
End-to-end learning of keypoint detector and descriptor

for pose invariant 3D matching

Georgios Georgakis1, Srikrishna Karanam2, Ziyan Wu2, Jan Ernst2, and Jana Košecká1

1Department of Computer Science, George Mason University, Fairfax VA
2Siemens Corporate Technology, Princeton NJ

ggeorgak@gmu.edu,{first.last}@siemens.com,kosecka@cs.gmu.edu

Abstract

Finding correspondences between images or 3D scans

is at the heart of many computer vision and image re-

trieval applications and is often enabled by matching lo-

cal keypoint descriptors. Various learning approaches have

been applied in the past to different stages of the match-

ing pipeline, considering detection, description, or metric

learning objectives. These objectives were typically ad-

dressed separately and most previous work has focused on

image data. This paper proposes an end-to-end learning

framework for keypoint detection and its representation (de-

scriptor) for 3D depth maps or 3D scans, where the two can

be jointly optimized towards task-specific objectives without

a need for separate annotations. We employ a Siamese ar-

chitecture augmented by a sampling layer and a novel score

loss function which in turn affects the selection of region

proposals. The positive and negative examples are obtained

automatically by sampling corresponding region propos-

als based on their consistency with known 3D pose labels.

Matching experiments with depth data on multiple bench-

mark datasets demonstrate the efficacy of the proposed ap-

proach, showing significant improvements over state-of-the-

art methods.

1. Introduction

Keypoint representations have been a central compo-

nent of matching, retrieval, pose estimation, and registra-

tion pipelines. With the advent of approaches based on deep

neural networks, global representations became pervasive in

solving these type of problems as they can be trained in a

straightforward way in an end-to-end fashion. Their short-

comings are caused by occlusions, partial views or scenes

that contain large amount of clutter. In case of local feature

representations, deep learning has been also applied to the

different stages of the matching pipeline, considering de-

tection, description, or metric learning objectives. Most of

CNN

CNN

...

Depth Image Pair

Joint Learning

Matching Objective

...

Figure 1. We propose a new method for jointly learning keypoint

detection and patch-based representations in depth images towards

the keypoint matching objective.

the frameworks considered the above objectives separately,

used image data, and required a large number of training

examples. In order to mitigate these issues, we propose to

use deep convolutional networks for learning keypoint rep-

resentations and a keypoint detector for 3D matching jointly

without the need for separate annotations. The costly anno-

tation stage can be avoided due to the availability of large

repositories of 3D models and the capability of obtaining

depth images from different viewpoints.

For the problem of jointly learning keypoint detectors

and descriptors, we define a Siamese network architecture

that receives as input a pair of depth images and their pose

annotations. Each branch of the architecture is a proposal

generation network used to generate patches in the two

depth images. The branches share weights and lead to a

sampling layer which selects pairs of patches. The pairs

are labeled as positive or negative depending on the prox-

imity of their 3D re-projection calculated from the pose la-

bels. In other words, the sampling layer is used to create

ground truth data on-the-fly by taking advantage of the ini-

tial pose annotations. For training the network, we use the

contrastive loss which attempts to minimize the distance in

the feature space between positive pairs, and maximize the

distance between negative pairs. Therefore, for patches that

are very close in the 3D space, but sampled from different

1965

images, we are learning a representation that has minimal

distance in the feature space. In order to learn where to

select patches from, we define a score loss to gauge the per-

formance of the target task. For example, for pose estima-

tion the score loss should consider the number of positive

matches between two images from different viewpoints. To

summarize, the key contributions of this paper include the

following:

• We propose the first end-to-end framework for joint

learning of keypoint detector and local feature repre-

sentations for 3D matching,

• We propose a novel sampling layer that can generate

labels for local patch correspondence on-the-fly, and

• We design a score loss encapsulating task specific

objectives that can implicitly provide supervision for

joint learning of keypoint detector and its feature rep-

resentation.

We evaluate the matching accuracy of the proposed ap-

proach on multiple benchmark datasets and demonstrate

improvements over state-of-the-art methods.

