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Abstract

In this work we study the use of 3D hand poses to rec-

ognize first-person dynamic hand actions interacting with

3D objects. Towards this goal, we collected RGB-D video

sequences comprised of more than 100K frames of 45 daily

hand action categories, involving 26 different objects in sev-

eral hand configurations. To obtain hand pose annotations,

we used our own mo-cap system that automatically infers

the 3D location of each of the 21 joints of a hand model via

6 magnetic sensors and inverse kinematics. Additionally, we

recorded the 6D object poses and provide 3D object mod-

els for a subset of hand-object interaction sequences. To

the best of our knowledge, this is the first benchmark that

enables the study of first-person hand actions with the use

of 3D hand poses. We present an extensive experimental

evaluation of RGB-D and pose-based action recognition by

18 baselines/state-of-the-art approaches. The impact of us-

ing appearance features, poses, and their combinations are

measured, and the different training/testing protocols are

evaluated. Finally, we assess how ready the 3D hand pose

estimation field is when hands are severely occluded by ob-

jects in egocentric views and its influence on action recog-

nition. From the results, we see clear benefits of using hand

pose as a cue for action recognition compared to other data

modalities. Our dataset and experiments can be of interest

to communities of 3D hand pose estimation, 6D object pose,

and robotics as well as action recognition.

1. Introduction

We interact with the world using our hands to manipulate

objects, machines, tools, and socialize with other humans.

In this work we are interested in understanding how we use

our hands while performing daily life dynamic actions with

the help of fine-grained hand pose features, a problem of

interest for multiple applications requiring high precision,

such as hand rehabilitation [1], virtual/augmented reality

[24], teleoperation [89], and robot imitation learning [2].

Figure 1: We show two frames from a sequence belonging

to the action class ‘pour juice’. We propose a novel first-

person action recognition dataset with RGB-D videos and

3D hand pose annotations. We use magnetic sensors and

inverse kinematics to capture the hand pose. On the right

we see the captured depth image and hand pose. We also

captured 6D object pose for a subset of hand-object actions.

Previous work in first-person action recognition [8, 23,

31, 56] found that daily actions are well explained by look-

ing at hands, a similar observation found in third-person

view [77]. In these approaches, hand information is ex-

tracted from hand silhouettes [31, 56] or discrete grasp clas-

sification [8, 23, 50] using low-level image features. In full-

body human action recognition it is known that using higher

level and viewpoint invariant features such as body pose can

benefit action recognition [54, 74, 79, 81, 86], although this

has not yet been studied in detail for hands. Compared to

full-body actions, hand actions present unique differences

that make the use of pose as a cue not obvious: style and

409



speed variations across subjects are more pronounced due to

a higher degree of mobility of fingers and the motion can be

very subtle. A setback for using hand pose for action recog-

nition is the absence of reliable pose estimators off-the-shelf

in contrast to full body [55, 71], mainly due to the absence

of hand pose annotations on real (cf. synthetic) data se-

quences, notably when objects are involved [10, 35, 48, 49].

In this work we introduce a new dataset of first-person

dynamic hand action sequences with more than 100,000

RGB-D frames annotated with 3D hand poses, using six

magnetic sensors attached to the fingertips and inverse kine-

matics. We captured 1175 action samples including 45 cat-

egories manipulating 26 different objects in 3 scenarios.

We designed our hand actions and selected objects to cover

multiple hand configurations and temporal dynamics. Fur-

thermore, to encourage further research, we also provide

6-dimensional object pose ground truth, and their 3D mesh

models, for 4 objects spanning, 10 different actions. We

evaluate several baselines and state-of-the-art RGB-D and

pose-based action recognition in our dataset and test the

current state-of-the-art in hand pose estimation and its influ-

ence on action recognition. To the best of our knowledge,

this is the first work that studies the problem of first-person

action recognition with the use of hand pose features and the

first benchmark of its kind. In summary, the contribution of

this paper is three-fold:

Dataset: we propose a fully annotated dataset to help the

study of egocentric dynamic hand-object actions and poses.

This is the first dataset to combine both fields in the context

of hands in real videos and quality hand pose labels.

Action recognition: we evaluate 18 baselines and state-

of-the-art approaches in RGB-D and pose-based action

recognition using our proposed dataset. Our selected meth-

ods cover most of the research trends in both methodology

and use of different data modalities.

