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Abstract

Existing methods to recognize actions in static im-

ages take the images at their face value, learning the

appearances—objects, scenes, and body poses—that distin-

guish each action class. However, such models are deprived

of the rich dynamic structure and motions that also define

human activity. We propose an approach that hallucinates

the unobserved future motion implied by a single snapshot

to help static-image action recognition. The key idea is to

learn a prior over short-term dynamics from thousands of

unlabeled videos, infer the anticipated optical flow on novel

static images, and then train discriminative models that ex-

ploit both streams of information. Our main contributions

are twofold. First, we devise an encoder-decoder convo-

lutional neural network and a novel optical flow encoding

that can translate a static image into an accurate flow map.

Second, we show the power of hallucinated flow for recog-

nition, successfully transferring the learned motion into a

standard two-stream network for activity recognition. On

seven datasets, we demonstrate the power of the approach.

It not only achieves state-of-the-art accuracy for dense op-

tical flow prediction, but also consistently enhances recog-

nition of actions and dynamic scenes.

1. Introduction

Video-based action recognition has long been an active

research topic in computer vision [9, 35, 49, 78, 79], with

many recent methods employing deep Convolutional Neu-

ral Networks (CNNs) [65, 40, 37, 86, 70, 12, 81]. Regard-

less of the approach, most methods rely on two crucial and

complementary cues: appearance and motion. Motion is

usually represented by (stacked) optical flow or flow-based

descriptors [65, 12, 9, 52, 81, 19], localized spatio-temporal

descriptors [48, 82] or trajectories [78, 79].

Static-image action recognition instead requires the sys-

tem to identify the activity taking place in an individual

photo [25]. The problem is of great practical interest for or-

ganizing photo collections (e.g., on the Web, social media,

stock photos) based on human behavior and events. Yet, it
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Figure 1. Our system first learns a motion prior by watching thou-

sands of video clips containing various actions. Then, given a

static image, the system translates the observed RGB image into

a flow map encoding the inferred motion for the static image. Fi-

nally, we combine the appearance of the original static image and

the motion from the inferred flow to perform action recognition.

presents the additional challenge of understanding activity

in the absence of motion information.

Or is the motion really absent? A static snapshot can re-

veal the motions that are likely to occur next, at least for

human viewers. Indeed, neuroscientists report that the me-

dial temporal/medial superior temporal cortex—one of the

main brain regions engaged in the perceptual analysis of vi-

sual motion—is also involved in representing implied mo-

tion from static images [44]. Over many years of obser-

vations, humans accumulate visual experience about how

things move in the world. Given a single static image, not

only can we interpret the instantaneous semantic content,

but also we can anticipate what is going to happen next, e.g.,

based on human poses and object configurations present in

the image. This suggests that a human viewer can leverage

the implied motion to help perceive actions in static images.

For example, given a static image as shown in Fig. 1, ex-

pecting that the person’s back is going to either move up or

down may aid the recognition of push-ups.
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We propose an approach for static-image action recogni-

tion that is inspired by this notion of visual dynamics accu-

mulated from past temporal observations. The main idea is

to acquire from videos a model for how objects and people

move, then embed the resulting knowledge into a represen-

tation for individual images. In this way, even when limited

to just one moment of observation (a single image), action

recognition can be informed by the anticipated dynamics.

In particular, we train a deep network to learn a motion

prior from a large set of unlabeled videos, and then transfer

the learned motion from videos to static images to halluci-

nate their motion. We devise an effective encoding for op-

tical flow (Sec. 3.1) as well as an encoder-decoder network

to learn the motion prior from videos (Sec. 3.2). Finally,

we leverage the predicted motion to aid action recognition,

by combining the appearance from the original static image

and the motion from the inferred flow.

On seven challenging datasets for recognition of actions

and dynamic scenes, our approach yields a significant accu-

racy boost by incorporating the hallucinated motion. Impor-

tantly, we also demonstrate that our approach is beneficial

even in the case where the motion prior training videos do

not contain the same actions as the static images.

We make two main contributions. First, we formu-

late motion prediction as a novel image-to-image transla-

tion framework, and achieve state-of-the-art performance

on dense optical flow prediction from static images, im-

proving substantially on prior formulations for flow estima-

tion [77, 58]. Secondly, we explore how implied motion

aids action recognition. We show how injecting inferred

motion into a standard two-stream network achieves signif-

icant gains compared to the one-stream counterpart, and we

obtain state-of-the-art accuracy for multiple benchmarks.

2. Related Work

Our work relates to action recognition, visual anticipa-

tion, and image-to-image translation.