2. Related Work

There is a large body of work on keypoint detectors and

descriptors for both images and 3D depth maps. For im-

ages, features such as SIFT [9], FAST [13], BRISK [8], and

ORB [14] have been used effectively for various matching

tasks. Detectors and descriptors specifically designed for

3D data, including feature histograms [16] and geometry

histograms [2] are already included in the Point Cloud Li-

brary (PCL) along with many others [17]. These represen-

tations were hand-engineered with specific keypoint match-

ing accuracy and/or efficiency goals. A comprehensive re-

view of 3D descriptors can be found in [4].

Advances in convolutional networks led to works in

learning descriptors and distance metrics for various match-

ing tasks. The descriptor learning problem has been exten-

sively tackled in case of images and was typically formu-

lated as a supervised learning problem. Given positive and

negative examples of pairs of descriptors, the goal is to learn

representations where the positive examples are nearby and

negative examples are far apart. The methods vary between

those which use fixed descriptors and learn a discriminative

metric to approaches which take raw patches and learn new

representations, or both. 3D reconstructions are often used

to obtain large amounts of training data. A comprehensive

evaluation of existing approaches can be found in [24].

Most relevant to our task are the descriptor learning

methods of Zagoruyko et al. [31], Han et al. [5], and

Wohlhart et al. [29], where patch representations are learned

discriminatively by means of Siamese or Triplet networks,

considering pairs or triplets of descriptors. Similar ap-

proaches have been proposed for learning feature represen-

tations for matching 3D data [32, 28, 10]. Both in case of

images and depth maps, the feature descriptors were typi-

cally computed at fixed sized patches or patches determined

by sampling both spatial locations and scale.

The problem of learning the detector was addressed by

Salti et al. [20], where a descriptor specific keypoint detec-

tor was proposed by casting the problem of selecting key-

point locations and spatial support as a binary classification

task. Savinov et al. [21] formulates the keypoint detection

problem as the problem of learning how to rank points con-

sistently over various image transformations. Other meth-

ods such as [30, 1, 7] rely on hand-crafted interest point

detectors to collect training data, which is done separately

from the training process, affecting the learning of the key-

point detector. In contrast to these approaches, we formu-

late the problem of selecting keypoints (locations and spa-

tial support) and their feature representations in a single,

unified framework, enabling joint optimization of the pa-

rameters for both.

3. Approach

We are interested in jointly learning a keypoint detector

and a view-invariant descriptor using depth data. In con-

trast to other approaches ([30], [20]), our work does not use

hand-crafted keypoint detectors or descriptors as initializa-

tion for the learning procedure. Since it is unclear in case of

3D data which keypoint locations should be labeled as “in-

teresting”, we do not rely on any hand-labeled datasets with

keypoint annotations. Instead, we use a modified Faster R-

CNN [12] as the head of our architecture to bootstrap the

learning process. Specifically, given two depth images with

some pose perturbation, we first generate two sets of pro-

posals, one for each image. Then, we project the propos-

als in 3D using the known image poses in order to estab-

lish positive and negative pairs. Proposals with a small dis-

tance in 3D are considered correspondences and are there-

fore labeled as positives. The pairs are then passed to a

contrastive loss in an attempt to minimize feature distance

between positive pairs and maximize the distance between

negative pairs. Additionally, we introduce a new score loss,

which finetunes the parameters of the Region Proposal Net-

work (RPN) of the Faster R-CNN [12] to generate high-

scoring proposals in regions of the depth maps for which

we can consistently find correspondences. To the best of

our knowledge, this is the first work that attempts to jointly

optimize the keypoint detection and representation learning

process in a purely self-supervised fashion.