Hand pose: We evaluate a state-of-the-art hand pose es-

timator in our real dataset, i.e., the occluded setting of hand-

object manipulations and assess its performance for action

recognition.

2. Related work

Egocentric vision and manipulations datasets: The

important role of hands while manipulating objects has at-

tracted the interest from both computer vision and robotics

communities. From an action recognition perspective and

only using RGB cues, recent research [5, 13, 14, 31, 44, 56]

has delved into recognizing daily actions and determined

that both manipulated objects and hands are important cues

to the action recognition problem. A related line of work is

the study of human grasp from a robotics perspective [6, 7],

as a cue for action recognition [8, 16, 23, 77], force es-

timation [16, 26, 50], and as a recognition problem it-

self [20, 50]. Recently, [30] proposed a benchmark us-

ing a thermal camera enabling easier hand detection with-

out exploring its use for action recognition. In these pre-

vious works, hands are modeled using low-level features

or intermediate representations following empirical grasp

taxonomies [6] and thus are limited compared to the 3D

hand pose sequences used in this work. In [50], synthetic

hand poses are used to recognize grasps in static frames,

whereas our interest is in dynamic actions and hand poses

in real videos. From a hand pose estimation perspective,

[48] proposed a small synthetic dataset of static poses and

thus could not succesfully train data-hungry algorithms, re-

cently relieved by larger synthetic datasets [10, 35]. Given

that we also provide 6D object poses and 3D mesh mod-

els for a subset of objects, our dataset can be of interest to

both object pose and joint hand-object tracking emerging

communities [57, 62]. We compare our dataset with other

first-person view datasets in Section 3.5.

RGB-D and pose-based action recognition: Using

depth sensors differs from traditional color action recog-

nition in the fact that most successful color approaches

[15, 67] cannot be directly applied to the depth stream due

to its nature: noisy, textureless and discontinuous pixel re-

gions led to the necessity of depth-tailored methods. These

methods usually focus on how to extract discriminative fea-

tures from the depth images using local geometric descrip-

tors [40, 43, 76] sensitive to viewpoint changes and view-

invariant approaches [46, 47]. However, the recent trend

is to take advantage of the depth channel to obtain robust

body pose estimates [55] and use them directly as a fea-

ture to recognize actions, what is known as pose or skeleton

action recognition. Popular approaches include the use of

temporal state-space models [17, 70, 74, 75, 86], key-poses

[66, 85], hand-crafted pose features [64, 65], and tempo-

ral recurrent models [12, 63, 87]. Having multiple data

streams has led to the study of combining different sources

of information such as depth and pose [4, 40, 52, 69],

color and pose [88], and all of them [19]. Most previous

works in RGB-D action recognition focus on actions per-

formed by the whole human body with some exceptions

that are mainly application-oriented, such as hand gestures

for human-computer interaction [9, 11, 29, 34, 40] and sign

language [68]. Related to us, [33] mounted a depth sensor

to recognize egocentric activities and modeling hands using

low-level skin features. Similar to our interests but in third-

person view, [27, 78] used a hand tracker to obtain noisy es-

timates of hand pose in kitchen manipulation actions, while

[11] recognized basic hand gestures for human-computer

interaction without objects involved. In these works, ac-

tions performed and pose labels are very limited due to the

low quality of the hand tracker, while in this work we pro-

vide accurate hand pose labels to study more realistic hand

actions. We go in depth and evaluate several baselines and

state-of-the-art approaches in Sections 4 and 5.
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Figure 2: Hand actions: We captured daily hand actions using a RGB-D sensor and used a mo-cap system to annotate hand

pose. Left: ‘put sugar’ and ‘pour milk’ (kitchen). Right: ‘charge cell phone’ (office) and ‘handshake’ (social).