Action Recognition Video-based action recognition is a

well-studied problem. Various video representations have

been proposed to utilize both appearance and motion, in-

cluding hand-crafted local spatio-temporal features [48,

82, 78, 79]; mid-level features [61, 32, 80]; and deeply-

learned features [65, 40, 86, 12, 70]. Recent work aims

to model long term temporal structure, via recurrent neural

networks [86, 8], ranking functions [13], or pooling across

space and time [19].

In static images, due to the absence of temporal in-

formation, various high-level cues are exploited, e.g., hu-

man body or body parts [69, 55, 84], objects [59, 84, 63],

human-object interactions [7, 2], and scene context [26, 20].

See [25] for a comprehensive survey. Our work also targets

action recognition in static images, but, unlike any of the

above, we equip static images with dynamics learned from

videos. To our knowledge, the only prior static-image ap-

proach to explicitly leverage video dynamics is [4]. How-

ever, whereas [4] leverages video to augment training im-

ages for the low-shot learning scenario, our method lever-

ages video as a motion prior that enhances test observations.

Our experiments compare the two methods.

Visual Anticipation Our work is also related to a wide

body of work on visual future prediction [87, 43, 76, 58, 17,

77, 75, 72]. Most closely related are methods to predict op-

tical flow from an image [76, 77, 58]. As we show in results,

our formulation offers more accurate predictions. Further-

more, unlike any prior flow prediction work, we propose to

integrate implied motion learned from thousands of unla-

beled videos with action recognition. Note that while flow

and depth are closely related problems, methods like Deep-

Stereo [16] or DeepMorphing [36] assume two viewpoints

as input to predict intermediate views. Other prediction

tasks consider motion trajectories [75, 50] and human body

poses [18, 3]. Another growing line of work aims to predict

future frames in video [60, 68, 56, 83, 14, 73, 74, 71]. Their

goal is to generate images of good visual quality to illustrate

the “plausible futures”, or potentially improve representa-

tion learning [68, 14].

In general, this line of work treats prediction as the end

goal: e.g., predicting optical flow [77]; people’s trajectories

in a parking lot [43]; car movements on streets [76]; or sub-

sequent high-level events [87, 72]. In contrast, our objective

is to infer motion as an auxiliary cue for action recognition

in static images. Our idea bridges static-image recognition

with video-level action understanding by transferring a mo-

tion prior learned from videos to images.

Image-to-Image Translation Our technical solution for

flow inference relates broadly to prior efforts to map an in-

put pixel matrix directly to an output matrix. Early work in

so-called “image-to-image translation” can be traced back

to image analogies [28], where a nonparametric texture

model is generated from a single input-output training im-

age pair. Recent work uses generative adversarial mod-

els [23] to perform image-to-image translation, with im-

pressive results [31, 54, 90]. Our dense optical flow pre-

diction approach can be seen as a distinct image-to-image

translation problem, where we encode the output motion

space as a single “image” matrix.

3. Approach

Our goal is to learn a motion prior from videos, and then

transfer the motion prior to novel static images to enhance

recognition. We first discuss how we encode optical flow

for more reliable prediction (Sec. 3.1). Then we present our

Im2Flow network for motion prediction (Sec. 3.2). Finally,

we describe how we use the predicted motion to help static-

image action recognition (Sec. 3.3).
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3.1. Motion Encoding

Optical flow encodes the pattern of apparent motion of

objects in a visual scene, and it is the most direct and

common motion information used for action recognition.

(Stacked) optical flow is frequently used as input to deep

methods [65, 12, 70, 81]. Often optical flow is represented

by two separate grayscale images (matrices) that encode the

quantized horizontal and vertical displacements. However,

since state-of-the-art pre-trained deep networks [45, 66, 27]

take a 3-channel RGB image as input, alternative encodings

augment the two displacement maps with a third channel

containing either the flow magnitude [8] or all zeros [86].

In such encodings, the third channel stores either redundant

or useless information. Another approach is to encode the

flow as an RGB image designed for visualization [1, 33],

but this mapping is not reversible to obtain the motion vec-

tors. Prior work quantizes flow vectors to 40 clusters in

order to treat flow estimation as classification [77], but this

has the drawback of providing only coarse flow estimates

insufficient for recognition.

Our preliminary tests with the existing encodings con-

firmed these limitations (see Supp.), leading us to develop

a new encoding scheme well-suited to motion prediction

via regression. Directly predicting the optical flow (u,v)
vector for each pixel in a static image is a highly under-

constrained problem, and we hypothesize that detangling

flow direction and strength may present an easier learning

task. Therefore, we decouple the optical flow into the mo-

tion angle θ ∈ [0,2π] and magnitude M. As we will de-

scribe in Sec. 3.2, we formulate flow prediction as a pixel-

wise regression problem. Hence, direct prediction of θ is

inappropriate because the angle in the coordinate system is

circular (e.g., 2π is the same as 0). Therefore, we further

divide θ into a horizontal direction and a vertical direction,

represented by cos(θ) and sin(θ), respectively. We encode

optical flow as a single 3-channel flow image F :

F1 = sin(θ) =
v

M
; F2 = cos(θ) =

u

M
; F3 =M. (1)

where Fi denotes the i-th channel.