3.1. Architecture

We choose to use Faster R-CNN [12] as the basis for our

architecture because of its modularity. Even though it is ini-

1966

RPN

conv5_3

Lscore

Lcontr

Lscore

RoI Pooling

RoIs

Sampling

1x1conv

conv5_3

RoI Pooling

RoIs

RPN

1x1conv

I0

I1

S1

S0

g0D1 Cg
1

D0, , , ,

l0

l1

w

x0,f0

x1,f1

F',l'

Figure 2. Overview of our Siamese architecture. Each branch is a modified Faster R-CNN which receives as an input a depth image and

uses VGG-16 as the base representation network. Features from conv5 3 are fed into both the Region Proposal network (RPN) and the

Region of Interest (RoI) pooling layer. Given a set of proposals from RPN, we pass their scores to the score loss, while their RoIs are fed

to the RoI pooling layer and a fully connected layer to extract the feature vectors. The RoI centroids and the features from both branches

are then passed to the sampling layer which organizes them into pairs used by the contrastive loss. Note that the weights between the two

branches are shared. For more details on the notations please see section 3.2.

tially trained for the task of object detection, its components

can provide us with patch-based representations and a train-

able mechanism for selecting those patches. We use Faster

R-CNN as part of a Siamese model with shared weights.

Both branches are connected to a layer responsible for find-

ing correspondences which we call the sampling layer. A

contrastive loss is used to train the representation and each

branch has a score loss for training the keypoint detection

stage. An overview of the architecture with more details can

be seen in Figure 2.

3.2. Training

In order to train our model, we require pairs of depth im-

ages {I0, I1} each with its camera pose information {g0,

g1} and the intrinsic camera parameters C. These can be

obtained by rendering a 3D model from multiple viewpoints

or using RGB-D video sequences with registered frames

([23], [6]). To pass the depth images {I0, I1} through our

network, we first normalize their depth values in the RGB

range and replicate the single channel into a 3-channel im-

age. The rest of the inputs g0, g1, C, and the depth images

with their values in meters D0, D1 are passed directly to the

sampling layer.

For each depth image, the Region Proposal Network

(RPN) generates a set of scores, and regions of inter-

est (RoIs) for which we use their centroids as the key-

point locations. Each RoI also determines the spatial ex-

tent used for feature computation for the current keypoint

and after RoI pooling layer, we obtain the representation

for each keypoint. We keep the top t keypoints based

on their scores and establish our set of keypoints, Km =
{(xm

0
, sm

0
, fm

0
), ..., (xm

t , smt , fm
t)}, where m = {0, 1} cor-

responds to the pair of depth images, xmt = (xt, yt) are

2D coordinates on the image plane, smt is the score which

signifies the saliency level of the keypoint, and fm
t is the

corresponding feature vector.

The sampling layer then receives the sets of key-

point centroids and their features from both images,

{x0, x1, f0, f1}. To determine the correspondences be-

tween the keypoints of the two images, the centroids are

first projected in 3D space. For each keypoint x0i , we find

the closest x1j in 3D space based on Euclidean distance and

form the nth pair of features F ′

n = (f0

i , f
1

j). If the dis-

tance is less than a small threshold, we label it as positive

(l′n = l0i = l1j = 1), otherwise it is considered as a negative

pair (l′n = l0i = l1j = 0). This can possibly lead to one

class vastly outnumbering the other. However, this can be

advantageous for learning the keypoints, as the number of

positive pairs indicates how many keypoints were generated

consistently between the two input depth images. This is

different from the correspondence layer used in [22], which

performed dense sampling of correspondences, and had no

notion of keypoints or their repeatability.

Joint Optimization: As mentioned earlier, we are in-

terested in jointly learning a view-invariant representation

along with a keypoint detector. Towards this end we intro-

1967

RPN
conv5_3

Lscore

Lcontr
RoI Pooling

RoIs

Sampling

1x1conv

I0
S0

l0

x0,f0 F',l'

Proposal

3x3conv

1x1conv score

1x1conv box

g0D1 Cg
1

D0, , , ,

Figure 3. Gradient backpropagation during training of our network. The figure only shows one branch. The purple and red arrows show the

path of the gradients from the score and the contrastive loss respectively. Notice that no gradients are passed in the 1x1 conv bbox layer,

since we are not optimizing towards bounding box regression.

duce the following multi-task loss:

L(
{

K0
}

,
{

K1
}

) = λcLc(F
′, l′)+

λsL
0

s(s
0, l0) + λsL

1

s(s
1, l1)