3D hand pose estimation: Mainly due to the recent

availability of RGB-D sensors, the field has made signifi-

cant progress in object-less third-person view [22, 25, 28,

37, 39, 41, 45, 53, 60, 80] and more modest advances in

first-person view [10, 35, 38, 48]. In [42], 3D tracking of

a hand interacting with an object in third-person view was

investigated. [18] studied the use of object-grasp as hand

pose prior, while [51] used the object shape as cue. An im-

portant limitation is the difficulty of obtaining accurate 3D

hand pose annotations leading researchers to resort to syn-

thetic [3, 10, 35, 48, 53], manually or semi-automatically

annotated [38, 58, 59, 61] datasets, resulting in non-realistic

images, a low number of samples, and often inconsistent

annotations. With the help of magnetic sensors for anno-

tation and similar to [72], [84] proposed a big benchmark

that included egocentric poses with no objects involved and

showed that a ConvNet baseline can achieve state-of-the-art

performance when enough training data is available. This

was confirmed in a public challenge [83], also using a sub-

set of our proposed dataset, and followed by a work [82]

analyzing the current state-of-the-art of the field.

3. Daily hand-object actions dataset

3.1. Dataset overview

The dataset contains 1,175 action videos belonging to 45

different action categories, in 3 different scenarios, and per-

formed by 6 actors. A total of 105,459 RGB-D frames are

annotated with accurate hand pose and action category. Ac-

tion sequences present high inter-subject and intra-subject

variability of style, speed, scale, and viewpoint. The ob-

ject’s 6-dimensional pose, 3D location and angle, and mesh

model are also provided for 4 objects involving 10 different

action categories. Our plan is to keep growing the dataset

with more models and objects. In Fig. 2 we show some ex-

ample frames for different action categories and hand-pose

annotation visualization.

3.2. Hand­object actions

We captured 45 different daily hand action categories in-

volving 26 different objects. We designed our action cat-

egories to span a high number of different hand config-

urations following the same taxonomy as [50] and to be

diverse in both hand pose and action space (see Fig. 4).

Each object has a minimum of one associated action (e.g.,

pen-‘write’) and a maximum of four (e.g., sponge-‘wash’,

‘scratch’, ‘squeeze’, and flip’). These 45 hand actions were

recorded and grouped in three different scenarios: kitchen

(25), office (12) and social (8). In this work we consider

each hand-object manipulation as a different action cate-

gory similar to previous datasets [14], although other def-

initions are possible [73, 78].

3.3. Sensors and data acquisition

Visual data: We mounted an Intel RealSense SR300

RGB-D camera on the shoulder of the subject and cap-

tured sequences at 30 fps and resolutions 1920×1080 and

640×480 for the color and depth stream respectively.

Pose annotation: To obtain quality annotations of hand

and object pose, the hand pose is captured using six mag-

netic sensors [36] attached to the user’s hand, five fingertips

and one wrist, following [84]. Each sensor provides posi-

tion and orientation with 6 degrees of freedom and the full

hand pose is inferred using inverse kinematics over a de-

fined 21-joint hand model. Each sensor is 2 mm wide and

when attached to the human hand does not influence the

depth image. The color image is affected as the sensors

and the tape attaching them are visible, however the hand is

fully visible and actions distinguishable by using the color

image. Regarding object pose, we attach one more sensor to

the closest point to the center of mass that can be reached.

Recording process: We asked 6 people, all right-

handed, to perform the actions. Instructions on how to per-

form the action in a safe manner were given, however no

instructions about style or speed were provided, in order to

capture realistic data. Actions were labeled manually.
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Figure 3: Taxonomy of our hand actions involving objects

dataset. Some objects are associated with multiple actions

(e.g., spoon, sponge, liquid soap), while some others have

only one linked action (e.g., calculator, pen, cell charger).

3.4. Dataset statistics

Taxonomy: Fig. 3 shows the distribution of different

actions per involved object. Some objects such as ‘spoon’

have multiple actions (e.g., ‘stir’, ‘sprinkle’, ‘scoop’, and

‘put sugar’), while some objects have only one action (‘use

calculator’). Although it is not an object per se, we included

‘hand’ as an object in actions ‘handshake’ and ‘high five’.

Videos per action class: On average there are 26.11 se-

quences per class action and 45.19 sequences per object.

For detailed per class numbers see Fig. 4 (c).

Duration of videos: Fig. 4 (d) shows the average num-

ber of video duration for the 45 action classes. Some ac-

tion classes such as ‘put sugar’ and ‘open wallet’ involve

short atomic movements, on average one second, while oth-

ers such as ‘open letter’ require more time to be executed.

Grasps: We identified 34 different grasps following the

same taxonomy as in [50], including the most frequently

studied ones [8] (i.e., precision/power grasps for different

object attributes such as prismatic/round/flat/deformable).