Our motion encoding scheme has the following benefits:

1) It disentangles the convolved (u,v) vector into three sep-

arate components, each indicating one important factor of

motion, namely vertical direction, horizontal direction, and

motion magnitude. This makes the high-dimensional mo-

tion prediction problem more factored; 2) It makes the re-

gression of angle feasible, because sin(θ) and cos(θ) are

non-circular and lie in the range of [−1,1]; 3) Encoding

motion as a 3-channel image makes its usage efficient, con-

venient, and suitable for our framework, defined next.

3.2. Im2Flow Network

Let X be the domain of static images containing an ac-

tion, and let Y consist of the corresponding flow images en-

coded as defined above. Our goal is to learn a mapping

G : X → Y that will infer flow from an individual image.

During training, we are given “labeled” pairs {xi,yi}
N
i=1

consisting of video frames xi and the true flow maps yi com-

puted from surrounding frame(s) in the source video. We

use the optical flow algorithm of [53] to automatically gen-

erate y for training data, since it offers a good balance be-

tween speed and accuracy.1 To mitigate the effects of noisy

flow estimates stemming from realistic training videos (i.e.,

we train with YouTube data, cf. Sec. 4), following [77], we

average the optical flow of five future frames for each train-

ing image xi to compute the target yi.

We devise a convolutional neural network (CNN) called

Im2Flow to obtain G. Our Im2Flow network is an encoder-

decoder, which takes a static image as input and outputs the

predicted flow image ŷ = G(x) = F . We adapt the U-Net

architecture from [31] with some modifications, as illus-

trated in Fig. 2. Both the encoder and decoder use mod-

ules of the form Convolution-BatchNorm-ReLU [30]. We

use dilated convolutions [85] in the encoder. Dilated convo-

lutions exponentially increase their receptive field size and

maintain spatial resolution, which can capture long-range

spatial dependencies. The decoder is an up-convolutional

network that generates the predicted flow image. Skip con-

nections connect the encoder and decoder to directly shuffle

low-level information across the network, which is impor-

tant for our dense motion prediction problem. See Supp. for

the details of the complete architecture.

Our Im2Flow network minimizes the combination of two

losses: a pixel error loss and a motion content loss:

L = Lpixel +λL
φ , j
content . (2)

The pixel loss measures the agreement with the true flow:

Lpixel = Ep,q∈{xi,yi}
N
i=1

[||yi −G(xi)||2] (3)

for all pixels p,q in the training images. It requires the train-

ing flow vectors to be accurately recovered.

The motion content loss enforces that the predicted mo-

tion image preserve high level motion features. It follows

the spirit of previous perceptual loss functions [39], but

here for the sake of regularizing to realistic motion pat-

terns. To represent realistic motion, we fine-tune an 18-

layer ResNet [27] (pre-trained on ImageNet) for action clas-

sification on the UCF-101 dataset [67] using flow images as

input. The motion content loss network φ is the resulting

fine-tuned network. Then, we compute the L2 loss on the

activation maps extracted from the loss network φ for the

predicted flow and ground-truth flow images. Hence, apart

from encouraging the pixels of the output flow G(x) to ex-

actly match the pixels of the target flow y, we also encour-

1Accurate estimation of optical flow from real-world videos is a chal-

lenging problem on its own and is intensively studied in the litera-

ture [62, 15, 46, 29]. More accurate optical flow estimation could further

improve the Im2Flow framework.
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Figure 2. The network architecture of our Im2Flow framework. The network is an encoder-decoder that takes a static image as input and

generates the corresponding 3-channel flow map F as output. Our training objective is a combination of the L2 loss in the pixel space and

in the deep feature space. A motion content loss network encourages the predicted flow image to preserve high-level motion features.

age them to have similar high-level motion representations

as computed by the loss network.

Note that our approach can operate with both unlabeled

and labeled video. The supervision from action labels used

in the motion content loss network slightly helps to trans-

fer motion from videos to images, and enhances the re-

sults on static-image action recognition. As we show in the

ablation study in Supp., our approach maintains substan-

tial gains even if we completely remove supervision in our

framework, i.e., our approach can learn solely from unla-

beled video. Moreover, even if we do learn from labeled

video, the test data is not assured to be from the same ac-

tions (cf. Sec. 4.2).