(1)

where, Lc is a slightly modified contrastive loss which op-

erates on the pairs of the keypoints and optimizes over the

representation, Lm
s , are the score loss components which

use the keypoint scores in order to optimize the detector, l′

is the set of labels of the set of feature pairs F ′, and λc and

λs are the weight parameters. Note that since we formed

the features into the set of pairs F ′, we use the notation n to

signify the nth feature pair (f0

n, f
1

n). The contrastive loss is

defined as:

Lc(F
′, l′) =

∑N

n=1
l′n||f

0

n − f1

n||
2

2Npos

+

∑N

n=1
(1− l′n)max(0, v − ||f0

n − f1

n||)
2

2Nneg

(2)

where v is the margin, and Npos, Nneg are the number of

positive and negative pairs respectively (N = Npos+Nneg).

Each class contribution to the loss was normalized based

on its population to account for the imbalance between the

positive and negative pairs. The score loss is defined as:

Lm
s (sm, lm) =

1

1 +Npos

−
γ
∑N

i=1
lmi log smi

1 +Npos

(3)

where lmi is the label for the ith keypoint from image Im

whose value depends whether the keypoint belongs to a pos-

itive or negative pair, and γ is a regularization parameter.

Note that since the pairs are formed by picking a keypoint

from each image and each keypoint can belong to only one

pair, then |l0| = |l1| = N .

The objective of the score loss is to maximize the num-

ber of correspondences between two views. We specifically

avoid looking for discriminative keypoints as that would en-

tail defining the meaning of a discriminative keypoint. This

is ambiguous by nature as discriminativeness can be subjec-

tive, depended also on the task at hand. Instead, we consider

“interesting” keypoints as those for which we can find cor-

respondences between two viewpoints, and ideally we want

RPN to rank them higher than others. Therefore, we opti-

mize towards generating as many positive keypoints as we

can, in addition to maximizing their scores. We consider

only the positive pairs and penalize them if their generated

score is low. The loss is normalized by the number of pos-

itives, however, γ can be utilized to regulate the trade-off

between optimizing for the number of keypoints versus op-

timizing for the scores.

Furthermore, our framework allows regulating the trade-

off between number of matches and localization accuracy

during training, by adjusting the 3D distance threshold in

the sampling layer. For example, with a small threshold,

the model will learn to associate few keypoints with high

accuracy as opposed to a large number with a more relaxed

threshold. Since we are generating annotations on-the-fly,

this enables us to train systems with varying trade-off be-

tween matching likelihood and accuracy to address applica-

tion needs.

During backpropagation, we pass the gradient for each

keypoint at the appropriate location in the gradient maps,

by storing their locations during the forward pass and imple-

menting the backwards functionality in the region proposal

layer. For the score loss, the gradients are passed through

the convolutional layers that are responsible for predicting

the scores. In contrast to the traditional Faster R-CNN, we

do not finetune the bounding box regressor as there are no

ground-truth boxes available for our task. However, our

training scheme implicitly affects the bounding box gener-

ation, as all preceding layers are trained. An illustration of

how the gradients are backpropagated for both losses in one

branch of our network can be seen in Figure 3.

4. Experiments

In order to validate our approach, we compare its match-

ing capabilities to hand-crafted features, the keypoint learn-

ing method KPL [20], and the state-of-the-art 3DMatch [32]

which learns 3D local geometric descriptors using a siamese

1968

Figure 4. A training pair for the Engine model shown here both

noise-free (top row) and noisy (bottom row) created using Depth-

Synth [11].

deep learning architecture. For the hand-crafted features we

form 4 baselines from the combinations of the 3D keypoint

detectors Harris3D [27] and ISS [33] and the 3D descrip-

tors FPFH [15] and SHOT [19] found in the Point Cloud Li-

brary (PCL) [17]. KPL [20] is a descriptor-specific keypoint

learning approach for which we use the provided trained

model. We combine it with the SHOT descriptor as it was

proposed by the authors of [20]. Similarly, since 3DMatch

is a local 3D descriptor, we combine it with Harris3D key-

point detector and use the model trained for keypoint match-

ing provided by the authors. In addition, we add one more

baseline which is a variation of our method, where we train

using only the contrastive loss. We refer to this baseline as

Ours-No-Score.