In Fig. 4 (b) we show some examples of correlation between

objects, hand poses, and actions.

Viewpoints: In Fig. 4 (e) we show the distribution of

frames per hand viewpoint. We define the viewpoint as

the angle between the camera direction and the palm of the

hand. The dataset presents viewpoints that are more prone

to self-occlusion than typical ones in third-person view.

Dataset Sensor Real? Class. Seq. Frames Labels

Yale [6] RGB X 33 - 9,100 Grasp

UTG [7] RGB X 17 - - Grasp

GTEA [14] RGB X 61 525 31,222 Action

EgoHands [5] RGB X 4 48 4,800 Action

GUN-71 [50] RGB-D X 71 - 12,000 Grasp

UCI-EGO [48] RGB-D ✗ - - 400 Pose

Choi et al. [10] RGB-D ✗ 33 - 16,500 Grasp+Pose

SynthHands [35] RGB-D ✗ - - 63,530 Pose

EgoDexter [35] RGB-D X - - 3,190 Fingertips

Luo et al. [30] RGB-D-T X 44 250 450,000 Action

Ours RGB-D X 45 1,175 105,459 Action+Pose

Table 1: First-person view datasets with hands and objects

involved. Our proposed dataset is the first providing both

hand pose and action annotations in real data (cf. synthetic).

Hand occlusion: Fig. 6 (a) (bottom) shows the aver-

age number of visible (not occluded by object or viewpoint)

hand joints per action class. Most actions present a high de-

gree of occlusion, on average 10 visible joints out of 21.

Object pose: 6D object pose and mesh models are pro-

vided for the following objects involving 10 different ac-

tions: ‘milk bottle’, ‘salt’, ‘juice carton’, and ‘liquid soap’.

3.5. Comparison with other datasets

In Table 1 we summarize popular egocentric datasets that

involve hands and objects in both dynamic and static fash-

ion depending on their problem of interest. For concise-

ness, we have excluded from the table related datasets that

do not partially or fully contain objects manipulations, e.g.,

[38, 44, 84]. Note that previous datasets in action recog-

nition [5, 14, 30] do not include hand pose labels. On the

other hand, pose and grasp datasets [6, 7, 10, 35, 48, 50]

do not contain dynamic actions and hand pose annotation

is obtained by generating synthetic images or rough manual

annotations [35]. Our dataset ‘fills the gap’ of egocentric

dynamic hand action using pose and compares favorably in

terms of diversity, number of frames, and use of real data.

4. Evaluated algorithms and baselines

4.1. Action recognition

In order to evaluate the current state-of-the-art in action

recognition we chose a variety of approaches that, we be-

lieve, cover the most representative trends in the literature

as shown in Table 4. As the nature of our data is RGB-D

and we have hand pose, we focus our attention to RGB-D

and pose-based action recognition approaches, although we

also evaluate two RGB action recognition methods [15, 19].

Note that, as discussed above, most of previous works in

RGB-D action recognition involve full body poses instead

of hands and some of them might not be tailored for hand

actions. We elaborate further on this in Section 5.1.

We start with one baseline to assess how the current

state-of-the-art in RGB action recognition performs in our

dataset. For this, and given that most successful RGB action
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Figure 4: (a) t-SNE [32] visualization of hand pose embedding over our dataset. Each colored dot represents a full hand pose

and each trajectory an action sequence. (b) Correlation between objects, grasps, and actions. Shown poses are the average

pose over all action sequences of a certain class. One object can have multiple grasps associated depending on the action

performed (e.g., ‘juice carton’ and ‘milk bottle’) and one grasp can have multiple actions associated (e.g., lateral grasp present

at ‘sprinkle’ and ‘clean glasses’). (c) Number of action instances per hand action class. (c) Average number of frames in each

video per hand action class. Our dataset contains both atomic and more temporally complex action classes. (d) Distribution

of hand viewpoints, defined as angles between the direction of the camera and the direction of the palm of the hand.

recognition approaches [31, 56] use ConvNets to learn de-

scriptors from color and motion flow, we evaluate a recent

two-stream architecture fine-tuned on our dataset [15].

About the depth modality, we first evaluate two local

depth descriptor approaches, HOG2 [40] and HON4D [43],

that exploit gradient and surface normal information as a

feature for action recognition. As a global-scene depth de-

scriptor, we evaluate the recent approach by [47] that learns

view invariant features using ConvNets from several syn-

thesized depth views of human body pose.