Let φ j(x) be the activations of the j-th layer of the net-

work φ when processing the image x, and suppose φ j(x)
has a feature map of shape D j ×H j ×Wj. The motion con-

tent loss is the (squared, normalized) Euclidean distance be-

tween the feature representations:

L
φ , j
content =

1

D j ×H j ×Wj

Ep,q∈{xi,yi}
N
i=1

[||φ j(yi)−φ j(G(xi))||2].

(4)
We adjust optimization of the network to account for

structure in our problem. The angles for pixels of very low

motion strength are less crucial, because these pixels tend

to correspond to static scenes in the image, e.g., the bed and

wall in the input image in Fig. 2. Therefore, the motion

directions of these pixels are not as meaningful, and they

usually originate from the camera motion. To require the

network to focus more on predicting directions of the pix-

els that actually move, we weight the gradients of the first

two channels by their motion magnitude. The network uses

the weighted gradients to perform back-propagation. The

weighting process forces the network to emphasize predic-

tions on moving pixels.

The above architecture was the most effective among

other alternatives we explored. In particular, in prelimi-

nary experiments, we implemented a conditional generative

adversary network (cGAN) to perform flow prediction, in-

spired by [31, 90]. In principle, such a GAN might handle

multiple modes of motion ambiguity and predict flow im-

ages that encode realistic motion. However, we found that

cGAN only helped to generate motion images of similar vi-

sual style to the ground-truth flow maps: the color patterns

were similar to the ground-truth, but the encoded motion

was less accurate. Because the cGAN discriminator cares

about differentiating real and fake outputs, the approach

seems better suited to problems requiring output images of

good visual quality, as opposed to our task, which requires

precise pixel-wise estimates.

3.3. Action Recognition with Implied Motion

Recall our goal is twofold: to produce accurate flow

maps for static images, and to explore their utility as auxil-

iary input for static image action recognition. For the latter,

we adopt the popular and effective two-stream CNN archi-

tecture [65] that is now widely used for CNN-based action

recognition with videos [5, 8, 21, 86, 68, 12, 81, 19]. The

two-stream approach is designed to mimic the pathways of

the human visual cortex for object recognition and motion

recognition [22]. Namely, the method decomposes video

into spatial (RGB frames) and temporal (optical flow) com-

ponents. These two components are fed into two separate

deep networks. Each stream performs action recognition on

its own and final predictions are computed as an average of

the two outputs.

Along with being highly successful in the video litera-

ture, the two-stream approach is a natural fit for injecting

our Im2Flow predictions into action recognition with static

images. In short, we augment both training and testing im-

ages with their respective inferred flow maps, then train the

action recognition network with standard procedures. See

Sec. 4 for more details.

Why should the inferred motion help action learning

with static images? We hypothesize two rationales. First,

there is value in elucidating a salient signal for action that

can be difficult to learn directly from the images alone.

Static images of different action classes can be visually sim-

ilar, e.g., pull-ups vs. push-ups, brushing teeth vs. applying

lipstick. The motion implied for people and objects in the

static images can help better distinguish subtle differences

among such actions. This parallels what is currently ob-

served in the literature with real optical flow: presenting an

action recognition network with explicit optical flow maps

is much stronger than simply presenting the two source
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frames—even though the optical flow engine receives those

same two frames [65, 12, 81]. There is value in directing

the learner’s attention to a complex, high-dimensional sig-

nal that is useful but would likely require many orders of

magnitude more data to learn simultaneously with the target

recognition task. Second, the Im2Flow network leverages

a large amount of video to build a motion prior that regu-

larizes the eventual activity learning process. Since action

recognition datasets are relatively small w.r.t. the variability

with which actions can be performed, a learning algorithm

can easily overfit, e.g., to the background of training exam-

ples. The domain of inferred motion helps to get rid of el-

ements irrelevant to the action performed in the image, and

therefore mitigates overfitting.

4. Experiments

Using a total of 7 datasets, we validate our approach for

1) flow prediction accuracy (Sec. 4.1) and 2) action recog-

nition from static images (Sec. 4.2).

Implementation details We implement our Im2Flow net-

work in Torch and train it with videos from UCF-101 [67]

and HMDB-51 [47]. We sample 500,000 frames from UCF-

101 and 200,000 frames from HMDB-51 as our training

data. We use minibatch SGD with a batch size of 32 and

apply Adam solver [42]. We train with random horizontal

flips and randomly cropped windows as data augmentation.

For the motion content loss network, we use the activation

maps after the second residual block of ResNet18 and we

set λ = 0.02 in Equation (2). All our action recognition ex-

periments are implemented in Caffe [38]. For action recog-

nition, we use AlexNet [45] with batch normalization [30]

as the base architecture for each stream. We fuse the two

streams’ softmax prediction scores using the optimal weight

determined on a validation set.