Two main experiments are performed. First, we test on

a set of 3D models, both with clean and noisy data, and

second, we evaluate on two datasets captured by a real

depth sensor. Our motivation for choosing these datasets

is to compare the performance of our work with the base-

lines when dealing with noise from a depth sensor. Other

works [18] usually apply Gaussian noise on the 3D mod-

els to simulate the noise, however, this does not sufficiently

represent realistic scenarios. Therefore, for the first exper-

iment, we use DepthSynth [11], which synthetically gener-

ates realistic depth data from 3D CAD models by modeling

vital factors such as sensor noise, material reflectance, and

surface geometry that affect the scanning process. The syn-

thetic noisy images produced by DepthSynth are thus much

closer to the real depth images output from structured light

depth sensors.

4.1. 3D Models

For this experiment, we use a set of five 3D models,

four taken from the Stanford 3D scanning repository 1 (Ar-

madillo, Bunny, Dragon, Buddha) and the Honda CBX1000

1http://graphics.stanford.edu/data/3Dscanrep/

CAD model Rendering Keypoint extraction 3D index

Test image Keypoint detection and matching in index

Figure 5. Overview of the evaluation pipeline used in our exper-

iments. The top row describes the repository creation, while the

bottom shows the test procedure.

Method Noise-Free Noisy

ISS [33]+SHOT [19] 47.9 0.5

KPL [20]+SHOT [19] 57.2 2.8

ISS [33]+FPFH [15] 61.1 2.9

Harris3D [27]+SHOT [19] 60.1 5.9

Harris3D [27]+FPFH [15] 79.1 12.8

Harris3D [27]+3DMatch [32] 66.2 20.7

Ours-Rnd 29.8 7.3

Ours-No-Score 40.7 11.1

Ours-Transfer - 17.8

Ours 67.4 23.8
Table 1. Keypoint matching accuracies (%) comparison on both

noise-free and noisy views from the Engine 3D model.

Figure 6. Qualitative demonstration of the contribution of the score

loss on matching examples on the noise-free views from the En-

gine model. The examples where the model was trained without

the score loss (left column) contain smaller number and less accu-

rate matches in comparison to the examples with the model trained

with the score loss (right column). Best viewed in color.

engine CAD model, from now on referred to simply as En-

gine. Initially, for each 3D model we randomly generate

a large number of noise-free views as rendered from the

model. The views are grouped into pairs by first simulat-

ing a camera from a certain viewpoint, and then by adding

some pose perturbation in order to generate a pair image

1969

Method Armadillo Bunny Dragon Buddha Average

ISS [33]+SHOT [19] 0.8 0.5 0.6 0.4 0.6

ISS [33]+FPFH [15] 2.0 1.7 2.4 1.4 1.9

Harris3D [27]+SHOT [19] 8.0 11.4 6.9 6.7 8.3

KPL [20]+SHOT [19] 18.0 12.8 15.4 9.1 13.8

Harris3D [27]+FPFH [15] 14.5 16.0 16.4 10.5 14.4

Harris3D [27]+3DMatch [32] 14.9 17.7 27.8 15.1 18.8

Ours-No-Score 10.0 18.3 25.2 12.5 16.5

Ours 25.2 31.9 45.7 27.7 32.6
Table 2. Keypoint matching accuracies (%) comparison on noisy data from the Stanford 3D models.

Figure 7. Qualitative evaluation of keypoint generation on the noisy views. Each column represents a different approach. From left to right

we have ISS, Harris3D, KPL, and Ours. Notice that the first three methods frequently generate keypoints on background noise, in contrast

to our method which generates keypoints mostly on the object. Best viewed in color.

with some overlap to the first. We use around 10000 image

pairs and sample 50 keypoints per image for training each

model. For each view, we add simulated depth sensor noise

using DepthSynth [11]. The resulting depth images offer

much more challenges as noise is present not only on the

parts of the 3D model but on its background as well. An

example of a pair of views, both noise-free and noisy, can

be seen in Figure 4.

Testing protocol. First, separate training and testing sets

of views are generated. After we train our model, a sub-

set of the training set (500 views) is used to generate a

repository of descriptors, each assigned to a 3D coordinate.