We follow our evaluation with pose-based action recog-

nition methods. As our main baseline, we implemented

a recurrent neural network with long-short term memory

(LSTM) modules inspired in the architecture by [87]. We

also evaluate several state-of-the-art pose action recognition

approaches. We start with descriptor-based methods such as

Moving Pose [85] that encodes atomic motion information

and [64], which represents poses as points on a Lie group.

For methods focusing on learning temporal dependencies,

we evaluate HBRNN [12], Gram Matrix [86] and TF [17].

HBRNN consists of a bidirectional recurrent neural network

with hierarchical layers designed to learn features from the

body pose. Gram Matrix is currently the best performing

method for body pose and uses Gram matrices to learn the

dynamics of actions. TF learns both discriminative static

poses and transitions between poses using decision forests.

To conclude, we evaluate one hybrid approach that

jointly learns heterogeneous features (JOULE) [19] using

an iterative algorithm to learn features jointly taking into

account all the data channels: color, depth, and hand pose.

4.2. Hand pose estimation

To assess the state-of-the-art in hand pose estimation, we

use the same ConvNet as [84]. We choose this approach as

it is easy to interpret and it was shown to provide good per-

formance in a cross-benchmark evaluation [84]. The chosen

method is a discriminative approach operating on a frame-

by-frame basis, which does not need any initialization and

manual recovery when tracking fails [21, 41].
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5. Benchmark evaluation results

5.1. Action recognition

In the following we present our experiments in action

recognition. In this section we assume the hand pose is

given, i.e., we use the hand pose annotations obtained us-

ing the magnetic sensors and inverse-kinematics. We eval-

uate the use of estimated hand poses without the aid of the

sensors for action recognition in Section 5.2.

Following common practice in full body-pose action

recognition [64, 85], we compensate for anthropomorphic

and viewpoint differences by normalizing poses to have the

same distance between pairs of joints and defining the wrist

as the center of coordinates.

5.1.1 A baseline: LSTM

We start our experimental evaluation with a simple yet pow-

erful baseline: a recurrent neural network with long-short

term memory module (LSTM). The architecture of our net-

work is inspired by [87] with two differences: we do not ‘go

deep’, and use a more conventional unidirectional network

instead of bidirectional. Following [87], we set the number

of neurons to 100 and a probability of dropout of 0.2. We

use TensorFlow and Adam optimizer.

Training and testing protocols: We experiment with

two protocols. The first protocol consists of using differ-

ent partitions of the data for training and the rest for testing

and we tried three different training:testing ratios of 1:3, 1:1

and 3:1 at sequence level. The second protocol is a 6-fold

‘leave-one-person-out’ cross-validation, i.e., each fold con-

sists of 5 subjects for training and one for testing. Results

are presented in Table 2. We observe that following a cross-

person protocol yields the worst results taking into account

that in each fold we have similar training/testing proportions

to the 3 : 1 setting. This can be explained by the difference

in hand action styles between subjects. In the rest of the pa-

per we perform our experiments using the 1:1 setting with

600 action sequences for training and 575 for testing.

Results discussion: In Fig. 5 (a) we show the recog-

nition accuracies per category on a subset actions and the

action confusion matrix is shown in Fig. 6 (b). Some ac-

tions such as ‘sprinkle spoon’, ‘put tea bag’ and ‘pour juice’

are easily identifiable, while actions such as ‘open wallet’

and ‘use calculator’ are commonly confused, likely because

hand poses are dissimilar and more subtle. In Fig. 5 (d) we

show the contribution of each finger motion to action recog-

nition performance, finding that the index is the most infor-

mative finger. Combining thumb and index poses boosts

the accuracy, likely due to the fact that most grasps are ex-

plained by these two fingers [6]. Fingertips alone are also a

high source of information due to being the highest articu-

lated joints and being able to ‘explain’ the hand pose.

Protocol 1:3 1:1 3:1 cross-person

Acc. (%) 58.75 78.73 84.82 62.06

Table 2: Action recognition results (percentage of correct

video classification) for different training/testing protocols.