4.1. Flow Prediction

First, we directly evaluate Im2Flow’s dense optical flow

prediction. Here we use three datasets: UCF-101 [67],

HMDB-51 [47], and Weizmann [24]. For UCF-101 and

HMDB-51, we hold out 10 videos from each class as test

data and the rest as candidate training data; for Weizmann,

we hold out the frames of shahar as the test set. We com-

pare with the following methods:

• Walker et al. [77]: Existing CNN-based method that

classifies each region in the image to a quantized opti-

cal flow vector. We use their publicly available model2,

which is trained on the whole UCF-101 dataset.

• Pintea et al. [58]: Existing structured random forest

regression approach. We use their publicly available

code3 and train a model with default parameters.

2https://github.com/puffin444/optical_flow_

prediction
3https://github.com/SilviaLauraPintea/DejaVu

• Nearest Neighbor: Baseline that uses the pool5 fea-

tures from a pre-trained AlexNet to retrieve the near-

est training image, then adopts the ground-truth flow

of that image. Its training pool consists of the same

frames that train Im2Flow. This baseline is inspired by

the method of Yuen & Torralba [87], which identifies

likely future events using nearest neighbor.

Evaluation metrics We convert Im2Flow’s outputs back

to dense optical flow to compare against the “ground truth”

flow, which is computed from video with [53]. We employ

a suite of metrics, following prior work in this area [58, 77]:

End-Point-Error (EPE), Direction Similarity (DS), and Ori-

entation Similarity (OS) (see Supp. for details). Apart from

evaluating over all the pixels in the whole image, we also

evaluate over masks on the 1) Canny edges, which ap-

proximates measuring the error of moving pixels in simple

scenes [58, 77], and 2) foreground (FG) regions (computed

with [34]), which often correspond to the moving objects.

Results Table 1 shows the results on UCF-101 (see

Supp. for similar results on HMDB and Weizmann). Our

method outperforms both prior work and the Nearest Neigh-

bor baseline consistently by a large margin on all datasets

across all metrics. This result shows the effectiveness of the

proposed motion encoding and Im2Flow network.

Fig. 3 shows qualitative results. Our Im2Flow network

can predict motion in a variety of contexts. The structured

random forest approach by Pintea et al. [58] makes reason-

able predictions on Weizmann, but struggles on more com-

plicated datasets such as HMDB-51. The classification ap-

proach by Walker et al. [77] predicts plausible motions in

many cases, but the predictions are inherently coarse and

usually only depict the general trend of motion of the ob-

jects in the scene. Our Im2Flow network makes more reli-

able and fine-grained predictions. For example, in the baby

crawling case, while [77] can only predict that the baby is

going to move leftwards, our model predicts motion at var-

ious body parts of the baby. Similarly, in the example of

a boy playing the violin, our model makes reasonable pre-

dictions across various parts of the image. Moreover, aside

from human motions, our model can also predict scene mo-

tions, such as the falling waves in the ocean. However, our

motion prediction model is far from perfect. It can fail espe-

cially when the motion present in the static image is subtle

or the background is too diverse, as shown in the failure

cases (last row) in Fig. 3.

With the ability to anticipate flow, Im2Flow can infer the

motion potential of a novel image—that is, the strength of

movement and activity that is poised to happen. Given an

image, we compute its motion potential score by inferring

flow, then normalizing the average magnitude by the area

of the foreground (obtained using [34]) to avoid a bias to

large objects. Fig. 4 shows static images our system rates
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UCF-101 EPE ↓ EPE-Canny EPE-FG DS ↑ DS-Canny DS-FG OS ↑ OS-Canny OS-FG

Pintea et al. [58] 2.401 2.699 3.233 -0.001 -0.002 -0.005 0.513 0.544 0.555

Walker et al. [77] 2.391 2.696 3.139 0.003 0.001 0.014 0.661 0.673 0.662

Nearest Neighbor 3.123 3.234 3.998 -0.002 -0.001 -0.023 0.652 0.651 0.659

Ours 2.210 2.533 2.936 0.143 0.135 0.137 0.699 0.692 0.696

Table 1. Quantitative results of dense optical flow prediction on UCF-101. ↓ lower better, ↑ higher better. Across all measures, our method

outperforms all baseline methods by a large margin. See Supp. for similar results on HMDB-51 and Weizmann datasets.

(a) Input Image (b) Pintea et al. [58] (c) Ours (d) Ground-truth (a) Input Image (b) Walker et al. [77] (c) Ours (d) Ground-truth

Figure 3. Examples of dense optical flow prediction (best viewed in color). The Pintea et al. [58] approach

makes reasonable predictions on Weizmann (top left), but suffers on more complex datasets like HMDB-51

(bottom left). The Walker et al. [77] approach often captures the general trend of motion, but the predicted

motion is coarse. Our Im2Flow network accurately predicts motion that is much more fine-grained in various

contexts. The last row shows two failure cases. We use the color coding on the right for flow visualization.

as having the greatest/least motion potential. Motion poten-

tial offers a high-level view of a scene’s activity, identifying

images that are most suggestive of coming events.

