t]
in a short time interval, we may compute P(t) from the lin-

ear and angular velocities of the event camera, v and ω ,

respectively, by assuming that they are constant within the

interval: R(t) = exp(ω̂t) and t(t) = vt. Hence, we may

parametrize H(t)≡ H(t;θ) by θ = (ω⊤,v⊤/d,φ ,ψ)⊤ ∈R8,

where the 2-DOFs (φ ,ψ) parametrize the unit vector of the

plane n (e.g., latitude-longitude parameters). The parame-

ters v/d account for the well-known fact that, without ad-

ditional information, there is a scale ambiguity: the decom-

position of a planar homography [35, 39] only provides the

direction of the translation, but not its magnitude.

Hence, we consider the events E in a short time interval,

[0,∆t], and map them onto the image plane of the reference

view using the warp specified in calibrated coordinates by

W(xk, tk;θ) ∝ H
−1(tk;θ) x̄k. (6)

Then, the image of warped events is built as usual (2), and

its variance (3), i.e., contrast, is computed to assess the qual-

ity of the parameters θ on event alignment.

Fig. 10 shows our method in action. The scene consists

of a freely moving event camera viewing a rock poster [31].

In Fig. 10a, a set E of Ne = 50000events is displayed in an

event image, with each pixel counting the number of events

triggered within it, i.e., as if the identity warp (x′k = xk)

was used in (2). Fig. 10b shows the result of contrast

(a) Without motion correction.

(b) With motion correction.

Figure 11: Motion Estimation in Planar Scenes. Scene

structure (black dots) and camera motion (green trajectory)

obtained by a visual-inertial algorithm [27], with and with-

out motion-corrected event images.

maximization: for the optimal parameters θ , the warped

events are better aligned with each other, resulting in an

image (2) with higher contrast than that in Fig. 10a. Ob-

serve that event alignment by contrast maximization pro-

duces a motion-corrected image, which is specially notice-

able at texture edges: in Fig. 10a (no motion correction)

edges are blurred, whereas in Fig. 10b edges are sharp.

Fig. 11 shows another example of our framework. In

this sequence, an event camera is hand-held, looking down-

wards while a person is walking outdoors over a brick-

patterned ground. Event images are used in a visual-inertial

algorithm [27] that recovers the trajectory of the event cam-

era and a sparse 3D point map of the scene. The motion-

corrected images resulting from homography estimation

(cf. Fig. 10b) produce better results, which can be seen by

the more flat point cloud representing the floor in the scene.

4. Conclusion

In this work, we have focused on showing the capabil-

ities of our framework to tackle several important vision

problems for event cameras (3D reconstruction, optical flow

and motion estimation), which we believe is its most re-

markable characteristic. We showed that there is a simple,

principled way to process events in all these problems in

the absence of additional appearance information about the

scene: maximizing event alignment along point trajectories

on the image plane.

Event cameras have multiple desirable properties: low

latency, very high dynamic range and low power consump-

tion. We believe this work is a significant step forward into

leveraging the advantages of these novel sensors in real-

world scenarios, overcoming the limitations of conventional

imaging sensors.
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