5.1.2 State-of-the-art evaluation

In Table 4 we show results for state-of-the-art approaches

in different data modalities. We observe that the Two-

stream [15] method performs well when combining both

spatial and temporal cues. Depth methods tend to perform

slightly worse than the rest of the methods, suggesting that

they are not able to fully capture either the object cues or the

hand pose. Note that for Novel View [47] we extracted deep

features from a network trained on several synthetic views

of bodies, which may not generalize well to hand poses and

fine-tuning in our dataset did not help. From all approaches,

we observe that the ones using hand pose are the ones that

achieve the best performance, with Gram Matrix [86] and

Lie group [64] performing particularly well, a result in line

with the ones reported in body pose action recognition.

In Fig. 5 we select some of the most representative meth-

ods and analyze their performance in detail. We observe

that the pose method Gram Matrix outperforms the rest in

most of the measures, specially when we retrieve the top k

action hypothesis (Fig. 5 (b)), showing the benefit of using

hand pose for action recognition. Looking at Fig. 5 (a),

we observe that Two-stream outperforms the rest of meth-

ods in some categories in which the object is big and the

action does not involve much motion, e.g., ‘use calculator’

and ‘read paper’. This good performance can be due to the

pre-training of the spatial network on a big image recogni-

tion dataset. We further observe this in Fig. 5 (c) where

we analyze the top k hypothesis given by the prediction and

look whether the predicted action contains the object being

manipulated, suggesting that the network correctly recog-

nizes the object but fails to capture the temporal dynamics.

Hand pose vs. depth vs. color: We performed one

additional experiment using the JOULE [19] approach by

breaking down the contributions of each data modality. In

Table 4 (bottom) we show that hand pose features are the

most discriminative ones, although the performance can be

increased by combining them with RGB and depth cues.

This result suggests that hand poses capture complementary

information to RGB and depth features.

Object pose: We did an additional experiment using the

object pose as a feature for action recognition using the sub-

set of actions that have annotated object poses: a total of

261 sequences for 10 different classes and 4 objects. We

trained our LSTM baseline on half of the sequences and us-

ing three different inputs: hand pose, object pose, and both

combined. In Table 3 we show the results and observe that
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Figure 5: (a) Class accuracies of some representative methods on a subset of classes. (b) Top-k action accuracy: true

action label is in the top-k action prediction hypothesis. (c) Top-k object accuracy: manipulated object is in the top-k action

prediction hypothesis. (d) Impact of each of the five fingers, combinations of them, and fingertips on action recognition.

Pose feature Hand Object Hand+Object

Action acc. (%) 87.45 74.45 91.97

Table 3: We evaluate the use of 6D object pose for action

recognition on a subset of our dataset. We observe the ben-

efit of combining them with the hand pose.

both object pose and hand pose features are complimentary

and useful for recognizing egocentric hand-object actions.

5.2. Hand pose estimation

Training with objects vs. no objects: One question

raised while designing our experiments was whether we ac-

tually needed to annotate the hand pose in a close to ground

truth accuracy to experiment with hand dynamic actions.

We try to answer this question by estimating the hand poses

of our hand action dataset in two ways partitioning our data

as in our Action split: using the nearly 300k object-free ego-

centric samples from [84] and using the images in the train-

ing set of our hand action dataset. As observed in Fig. 6

(c) and Table 5, the results suggest that having hand-object

images in the training set is crucial to train state-of-the-art

hand pose estimators, likely due to the fact that occlusions

and object shapes need to be seen by the estimator before-

hand. To confirm this, we conducted two extra experiments:

cross-subject (half of the users in training and half in test-

ing, all objects seen in both splits) and cross-object (half of

Method Year Color Depth Pose Acc. (%)

Two stream-color [15] 2016 X ✗ ✗ 61.56

Two stream-flow [15] 2016 X ✗ ✗ 69.91

Two stream-all [15] 2016 X ✗ ✗ 75.30

HOG2-depth [40] 2013 ✗ X ✗ 59.83

HOG2-depth+pose [40] 2013 ✗ X X 66.78

HON4D [43] 2013 ✗ X ✗ 70.61

Novel View [47] 2016 ✗ X ✗ 69.21

1-layer LSTM 2016 ✗ ✗ X 78.73

2-layer LSTM 2016 ✗ ✗ X 80.14

Moving Pose [85] 2013 ✗ ✗ X 56.34

Lie Group [64] 2014 ✗ ✗ X 82.69

HBRNN [12] 2015 ✗ ✗ X 77.40

Gram Matrix [86] 2016 ✗ ✗ X 85.39

TF [17] 2017 ✗ ✗ X 80.69

JOULE-color [19] 2015 X ✗ ✗ 66.78

JOULE-depth [19] 2015 ✗ X ✗ 60.17

JOULE-pose [19] 2015 ✗ ✗ X 74.60

JOULE-all [19] 2015 X X X 78.78

Table 4: Hand action recognition performance by different

evaluated approaches on our proposed dataset.