Specifically, we pass each view through our model, collect

the descriptors at the predicted keypoint locations, and then

project those locations in world coordinates. Then, we ap-

ply our model on each view from the test set and match the

collected descriptors to the repository. For each descriptor,

its nearest neighbour is retrieved. When deciding whether

1970

Figure 8. Keypoint matching examples on the MSR-7 scenes. Columns 1 and 3 show test images and columns 2 and 4 show their retrievals

from the repository of descriptors.

this is a true match, we use a small 3D distance threshold

(5 cm) on the distance between the 3D location of the de-

scriptor and its retrieval, and increment the number of true

matches accordingly. The reported number is the number

of true matches towards the total number of matches. An

overview of this procedure is shown in Figure 5. Note that

we do not use any threshold on the descriptor distance to ob-

tain the set of matches. The same testing procedure is also

used for the baselines. For fairness, we tried to keep roughly

the same number of generated keypoints per method and per

view.

Engine 3D model. We investigate the performance of the

baselines and our approach on both noise-free and noisy

views from the Engine model. For this particular experi-

ment we add two more baselines, Ours-Transfer and Ours-

Rnd. For Ours-Transfer we train a model on noise-free

views, and then test it on the noisy data with the purpose of

investigating how well our model can transfer between the

noise-free and noisy domains. Ours-Rnd randomly selects

keypoints instead of using those with the highest scores

during the testing procedure. Table 1 presents the match-

ing accuracies. For the noise-free case, Ours is outper-

formed only from the combination of Harris3D+FPFH,

which outperforms the deep learning based method of Har-

ris3D+3DMatch as well. This is not surprising as these ap-

proaches are specifically designed to operate in clean point

clouds, however, that is not a realistic setting. Even so, Ours

demonstrates higher matching accuracy than all the rest of

the baselines.

For the noisy case, we first notice a significant drop in

performance from all approaches compared to the noise-

free evaluation. Ours is the best performing approach,

with a difference of 3.1%, 6% and 11% towards Har-

ris3D+3DMatch, Ours-Transfer and Harris3D+FPFH re-

spectively. The relatively small gap between Ours and

Ours-Transfer suggests that our model learns to generate

good keypoints regardless of the domain it is applied. It

is also important to note the large difference between the

Ours-Rnd and Ours-No-Score baselines to Ours, which sug-

gests the importance of the score loss during training. Ad-

ditional qualitative examples are presented in Figure 6 to

support our argument, where matching examples are com-

pared between the two methods. After visually examining

the examples, we notice that Ours produces higher quality

matches, most likely due to the consistency of the generated

keypoints learned by the score loss.

1971

Method Accuracy

ISS [33]+SHOT [19] 23.0

ISS [33]+FPFH [15] 24.3

Harris3D [27]+FPFH [15] 37.4

Harris3D [27]+SHOT [19] 37.9

Harris3D [27]+3DMatch [32] 38.2

Ours 41.2
Table 3. Keypoint matching accuracies (%) on the MSR-7 [25]

dataset.

Simulated depth sensor noisy views. Here, we use the

3D models from the Stanford repository and evaluate on

their noisy depth images. The testing protocol described

earlier is followed, except that we change the 3D distance

threshold to 10 cm to account for the errors in the projec-

tions of the points. Results shown in Table 2 follow the

same trend as in the Engine-noisy evaluation. Ours is the

top performing method, outperforming the next-best base-

lines Harris3D+3DMatch by 13.8% and Harris3D+FPFH

by 18.2%. Both combinations with ISS fail to retrieve al-

most any true matches, as ISS seems to be the keypoint de-

tector most affected by the simulated sensor noise. This is

a particularly challenging setting for approaches that do not

have mechanisms to avoid background noise when generat-

ing the keypoints. A qualitative evaluation of the keypoints

shown in Figure 7 reveals the tendency of the other methods

to generate keypoints on noise, while Ours focuses on the

object. This demonstrates that our method is much less sus-

ceptible to the depth sensor noise, and validates our claim

for learning the keypoint generation process jointly with the

representation.