4.2. Action Recognition

Having demonstrated the accuracy of our flow estimates,

we now examine the impact on static-image action recog-

nition. For these experiments, we use seven total datasets:

three static-image datasets we construct from existing video

datasets, three existing static-image benchmarks, and one

dynamic scene dataset.

The three constructed datasets draw on videos from

UCF-101 [67], HMDB-51 [47], and Penn Action [88]. For

each, we construct static-image datasets by taking the stan-

dard train-test splits and extracting the center frame in each

video. This yields train/test sets of 9,537/3,783 (UCF-

Static), 3,570/1,530 (HMDB-Static), and 1,258/1,068 (Penn

Actions) images, respectively. Since they originate from

video, these datasets allow us to compute the actual flow,

and thereby place an upper bound on its role in static-image

action recognition.

The three static-image action benchmarks are Wil-

low [6], Stanford10 [84, 4], and PASCAL2012 Ac-
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UCF-static HMDB-static PennAction Willow Stanford10 PASCAL2012

Appearance Stream 63.6 35.1 73.1 65.1 81.3 65.0

M
o

ti
o

n
S

tr
ea

m Motion Stream (Walker et al. [77]) *14.3 4.96 21.2 18.8 19.0 15.9

Motion Stream (Ours-UCF) - 13.9 51.0 35.7 46.4 32.5

Motion Stream (Ours-HMDB) 24.1 - 42.4 30.6 42.2 30.1

Motion Stream (Ours-UCF+HMDB) - - 51.1 35.9 48.4 32.7

→ Motion Stream (Ground-truth Motion) 38.7 20.0 52.4 - - -

T
w

o
-S

tr
ea

m

Appearance + Appearance 64.0 35.5 73.4 65.8 81.3 65.1

Appearance + Motion (Walker et al. [77]) *64.5 35.9 73.1 65.9 81.5 65.0

Appearance + Motion (Ours-UCF) - 37.1 74.5 67.4 82.1 66.0

Appearance + Motion (Ours-HMDB) 65.5 - 74.3 67.1 81.9 65.6

Appearance + Motion (Ours-UCF+HMDB) - - 74.5 67.5 82.3 66.1

→ Appearance + Motion (Ground-truth Motion) 68.1 39.5 77.4 - - -

Table 2. Accuracy results (in %) on static-image action recognition datasets. Note that for UCF/HMDB-static and PennAction, the methods

train from the static center frames of the videos. Dashes indicate results that would require train/test overlaps, and hence are omitted for

our approach. → indicates the performance upper bound by using ground-truth motion. *The model provided by Walker et al. [77] is

trained on the whole UCF-101 dataset, hence it may have some mild advantage due to overlap with the test data in the starred case.

The inferred motion from our Im2Flow framework performs much better than Walker et al. (Motion Stream—Ours vs. Walker et al.)

for recognition. Injecting our inferred motion into a standard two-stream network achieves significant gains compared to the one-stream

counterpart (Two-Stream Ours vs. Appearance Stream).

high

low

Figure 4. Examples of static images with the greatest/least motion

potential determined by our Im2Flow framework.
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  Pullup
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Figure 5. Examples of how the inferred motion can help static-

image action recognition. For each example, the left shows the

classification results of the appearance stream, and the right shows

the two-stream results after incorporating the inferred motion.

tions [10]. Willow has 7 action classes, with 427 training

images and 484 testing images. Stanford10 is a subset of

Stanford40 [84] generated in [4]. It contains the 10 action

classes most related to human action (1,000/1,672 train/test

images), as opposed to being characterized by the objects

that appear in the scene. For PASCAL2012 Actions, we use

bounding-box-cropped images from the standard train/val

sets, leading to a train/test set of 2,645/2,658 images.

In all results, we train Im2Flow with UCF-101 (Ours-

UCF), HMDB-51 (Ours-HMDB), or their combination

(Ours-UCF+HMDB). We then use the trained networks to

predict flow images for all the static-image datasets ex-

cept for the dataset the network is trained on. Thus, we

test whether motion learned from disjoint videos/labels can

transfer to static images from another domain.

We compare to the following baselines:

• Appearance Stream: The recognition network is

trained only on the original static images, representing

the status quo in static-image action recognition.

• Motion Stream (Ground-truth): The recognition

network uses “ground-truth” optical flow computed

from the video frames. This baseline is only possible

for UCF-static, HMDB-static, and PennAction.

• Motion Stream (Walker et al. [77]): We use the pub-

licly available optical flow prediction model of [77] to

generate the motion stream’s inputs.