the objects in training and half in testing, all subjects seen

in both splits). In Fig. 6 (c) and Table 5 we observe that the

network is able to generalize to unseen subjects but strug-

gles to do so for unseen objects, suggesting that recognizing

the shape of the object and its associated grasp is crucial to

train hand pose estimators. This shows the need of having
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Figure 6: (a) Top: Class action recognition accuracies for our LSTM baseline using estimated hand poses (accuracies with

groundtruth poses are represented with black triangles). Bottom: Average number of visible (not occluded) joints for hand

actions on our dataset and its impact on hand pose estimation. (b) Hand action confusion matrix for our LSTM baseline.

(c) Percentage of frames for different hand pose estimation error thresholds. (d) Qualitative results on hand pose estimation.

annotated hand poses interacting with objects and thus why

our dataset can be of interest for the hand pose community.

In Fig. 6 (d) we show some qualitative results in hand pose

estimation in our proposed dataset and observe that, while

not perfect, they are good enough for action recognition.

Hand pose estimation and action recognition: Now

we try to answer the following key question: ‘how good is

the current hand pose estimation for recognizing hand ac-

tions?’. In Table 5 we show results of hand action recogni-

tion by swapping the hand pose labels by the estimated ones

in the test set. We observe that reducing the hand pose error

by a factor of two yields a more than twofold improvement

in action recognition. The difference in hand action recog-

nition between using the hand pose labels and using the es-

timated ones in testing is 6.67%. We also tested the two best

performant methods from previous section, Lie group [64]

and Gram Matrix [86]. For Lie group we obtained an ac-

curacy of 69.22%, while for Gram Matrix a poor result of

32.22% likely due to their strong assumptions in the noise

distribution. On the other hand, our LSTM baseline shows

more robust behavior in the presence of noisy hand pose

estimates. In Fig. 6 (a) we show how the hand occlusion

affects the pose estimation quality and its impact on class

recognition accuracies. Although some classes present a

clear correlation between pose error and action accuracy

degradation (e.g., ‘receive coin’, ‘pour wine’), the LSTM

is still able to obtain acceptable recognition rates likely due

to being able to infer the action from temporal patterns and

correctly estimated joints. For more insight, we analyzed

the pose error per finger: T: 12.45, I: 15.48, M: 18.08, R:

16.69, P: 18.95, all in mm. Thumb and index joints present

the lowest estimation error because of typically being less

occluded in egocentric setting. According to previous sec-

tion where we found that the motion from these two fingers

was a high source of information, this can be a plausible

Hand pose protocol Pose error (mm) Action (%)

Cross-subject 11.25 -

Cross-object 19.84 -

Action split (training w/o objects) 31.03 29.63

Action split (training w/ objects) 14.34 72.06

Action split (GT mag.+IK poses) - 78.73

Table 5: Average hand pose estimation error, 3D distance

over all 21 joints between magnetic poses and estimates,

for different protocols and its impact on action recognition.

explanation of why we can still obtain a good action recog-

nition performance while having noisy hand pose estimates.

6. Concluding remarks

We have proposed a novel benchmark and presented ex-

perimental evaluations for RGB-D and pose-based, hand

action recognition, in first-person setting. The benchmark

provides both temporal action labels and full 3D hand pose

labels, and additionally 6D object pose labels on a part of

the dataset. Both RGB-D action recognition and 3D hand

pose estimation are relatively new fields, and this is a first

attempt to relate both of them similar to full human body.