Computational cost. Our end-to-end method requires

only 0.14s per image to perform a forward pass of the net-

work and generate keypoints and descriptors. For compari-

son, LIFT [30] takes 2.78s per image on the same machine.

During training our method needs 0.4s per iteration. All

times reported are on an NVIDIA Titan GPU for the honda

engine noisy data with 50 keypoints generated per image.

4.2. Real Depth Sensor

MSR-7. For this experiment, we use the publicly avail-

able MSR-7 scenes dataset [25], which offers RGB-D se-

quences captured with Kinect and reconstructions of indoor

scenes. We followed the train-test sequence split provided,

and trained a model for each scene on 10-frame-apart pairs

of the depth images. The same testing protocol of keypoint

matching as in the previous experiments is employed. We

do not use the baseline Ours-No-Score as it consistently un-

derperformed in the previous experiments, nor the KPL be-

cause it was trained on a very different dataset.

Table 3 shows the average matching accuracy over all

scenes. Again, our method seems to have the edge over

the baselines, with a 3% improvement over the second-best

Harris3D+3DMatch. This result suggests that our approach

Figure 9. Matching examples from GMU-Kitchens. First column

shows queries and retrieved points are color-coded (zoomed-in for

clarity). Note that we use the depth map for our experiments but

we show the retrievals in RGB for the sake of clarity.

can be successfully applied on sequences captured by a real

sensor, besides 3D models with simulated noise. In Figure 8

we present some retrieval examples from different scenes in

the dataset. We make a similar observation as in the noise-

free experiment, where true matches were retrieved from

larger viewpoint variations than the ones provided during

training. Note that the training pairs, 10-frames-apart, have

small pose differences.

GMU-Kitchens In this experiment we qualitatively in-

vestigate the performance of our method on objects cap-

tured by Kinect-v2. We use the publicly available GMU-

Kitchens [3] dataset which contains 9 RGB-D videos of

kitchen scenes with 11 object instances from the Big-

BIRD [26] dataset. Unlike the previous experiment where

we generate keypoints in the scenes, here we focus on

matching keypoints generated inside the bounding boxes of

objects. In particular, we use the train-test split of fold 1 as

defined in [3], and for each object we create a repository of

descriptors. Then, the descriptors collected from the bound-

ing boxes in the test scenes are matched to the appropriate

object repository (see Figure 9). Note that the model was

trained by sampling keypoints from the depth maps in the

scenes, similar to the MSR-7 experiment, and not specifi-

cally from the object bounding boxes.

5. Conclusions

We presented a unified, end-to-end, framework to simul-

taneously learn a keypoint detector and view-invariant rep-

resentations of keypoints for 3D keypoint matching. To

learn view-invariant representations, we presented a novel

sampling layer that creates ground-truth data on-the-fly,

generating pairs of keypoint proposals that we use to op-

timize a constrastive loss objective function. Furthermore,

to learn to generate the right keypoint proposals from a key-

point matching perspective, we introduced a new score loss

objective that maximizes the number of positive matches

between images from two viewpoints. We conducted key-

point matching experiments on multiple 3D benchmark

datasets and demonstrated qualitative and quantitative im-

provements over the existing state-of-the-art.

1972

References

[1] H. Altwaijry, A. Veit, S. J. Belongie, and C. Tech. Learning

to detect and match keypoints with deep architectures. In

BMVC, 2016.

[2] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik. Rec-

ognizing objects in range data using regional point descrip-

tors. ECCV, pages 224–237, 2004.

[3] G. Georgakis, M. A. Reza, A. Mousavian, P.-H. Le, and

J. Košecká. Multiview rgb-d dataset for object instance de-

tection. In 3DV, pages 426–434. IEEE, 2016.

[4] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M.

Kwok. A comprehensive performance evaluation of 3d local

feature descriptors. IJCV, 116(1):66–89, 2016.

[5] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

Matchnet: Unifying feature and metric learning for patch-

based matching. In CVPR, pages 3279–3286, 2015.

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison,

et al. Kinectfusion: Real-time 3D reconstruction and interac-

tion using a moving depth camera. In UIST, pages 559–568.

ACM, 2011.