• Appearance + Appearance: A standard model that

ensembles two separately trained appearance streams

to give more robust predictions.

We stress that all recognition baselines employ the same

two-stream architecture, differing only in the source of the

second stream.

Table 2 shows the action recognition results. In the top

part of the table, we show the performance of using a single

stream. Although the model of Walker et al. [77] can predict

coarse optical flow successfully in many cases as shown in

Fig. 3, the predicted coarse motion works poorly for recog-

nition. The inferred motion from our Im2Flow framework

performs much better, even as well as the ground-truth mo-

tion in some cases. The bottom part shows the two-stream

performance after combining the appearance and motion
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streams. Across all six datasets, we obtain large gains (1-

6% relative gain for ours vs. appearance stream) by in-

ferring motion. Although the test cases are from different

domains than that which trained our flow network, our ap-

proach generalizes well due to the motion prior transferred

from unlabeled video to static images. Additionally, we use

our Im2Flow network to predict motion (independently) for

each UCF-101 frame and then use the method from [81]

to train the temporal stream using the predicted motion im-

ages. With BN-Inception as the base network, we achieve

90.5% accuracy on UCF, comparable to the SoTA on video

and further suggesting the power of using predicted motion.

Fig. 5 shows some qualitative results from various

datasets to illustrate how the inferred motion can help

recognition. While a classifier solely based on appear-

ance can be confused by actions appearing in similar con-

texts, the inferred motion provides cues about the fine-

grained differences among these actions to help recognition.

For instance, the first image shows a woman applying eye

makeup. However, brushing teeth, applying eye makeup,

and applying lipstick are all visually similar. Showing the

hand movements of the woman guides the classifier to make

the correct prediction. Moreover, our model can even make

reasonable predictions for actions that do not appear in the

training set, e.g., throwing frisby is a novel action in Stan-

ford 10 dataset, but the inferred motion can still help recog-

nition. See Supp. for more examples.

Finally, we use YUP++ Dynamic Scenes [11] to explore

how inferred motion may benefit dynamic scene recogni-

tion. Table 3 shows the results. We include this scenario

since motion is also indicative in many dynamic natural

scenes, e.g, waterfall, falling trees, rushing river. Given a

static image of a dynamic scene, hallucinating motion from

the scene may also help recognition. We use 90% of the

dataset (using the standard 10-90 split) to train our Im2Flow

prediction network. From the remaining 10%, we construct

the “static-YUP++” dataset for static-image dynamic scene

recognition. Specifically, we use 2/3 (from the 10% re-

served videos) as training data and 1/3 as test data. Once

again, with the inferred motion, the recognition accuracy

improves by a large margin (78.2% vs. 74.3%) compared to

using only static images alone.

Comparison to alternative recognition models The re-

sults above are all apples-to-apples, in that the only moving

part is whether and how implied flow is injected into a two-

stream recognition architecture. Next we briefly place our

action recognition results on an absolute scale against re-

ported results in the literature.

On Stanford10, the method of [4] uses unlabeled video

as a means to generate synthetic training examples in pose

space for the low-shot training regime. With 250 training

images per class, their method yields 50.2 mAP, whereas

our method achieves 74.9 mAP. However, note that our

Accuracy mAP

Appearance 74.3 79.3

Ground-truth Motion 55.5 62.0

Inferred Motion 30.0 37.0

Appearance + Appearance 75.2 79.8

Appearance + Inferred Motion 78.2 82.3

Appearance + Ground-truth Motion 79.6 83.6

Table 3. Static-image dynamic scene recognition results (in %)

on the static-YUP++ dataset [11]. The inferred scene motion im-

proves the recognition accuracy by a large margin.

mAP (%)

Delaitre et al. [6] 59.6

Sharma et al. [64] 67.6

Khan et al. [41] 68.0

Zhang et al. [89] 77.0

Liang et al. [51] 80.4

Mettes et al. [57] 81.7

Ours (AlexNet as base network) 74.0

Ours (VGG-16 as base network) 87.2

Ours (ResNet-50 as base network) 90.5

Table 4. Comparison to other recognition models on Willow [6].

method also benefits from using a deep learning approach.

For Willow, Table 4 compares our results to several state-

of-the-art methods. We attempt three variants of our ap-

proach using AlexNet, VGG-16, and ResNet-50 as the base

network, respectively. Our approach combines appearance

and the inferred motion, and performs well compared to all

baselines. Of note, our model with VGG-16 as the base

network significantly outperforms Zhang et al. [89], who

also use VGG-16. Without using separate body part and/or

object detectors as in [51, 57], our end-to-end recognition

model compares favorably.