We have evaluated several baselines in our dataset and con-

cluded that hand pose features are a rich source of informa-

tion for recognizing manipulation actions. We believe that

our dataset and experiments can encourage future work in

multiple fields including action recognition, hand pose esti-

mation, object pose estimation, and emerging ones, such as

joint hand-object pose estimation.
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[67] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action recog-

nition by dense trajectories. In CVPR, 2011. 2
[68] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust

3d action recognition with random occupancy patterns. In

ECCV, 2012. 2
[69] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet en-

semble for action recognition with depth cameras. In CVPR,

2012. 2
[70] P. Wang, C. Yuan, W. Hu, B. Li, and Y. Zhang. Graph based

skeleton motion representation and similarity measurement

for action recognition. In ECCV, 2016. 2
[71] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In CVPR, 2016. 2
[72] A. Wetzler, R. Slossberg, and R. Kimmel. Rule of thumb:

Deep derotation for improved fingertip detection. In BMVC,

2015. 3
[73] M. Wray, D. Moltisanti, W. Mayol-Cuevas, and D. Damen.

Sembed: Semantic embedding of egocentric action videos.

In ECCW, 2016. 3
[74] D. Wu and L. Shao. Leveraging hierarchical parametric

networks for skeletal joints based action segmentation and

recognition. In CVPR, 2014. 1, 2
[75] L. Xia, C.-C. Chen, and J. Aggarwal. View invariant human

action recognition using histograms of 3d joints. In CVPRW,

2012. 2
[76] X. Yang and Y. Tian. Super normal vector for activity recog-

nition using depth sequences. In CVPR, 2014. 2
[77] Y. Yang, C. Fermuller, Y. Li, and Y. Aloimonos. Grasp type

revisited: A modern perspective on a classical feature for

vision. In CVPR, 2015. 1, 2
[78] Y. Yang, A. Guha, C. Fermuller, and Y. Aloimonos. A cog-

nitive system for understanding human manipulation actions.

ACS, 2014. 2, 3
[79] A. Yao, J. Gall, G. Fanelli, and L. J. Van Gool. Does human

action recognition benefit from pose estimation?. In BMVC,

2011. 1
[80] Q. Ye, S. Yuan, and T.-K. Kim. Spatial attention deep net

with partial pso for hierarchical hybrid hand pose estimation.

In ECCV, 2016. 3
[81] T.-H. Yu, T.-K. Kim, and R. Cipolla. Unconstrained monoc-

ular 3d human pose estimation by action detection and cross-

modality regression forest. In CVPR, 2013. 1
[82] S. Yuan, G. Garcia-Hernando, B. Stenger, G. Moon, J. Y.

Chang, K. M. Lee, P. Molchanov, J. Kautz, S. Honari, L. Ge,

J. Yuan, X. Chen, G. Wang, F. Yang, K. Akiyama, Y. Wu,

Q. Wan, M. Madadi, S. Escalera, S. Li, D. Lee, I. Oikono-

midis, A. Argyros, and T.-K. Kim. Depth-based 3d hand

pose estimation: From current achievements to future goals.

In CVPR, 2018. 3
[83] S. Yuan, Q. Ye, G. Garcia-Hernando, and T.-K. Kim. The

2017 hands in the million challenge on 3d hand pose estima-

tion. arXiv preprint arXiv:1707.02237, 2017. 3
[84] S. Yuan, Q. Ye, B. Stenger, S. Jain, and T.-K. Kim. Big

hand 2.2m benchmark: Hand pose data set and state of the

art analysis. In CVPR, 2017. 3, 4, 5, 7

418



[85] M. Zanfir, M. Leordeanu, and C. Sminchisescu. The moving

pose: An efficient 3d kinematics descriptor for low-latency

action recognition and detection. In ICCV, 2013. 2, 5, 6, 7
[86] X. Zhang, Y. Wang, M. Gou, M. Sznaier, and O. Camps. Ef-

ficient temporal sequence comparison and classification us-

ing gram matrix embeddings on a riemannian manifold. In

CVPR, 2016. 1, 2, 5, 6, 7, 8
[87] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and

X. Xie. Co-occurrence feature learning for skeleton based

action recognition using regularized deep lstm networks. In

AAAI, 2016. 2, 5, 6
[88] Y. Zhu, W. Chen, and G. Guo. Fusing spatiotemporal fea-

tures and joints for 3d action recognition. In CVPRW, 2013.

2
[89] L. Zollo, S. Roccella, E. Guglielmelli, M. C. Carrozza, and

P. Dario. Biomechatronic design and control of an anthro-

pomorphic artificial hand for prosthetic and robotic applica-

tions. TMECH, 2007. 1

419