[7] K. Lenc and A. Vedaldi. Learning covariant feature detec-

tors. In ECCV Workshops, pages 100–117. Springer, 2016.

[8] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary

robust invariant scalable keypoints. In ICCV, pages 2548–

2555. IEEE, 2011.

[9] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[10] D. Maturana and S. Scherer. 3d convolutional neural net-

works for landing zone detection from lidar. In ICRA, pages

3471–3478. IEEE, 2015.

[11] B. Planche, Z. Wu, K. Ma, S. Sun, S. Kluckner, T. Chen,

A. Hutter, S. Zakharov, H. Kosch, and J. Ernst. Depthsynth:

Real-time realistic synthetic data generation from CAD mod-

els for 2.5D recognition. 3DV, 2017.

[12] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, pages 91–99. 2015.

[13] E. Rosten, R. Porter, and T. Drummond. Faster and better:

A machine learning approach to corner detection. IEEE T-

PAMI, 32(1):105–119, 2010.

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:

An efficient alternative to SIFT or SURF. In ICCV, pages

2564–2571. IEEE, 2011.

[15] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature his-

tograms (FPFH) for 3D registration. In ICRA, pages 3212–

3217. IEEE, 2009.

[16] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Align-

ing point cloud views using persistent feature histograms. In

IROS, pages 3384–3391. IEEE, 2008.

[17] R. B. Rusu and S. Cousins. 3D is here: Point cloud library

(PCL). In ICRA, pages 1–4. IEEE, 2011.

[18] S. Salti, F. Tombari, and L. Di Stefano. A performance eval-

uation of 3D keypoint detectors. In 3DIMPVT, pages 236–

243. IEEE, 2011.

[19] S. Salti, F. Tombari, and L. Di Stefano. Shot: Unique sig-

natures of histograms for surface and texture description.

CVIU, 125:251–264, 2014.

[20] S. Salti, F. Tombari, R. Spezialetti, and L. Di Stefano. Learn-

ing a descriptor-specific 3D keypoint detector. In ICCV,

pages 2318–2326, 2015.

[21] N. Savinov, A. Seki, L. Ladicky, T. Sattler, and M. Pollefeys.

Quad-networks: unsupervised learning to rank for interest

point detection. CVPR, 2017.

[22] T. Schmidt, R. Newcombe, and D. Fox. Self-supervised

visual descriptor learning for dense correspondence. IEEE

Robotics and Automation Letters, 2(2):420–427, 2017.

[23] J. L. Schonberger and J.-M. Frahm. Structure-from-motion

revisited. In CVPR, pages 4104–4113, 2016.

[24] J. L. Schönberger, H. Hardmeier, T. Sattler, and M. Polle-

feys. Comparative evaluation of hand-crafted and learned

local features. In CVPR, 2017.

[25] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and

A. Fitzgibbon. Scene coordinate regression forests for cam-

era relocalization in RGB-D images. In CVPR, pages 2930–

2937, 2013.

[26] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel.

Bigbird: A large-scale 3d database of object instances. In

ICRA, pages 509–516. IEEE, 2014.

[27] I. Sipiran and B. Bustos. Harris 3D: a robust extension of

the harris operator for interest point detection on 3d meshes.

The Visual Computer, 27(11):963–976, 2011.

[28] S. Song and J. Xiao. Deep sliding shapes for amodal 3D

object detection in RGB-D images. In CVPR, pages 808–

816, 2016.

[29] P. Wohlhart and V. Lepetit. Learning descriptors for object

recognition and 3D pose estimation. In CVPR, pages 3109–

3118, 2015.

[30] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. LIFT: Learned

Invariant Feature Transform. In ECCV, 2016.

[31] S. Zagoruyko and N. Komodakis. Learning to compare im-

age patches via convolutional neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4353–4361, 2015.

[32] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and

T. Funkhouser. 3dmatch: Learning local geometric descrip-

tors from RGB-D reconstructions. In CVPR, pages 1802–

1811, 2017.

[33] Y. Zhong. Intrinsic shape signatures: A shape descriptor for

3D object recognition. In ICCV Workshops, pages 689–696.

IEEE, 2009.

1973