5. Conclusion

We presented an approach to hallucinate the motion im-

plied by a single snapshot and then use it as an auxiliary cue

for static-image action recognition. Our Im2Flow frame-

work achieves state-of-the-art performance on optical flow

prediction from an individual image. Moreover, using a

standard two-stream network, it enhances recognition of

actions and dynamic scenes by a good margin. As future

work, we plan to explore hierarchical representations to en-

code the temporal evolution of multiple video frames.
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V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In ICCV, 2015. 3

[16] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deep-

stereo: Learning to predict new views from the world’s im-

agery. In CVPR, 2015. 2

[17] D. F. Fouhey and C. L. Zitnick. Predicting object dynamics

in scenes. In CVPR, 2014. 2

[18] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik. Recurrent

network models for human dynamics. In ICCV, 2015. 2

[19] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell.

ActionVLAD: Learning spatio-temporal aggregation for ac-

tion classification. In CVPR, 2017. 1, 2, 4

[20] G. Gkioxari, R. Girshick, and J. Malik. Contextual action

recognition with r* cnn. In CVPR, 2015. 2

[21] G. Gkioxari and J. Malik. Finding action tubes. In CVPR,

2015. 4

[22] M. A. Goodale and A. D. Milner. Separate visual pathways

for perception and action. Trends in neurosciences, 1992. 4

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NIPS, 2014. 2

[24] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri.

Actions as space-time shapes. TPAMI, 2007. 5

[25] G. Guo and A. Lai. A survey on still image based human

action recognition. Pattern Recognition, 2014. 1, 2

[26] A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-

object interactions: Using spatial and functional compatibil-

ity for recognition. TPAMI, 2009. 2

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 3

[28] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.

Salesin. Image analogies. In Proceedings of the 28th an-

nual conference on Computer graphics and interactive tech-

niques, 2001. 2

[29] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In CVPR, 2017. 3

[30] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 3, 5

[31] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In CVPR,

2017. 2, 3, 4

[32] A. Jain, A. Gupta, M. Rodriguez, and L. S. Davis. Represent-

ing videos using mid-level discriminative patches. In CVPR,

2013. 2

[33] S. Jain, B. Xiong, and K. Grauman. Fusionseg: Learning to

combine motion and appearance for fully automatic segmen-

tion of generic objects in videos. In CVPR, 2017. 3

[34] S. Jain, B. Xiong, and K. Grauman. Pixel objectness. arXiv

preprint arXiv:1701.05349, 2017. 5

[35] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically

inspired system for action recognition. In ICCV, 2007. 1

[36] D. Ji, J. Kwon, M. McFarland, and S. Savarese. Deep view

morphing. In CVPR, 2017. 2

[37] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. TPAMI, 2013. 1

[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 5

[39] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

3

[40] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 1, 2

5945



[41] F. S. Khan, J. Van De Weijer, A. D. Bagdanov, and M. Fels-

berg. Scale coding bag-of-words for action recognition. In

ICPR, 2014. 8

[42] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015. 5

[43] K. Kitani, B. Ziebart, J. Bagnell, and M. Hebert. Activity

forecasting. In ECCV, 2012. 2

[44] Z. Kourtzi and N. Kanwisher. Activation in human mt/mst

by static images with implied motion. Journal of cognitive

neuroscience, 2000. 1

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 3, 5

[46] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool. Fast optical

flow using dense inverse search. In ECCV, 2016. 3

[47] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.

Hmdb: a large video database for human motion recognition.

In ICCV, 2011. 5, 6

[48] I. Laptev and T. Lindeberg. Space-time interest points. In

ICCV, 2003. 1, 2

[49] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.

Learning realistic human actions from movies. In CVPR,

2008. 1

[50] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and

M. Chandraker. Desire: Distant future prediction in dynamic

scenes with interacting agents. In CVPR, 2017. 2

[51] Z. Liang, X. Wang, R. Huang, and L. Lin. An expressive

deep model for human action parsing from a single image.

In ICME, 2014. 8

[52] Z. Lin, Z. Jiang, and L. S. Davis. Recognizing actions by

shape-motion prototype trees. In ICCV, 2009. 1

[53] C. Liu et al. Beyond pixels: exploring new representations

and applications for motion analysis. PhD thesis, Mas-

sachusetts Institute of Technology, 2009. 3, 5

[54] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-

image translation networks. In NIPS, 2017. 2

[55] S. Maji, L. Bourdev, and J. Malik. Action recognition from a

distributed representation of pose and appearance. In CVPR,

2011. 2

[56] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale

video prediction beyond mean square error. In ICLR, 2016.

2

[57] P. Mettes, J. C. van Gemert, and C. G. Snoek. No spare parts:

Sharing part detectors for image categorization. CVIU, 2016.

8

[58] S. L. Pintea, J. C. van Gemert, and A. W. Smeulders. Déja
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